核分裂の微視的理解に向けて

萩野浩一 京都大学大学院理学研究科

- ✓ 微視的に
- ✓ 量子力学的に 核分裂を記述したい

量子的多体ハミルト ニアンに基づいて

核分裂のエネルギー領域

Bohr-Wheeler formula (transition state theory)

fission の確率:

- ✓ 障壁でのみ決まる
- ✓ 障壁の外でのダイナミックス には依存しない

微視的に理解できるのか?

N. Bohr and J.A. Wheeler, Phys. Rev. 56, 426 (1939)

$$\Gamma_f = \frac{1}{2\pi \rho_{\rm gs}(E^*)} \int_0^{E^* - B_f} (\rho_{\rm sd}(E^* - B_f - K)) dK$$

CNに何個 の状態があるか saddle に何個 の状態があるか

湊太志氏(JAEA)のスライドを一部改変

Hauser-Feshbach 統計モデルは共鳴が十分に 多いエネルギー領域でなければ正しい記述ができない

このエネルギー範囲では、 Hauser-Feshbachモデルは 適用範囲外

この領域を理解したい →多体ハミルトニアンに基づく記述 が必要

barrier-top fission

離散準位を取り扱う必要がある

$n+235U \rightarrow 236U* \rightarrow fission$

どういう問題を考えるか

the fission-to-capture branching ratio
$$\alpha^{-1} = \frac{\sigma_f}{\sigma_f}$$

M.S. Moore et al., PRC30 ('84) 214

<u> 設模型的な計算</u> G.F. Bertsch and K.H., arXiv:2102.0784, 2105.12073

分岐比は $\Gamma_{\rm cap}$ に大きく依存するが $\Gamma_{\rm fis}$ にはあまり依存しない

20アンサンブルの平均と分散

$$Br_{\mathrm{BW}} = \frac{1}{2\pi\rho_0} \cdot \frac{1}{\Gamma_{\mathrm{cap}}}$$

$$\rho(E) = \rho_0 \sqrt{1 - \left(\frac{E}{\sqrt{4Nv}}\right)^2}$$

$$\rho_0 = \frac{\sqrt{N}}{\pi v}$$

Bohr-Wheeler の仮定を初めて微視的に実現

30

r-プロセス: 中性子過剰核の核分裂

$low E^*$, $low \rho(E^*)$ に対応できる(微視的)アプローチが必要

	Time-indep. approach	Time-dep. approach
Induced fission	✓Bohr-Wheeler (statistical model) ✓CI approach	✓ Langevin-type Wada, Abe, Aritomo, Chiba Moller, Randrup
Spontaneous fission 50 240 Pu 40 q _{II} 20 30 q _{II} 10 55 39	✓PES+Mass+WKB 50 40 30 € 20 0 10	✓Imtime TDHF (Negele) ✓Time-dep. Hill- Wheeler (Goutte et al.) ✓TDHF(B) (Bulgac)

200

Q₂₀ (b)

70 100 150

250 300 350 400

J. Sadhukhan, W. Nazarewicz, N. Schunck, PRC93('16)011304(R)

Recent publication by Banerjee et al. (ANU)

comparisons: to a <u>classical</u> Langevin calculation

 \rightarrow quantum effect should be crucial at low $E_{\rm x}$

2D Langevin calculations with the rel. coordinate and the mass asym.

qualitatively good, but quantitatively bad

 \rightarrow neck d.o.f?

PRL122, 232503 (2019)

K. Washiyama and K.H., in preparation