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Preface

Fusion is defined as a reaction where two separate nuclei combine together to form a
composite system. When the incident energy is not so large and the system is not so light,
the reaction process is predominantly governed by quantum tunneling over the Coulomb
barrier created by the strong cancellation between the repulsive Coulomb force and the
attractive nuclear interaction. Extensive experimental as well as theoretical studies have
revealed that fusion reactions are strongly influenced by couplings of the relative motion
of the colliding nuclei to several nuclear intrinsic motions. Heavy-ion subbarrier fusion
reactions thus provide a good opportunity to address the general problem on quantum
tunneling in the presence of couplings, which has been a popular subject in the past
decade in many branches of physics and chemistry.

Thanks to the recent developments in experimental techniques, fusion cross sections
can now become measured with high accuracy in small energy intervals. Such high preci-
sion experimental data have generated a renewed interest in heavy-ion subbarrier fusion
reactions in recent years. For instance, they have enabled a detailed study of the effects
of couplings on fusion reactions and have thus offered a good opportunity to test any
theoretical framework for subbarrier fusion reactions.

This thesis describes recent developments in subbarrier fusion reactions from the the-
oretical point of view. This work was partly motivated by the high precision experimental
data of fusion cross sections recently measured at the Australian National University, and
has been done in collaboration with international theorists as well as experimentalists.
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Abstract

Heavy-ion fusion reaction at energies near and below the Coulomb barrier is a typical
example of quantum tunneling in the presence of couplings. It has been well recognised
by now that fusion cross sections are strongly influenced by couplings between the relative
motion of the colliding nuclei and nuclear intrinsic motions. Recently, precisely measured
fusion cross sections have become available for several systems, and renewed interests have
been generated in the study of heavy-ion fusion reaction. This thesis covers the recent
theoretical developments in subbarrier fusion reactions and discusses them from a point
of view of multi-dimensional quantum tunneling.

Theoretical frameworks to describe multi-dimensional quantum tunneling are first re-
viewed. Coupled-channels formalism is introduced and the two limiting cases, i.e. the
sudden and the adiabatic limits are discussed. Path integral representation of multi-
dimensional quantum tunneling is then introduced as an alternative approach and the
deviations from the two extremes are discussed.

The coupled-channels formalism is applied to heavy-ion fusion reactions at subbarrier
energies. We use the path integral approach in order to reduce the dimension of the
coupled-channels equations based on the no-Coriolis approximation. Light is shed on the
what is called fusion barrier distribution, in connection with the recent high precision
data of fusion cross section. Several important features of the fusion barrier distribution
are discussed.

Most of the coupled-channels calculations performed so far use the linear coupling ap-
proximation, where the coupling potential is expanded in powers of the coupling strength,
keeping only the linear term. We investigate the role of higher order couplings in heavy-
ion fusion reactions. The coupled-channels equations are solved to all orders, and also in
the linear and the quadratic coupling approximations. Taking ®4Ni + %2%7Zr and %0 +
H2Cd, 4Sm reactions as examples, it is shown that the higher order couplings play an
important role.

Coupled-channels calculations of all order are then applied to discuss the role of projec-
tile excitations in subbarrier fusion reactions. The measured fusion barrier distributions
for 1°Ca + '91Pt, 1920s show significant features due to projectile excitation, while none
are seen for 0 + !4Sm. This conflict is reconciled using realistic coupled-channels
calculations, which show that the higher excitation energy of the 3~ state in 60 produc-
ing an adiabatic potential renormalisation, without affecting the structure in the barrier
distibution.

We also carry out detailed analyses of high precision data for the 160 + 144148Sm reac-
tions and discuss the anharmonic properties of collective phonon excitations in '44!48Sm
nuclei. We perform a systematic study of the effects of nuclear vibrations on cross sections
of subbarrier fusion reaction and on fusion barrier distributions, by using the vibrational
limit of the interacting boson model. It is shown that subbarrier fusion reactions are
strongly affected by the anharmonic properties and thus offer an alternative method to
extract the static quadrupole moments of phonon states in a spherical nucleus.
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Finally, we briefly discuss a process after fusion reactions take place, i.e. heavy-ion
induced fission. We particularly discuss the temperature dependence of nuclear fission
width in the presence of dissipative environment. It is shown that the decay width rapidly
decreases at the critical temperature, where the phase transition from super to normal
fluids takes place. A possible relation to the recently observed threshold for the dissipative
fission is also discussed.
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Chapter 1
INTRODUCTION

Quantum mechanics is indispensable in understanding the behaviour of microscopic sys-
tems like atoms, molecules, atomic nuclei, and aggregates of these. One of its fundamental
aspect is quantum tunneling, where a particle penetrates classically forbidden region. This
is a wave phenomenon and is frequently encountered in diverse processes in physics and
chemistry.

The importance of quantum tunneling has been recognised from the birth of quan-
tum mechanics. It was first applied to the description of physical phenomena by Hund
in 1927, who discussed intramolecular rearrangements in ammonia molecules, i.e. the
NH; > H;3N process, in terms of quantum tunneling in a double well potential(l]. In
the following year, Gamow, and independently Gurney and Condon, applied quantum
tunneling to « decays of atomic nuclei and had successfully explained the experimental
data of the half-life of radioactive nuclei as a function of the energy of the emitted a
particle [2, 3]. Oppenheimer employed quantum tunneling to describe the ionization of
atoms in intense electric fields[4]. It was also used by Fowler and Nordheim to discuss the
emission of electrons from cold metals under the action of intense electric fields [5]. These
pioneering works later led to the developments in the physics as well as the technology of
superconductors [6].

These seminal works assumed that quantum tunneling takes place in one dimensional
space. In general, however, a particle which penetrates a potential is never isolated but in-
teracts with its surroundings or environments, resulting in modification in its behaviour.
Quantum tunneling therefore inevitably takes place in multi-dimensional space. Such
problem was first addressed by Kapur and Peierls in 1937 [7]. Their theory has subse-
quently been developped by Banks, Bender, and Wu [8], Gervais and Sakita (9], Brink,
Nemes, and Vautherin [10], Schmid [11], and more recently by Takada and Nakamura
[12]. If a system is somewhat larger like the trapped flux in a SQUID (superconducting
quantum interference devices) ring [13], the tunneling variable couples to a large num-
ber of degrees of freedom. In such systems, since the coupling is relatively strong, the
environmental degrees of freedom more or less reveal a dissipative character. Quantum
tunneling under the influence of dissipative environments, often referred to as macroscopic
quantum tunneling (MQT) or dissipative tunneling, plays an important role and is a fun-
damental problem in many fields of physics and chemistry. Nucleation in *He-4He systems



[14], diffusion of heavy particle in metals[15], the Coulomb blockade phenomena in tunnel
junctions[16], the quantum depinning of a domain wall in magnetic systems[17], the infla-
tion in the early universe[18], and chemical reactions[19] are examples. This problem has
been studied in detail by Caldeira and Leggett [20]. This seminal work has stimulated
lots of experiments, and has made macroscopic quantum tunneling, or in more general,
quantum tunneling in systems with many degrees of freedom a topic of immense interest
during the past decade [21].

Despite the continual efforts, however, the dynamics of quantum tunneling in systems
with many degrees of freedom has not been fully understood. For example, there is not
even an established way to determine the tunneling path in multi-dimensional space when
the energy is near the potential barrier. In this respect, nuclear physics could play a unique
role in the general understanding of the effects of couplings to the environmental degrees
of freedom[22]. One of the typical example of tunneling phenomenon in nuclear physics
is a heavy-ion fusion reaction at energy near and below the Coulomb barrier. In order
for fusion reaction to take place, the relative motion between the colliding nuclei has to
overcome the Coulomb barrier created by the strong cancellation between the long-ranged
repulsive Coulomb and the short-ranged attractive nuclear forces. The environmental
degrees of freedom to which the relative motion couples are the whole spectra of excited
states of the target and projectile nuclei, as well as several sorts of nucleon transfer
reactions between the projectile and the target. The properties of the environmental
degree of freedom, i.e. intrinsic excitations may strongly depend on individual nucleus.
For example, the nucleus *8Sm is spherical and has a low-lying vibrational spectrum,
whereas '%4Sm is strongly deformed and a rotational mode of excitation characterises its
low-lying spectrum. Furthermore, the Q-value of transfer reactions also depends very
much on the projectile-target combination. On the other hand, the Coulomb barrier itself
does not change very much even if the target is varied from *8Sm to **Sm. One can
therefore control several quantities which govern the dynamics of quantum tunneling,
e.g. the coupling strength, the adiabaticity, and the type of environment by carefully
choosing the colliding nuclei, while keeping the bare potential unchanged. Heavy-ion
fusion reactions can thus provide a flexible tool to obtain a broader understanding of
quantum tunneling in the presence of couplings.

The role of channel-coupling, i.e. coupling of the relative motion to intrinsic excita-
tions in heavy-ion fusion reactions has been theoretically studied for a long time [23-27].
Their conclusions had been, however, rather inconclusive before the seminal experiments
of Stokstad et al. [28] were carried out in 1978. They used an '®O projectile on differ-
ent samarium isotopes and showed that the cross section of the fusion reaction with the
184G target is substantially larger than that with the *8Sm target at energies below the
Coulomb barrier. These experiments suggested that fusion cross sections are strongly en-
hanced when the target is deformed compared with cases where a spherical target is used.
It was later experimentally shown that the enhancement of the fusion cross sections is a
general phenomena and not necessarily associated with the static deformation of the tar-
get nucleus [29-31]. Their experimental data systematically showed large enhancements
of fusion cross sections relative to predictions of a one-dimensional potential model where
the effects of channel-couplings are not explicitly taken into account. This observation



was a great surprise at that time, since the potential model can successfully reproduce
the experimental cross sections for fusion of light ions[32]. The inadequency of this model
was then conclusively demonstrated in a systematic and transparent way by Balantekin,
Koonin, and Negele [33], who applied the WKB method to invert the experimental data
and constructed an effective one-dimensional potential directly from them. This inversion
procedure led to a thin unphysical inter-nuclear potential, which strongly indicated the
necessity of other effects which are not taken into account in the potential model. Owing
to extensive experimental as well as theoretical studies that followed, it has by now been
well established that the enhancement of fusion cross sections can be attributed to cou-
plings between the relative motion of the colliding nuclei and several nuclear collective
motions as well as transfer reactions [34-37].

The coupling of the relative motion to intrinsic degrees of freedom affects not only fu-
sion cross sections, but also the angular momentum dependence of fusion probabilities and
thus mean angular momenta of the compound nucleus formed in fusion reactions. These
quantities are interesting to study, since one can have different angular momentum distri-
butions which integrate to the same fusion cross section. A model which can account for
experimental fusion cross sections may thus fail to explain observed angular momentum
distributions of the compound nuclei[38]. The first measurement of the angular momen-
tum distribution and mean angular momenta of the compound nucleus was performed by
Vandenbosch et al. in 1983 for the ®0 + '**Sm reaction [39]. They observed a broader
angular momentum distribution and larger mean angular momenta of the compound nu-
cleus compared with those expected in the one-dimensional potential model, which again
suggested the inadequency of the potential model. Subsequently, especially in the early
90s, mean angular momenta of the compound nucleus have been simultaneously measured
with fusion cross sections for several systems [40]. These experimental data systemati-
cally show that the average angular momentum of the compound nucleus is larger than
the value predicted by the one-dimensional potential model. Furthermore, a structure,
not predicted by the potential model, was also observed in the energy dependence of
the mean angular momenta for some systems [41]. These experimental observations have
generated recent increasing attention of mean angular momenta of the compound nucleus
in the study of heavy-ion sub-barrier fusion reactions [42-50].

Further enormous developments in heavy-ion fusion reactions was recently achieved
when a beautiful series of experiments was carried out by the Canberra group (Leigh et
al.) with great accuracy [51]. These experiments revived the earlier idea of potential
inversion by Balantekin et al. [33] in a different way. When the excitation energy of
an internal degree of freedom is much smaller than the curvature of the bare potential
barrier, the effects of couplings to the environmental degree of freedom can be understood
in terms of a distribution of potential barriers [52-54]. In this sudden limit, the moment
of inertia of the intrinsic motion is so large that one can consider that the configuration of
the environment does not change during the tunneling. A typical example in the problem
of heavy-ion fusion reaction is the rotational motion of heavy deformed nuclei. The
energy of the first 2% state of heavy nuclei which have a static quadrupole deformation
is typically a few tens of keV, while the typical value of the barrier curvature of the
Coulomb potential for heavy-ion fusion reactions is between 3.5 and 4 MeV. Hence, at



least to the first approximation, the orientation of the deformed target does not alter
during the collision. In this approximation, the fusion potential distributes according to
different orientations of the target nucleus. The fusion cross section is then given by an
average over contributions from each orientations [23, 25, 26, 53, 55|. Based on such an
idea, a method was proposed by Rowley, Satchler, and Stelson in 1991 to extract barrier
distributions directly from fusion excitation functions by taking the second derivative of
the product of the fusion cross section and the center of mass energy Eo with respect to
E, ie. d*(Ec)/dE? [56). This quantity is referred to as the fusion barrier distribution,
and the experiments by the Canberra group have led to the finding that it provides a
unique view of heavy-ion fusion reactions[51].

Historically, the first attempt to extract barrier distributions from the experimental
fusion excitation functions had been made by Keller et al. using a different method from
that proposed by Rowley et al. [57, 58]. Although the distributions were reasonably well
defined at low energies, only qualitative comparisons between the experimental data and
theoretical calculations were possible because of the large uncertainties of the experimental
data at energies around the barrier height. Also, it had been pointed out that the original
data of Stokstad et al. [28] were not accurate enough to obtain well-defined barrier
distributions which allow quantitative comparisons between the data and theory[56, 59).
The Canberra group, therefore, constructed a new compact velocity filter in order to
measure the excitation function of fusion cross sections with a much smaller experimental
uncertainty [60].

The first experiment with this compact velocity filter was performed by Wei et al. in
1991 for the 0 + '%4Sm reaction [59]. The fusion barrier distribution directly extracted
from such highly precise data was found to be well-defined and clearly showed the role of
quadrupole deformation of the target nucleus in the fusion reaction. More importantly,
it was also found that the positive hexadecapole deformation in '**Sm is required in
order to properly explain the experimental fusion barrier distribution [61]. It was very
remarkable that the fusion barrier distribution is so sensitive to the small hexadecapole
deformation. In order to verify this, the Canberra group measured the fusion excitation
function for the 0 + ®W reaction [62]. This system was chosen because !*W has
a similar value and the same sign of quadrupole defromation parameter as the !**Sm
nucleus, but the sign of the hexadecapole deformation parameter is opposite from each
other. The experimental data showed that the shape of the experimental fusion barrier
distribution for this system is very different from that for the 0 + !%4Sm, reflecting
the fact that !8W has a negative hexadecapole deformation [62]. These observations
exceeded all expectations, and suggestted that subbarrier fusion reactions can be used as
a powerful tool to extract the sign of deformation parameters of deformed nuclei.

In a rigorous theoretical interpretation, the fusion barrier distribution, i.e. d?(Ec)/dE?
has a clear physical meaning only if the excitation energy of the intrinsic motion is
zero. When the excitation energy is finite, the concept of barrier distribution holds only
approximately[63]. In order to test whether the concept of the fusion barrier distribution
generally holds for non-zero value of excitation energies, the fusion excitation function
for the %0 + %Sm reaction was measured with high precision, again at the Australian
National University [64]. In spite of the fact that the excitation energy of the first excited



state in *Sm is large (1.66 MeV), the observed fusion barrier distribution has a clear
double-peaked structure, indicating that fusion barrier distribution offers a novel method
to understand the effects of channel-couplings on fusion even when the excitation energy
of the internal motion is non-zero. At the same time, the fusion cross sections for the !7Q
+ 4Sm system were also measured with high precision[64]. Comparison of the experi-
mental barrier distribution between these two systems clearly demonstrated the effects of
couplings to transfer channles on fusion reactions.

In recent years, highly precise data of fusion cross section have become available at
other facilities as well. The Legnaro group has measured the 8Ni + ®Ni system, providing
a striking result concerning the effects of complex surface vibrations on heavy-ion fusion
reactions|65]. The detailed comparison between the experimental data and the theoretical
calculations revealed that fusion barrier distributions are quite sensitive to the number of
phonons excited during fusion reactions. They have recently measured also the 323§ 4
110pd and the *°Ca + %09Zr systems in order to study the effects of couplings to inelastic
as well as transfer channels on fusion reactions [66, 67]. The fusion reactions ‘°Ca +
192Qs, 194Pt were measured by the Seattle group aiming to study the effects of shape
transition from prolate (positive quadrupole deformation) to oblate (negative quadrupole
deformation) on fusion [68]. The fusion barrier distributions for these systems are observed
to be very different from each other. These data also demonstrated the effects of the
excitation of the projectile nucleus as well as couplings to the transfer channels.

The fusion barrier distributions, extracted from the above mentioned high presicion
data, were sensitive to the effects of channel-couplings and provided a much more appar-
ent way of understanding their effects on the fusion process, than the fusion excitation
function itself. These data have thus enabled a detailed study of the effects of nuclear in-
trinsic excitations on fusion reactions, and have generated a renewed interest in heavy-ion
subbarrier fusion reactions. It is worthwhile to mention that the method of the barrier
distribution has recently been successfully applied by the Canberra group also to heavy-
ion elastic and quasi-elastic scatterings [69, 70] as well as to the problem of the anomalous
fission fragment anisotropy in heavy-ion induced fission [71-74].

Theoretically the standard way to address the effects of the coupling between the rel-
ative motion and nuclear intrinsic degrees of freedom on fusion is to numerically solve
the coupled-channels equations, including all the relevant channels. However, the full
coupled-channels calculations quickly become very intricate if many physical channels are
included. To solve the equations requires long computing times and also it may not be
so easy to physically understand the origin of the effects of channel coupling. For these
reasons, several simplifications have often been made by introducing approximations. Al-
though such an approach was satisfactory in reproducing the old data of fusion excitation
functions, a critical examination of the simplifications is necessary before making quan-
titative comparisons with the high precision data that have recently become available.
The aim of this thesis is to carry out such inspection, and to make detailed analyses of
the high presicion data using realistic coupled-channels calculations. Comparison of such
calculations with the experimental data enable us to make rich discussions on subbarrier
fusion reactions from a point of view of multi-dimensional quantum tunneling.

The thesis is organised as follows. In Chapter 2, theoretical frameworks to describe



multi-dimensional quantum tunneling are reviewed. Coupled-channels formalism is intro-
duced and the two limiting cases, i.e. the sudden and the adiabatic limits are discussed.
Path integral representation of multi-dimensional quantum tunneling is then introduced
as an alternative approach [75]. The deviations of the two limits can be addressed rela-
tively easily if one adopts this approach [54, 76, 77]. It will be shown that the deviation
from the sudden tunneling limit can be expressed as a dissipation factor which reduces
the tunneling probability estimated in the limit of sudden tunneling [54], while that from
the adiabatic tunneling limit is represented in terms of mass renormalisation [76]. The
eigen-channel approximation in the coupled-channels formalism is also considered.

In Chapter 3, heavy-ion fusion reactions at energy near and below the Coulomb barrier
are discussed. Experimental method to measure fusion cross sections is first summarised.
One dimensional potential model is then introduced and its failure in reproducing exper-
imental cross sections of subbarrier fusion reactions is demonstrated. Importance of the
effects of channels couplings is emphasised and the coupled-channels formalism for heavy-
ion fusion reactions is detailed. Use is made of the path integral approach to reduce the
dimension of the coupled-channels equations based on the no-Coriolis approximation [78).

In Chapter 4, light is shed on the fusion barrier distribution representation of fusion
cross section, i.e. d*(Ec)/dE?, in connection with the recently measured high preci-
sion data of fusion excitation function. Several important features of the fusion barrier
distribution are discussed. The fusion barrier distribution is intimetely related to the
eigen-channel approach. This approach is exact only when the excitation energy of the
intrinsic motion is zero. In order to take into account effects of finite excitation energy,
an energy dependence is explicitly introduced to weight factors in the eigen-channel ap-
proximation. Using the two channel problem [79], it will be shown that the weight factors
are slowly changing functions of incident energy [63).

Most of the coupled-channels calculations performed so far use the linear coupling
approximation, where the coupling potential is expanded in powers of the deformation
parameter, keeping only the linear term. In Chapter 5, we investigate the role of higher
order coupling of surface vibrations to the relative motion in heavy-ion fusion reactions
at near-barrier energies[80]. The coupled-channels equations are solved to all orders,
and also in the linear and the quadratic coupling approximations. Taking ®4Ni + 92%6Zr
reactions as examples, it will be shown that all order couplings lead to considerably
improved agreement with the experimentally measured fusion cross sections and average
angular momenta of the compound nucleus for such heavy nearly symmetric systems.
The importance of higher order coupling is also examined for asymmetric systems like
16Q 4 112Cq, 448m, for which previous calculations of the fusion cross section seemed
to indicate that the linear coupling approximation was adequate. It will be shown that
the shape of the barrier distributions and the energy dependence of the average angular
momentum can significantly change when the higher order couplings are included, even
for systems where measured fusion cross sections may seem to be well reproduced by the
linear coupling approximation.

Coupled-channels calculations of full order are then applied in Chapter 6 to discuss
the role of projectile excitations in subbarrier fusion reactions {81]. High precision mea-
surements of the fusion excitation functions for the reactions *°Ca + '%'Pt, 1920s clearly



demonstrate that projectile excitation significantly modifies the potential barrier distri-
bution. In sharp contrast, fusion of %0 + **Sm does not show any influence of the
projectile excitation on the shape of the barrier distribution. These apparently conflict-
ing conclusions are reconciled using coupled-channels calculations of all order. The effects
of projectile excitation will be shown to depend on the intrinsic excitation energies of the
projectiles, the high energy of the 3~ state in !°0 producing an adiabatic potential renor-
malisation, without affecting the structure in the barrier distibution. This result indicates
that adiabatic effects restrict, in a natural way, the states which influence the shape of a
fusion barrier distribution. The analysis of barrier distributions thus offers a criterion for
the relevance of the ‘counter term’ prescription in the Caldeira-Leggett approach [20].

Recently measured high precision data of fusion excitation function have enabled a
detailed study on the effects of nuclear collective excitations on fusion reactions. In this
connection, in Chapter 7, we discuss the effects of multi-phonon excitations on subbarrier
fusion reactions, focusing especially on the role of anharmonicities of nuclear vibrations[82,
83]. We carry out a systematic study of those effects on the cross sections of subbarrier
fusion reactions and on the fusion barrier distributions, by using the vibrational limit of
the interacting boson model. We analyse the recently measured high precision data of the
16 4 144148Gm fusion reactions with this model and discuss the anharmonic properties
of the quadrupole as well as the octupole vibrations in 44148Sm. We compare the results
with those in the harmonic limit to show that anharmonicities play an essential role in
reproducing the experimental fusion barrier distribution. From the analysis of the high
quality fusion data available for these systems, we deduce the sign as well as the magnitude
of the static quadrupole moments for both the first 2* and 3~ states in #4148Sm. It will
be shown that the fusion barrier distribution extracted from the fusion excitation function
strongly depends on the sign of the quadrupole moments, suggesting that subbarrier fusion
reactions offer an alternative method to extract the static quadrupole moments of phonon
states in spherical nuclei.

In Chapter 8, we briefly discuss a process after fusion reactions take place, i.e. heavy-
ion induced fission. Using Langer’s ImF method, we discuss the temperature dependence
of nuclear fission width in the presence of dissipative environments [84]. We introduce
a low frequency cut-off to the spectral density of the environmental oscillators in order
to mimic the pairing gap. It will be shown that the decay width rapidly decreases at
the critical temperature, where the phase transition from super to normal fluids takes
place. A possible relation to the recently observed threshold for the dissipative fission is
discussed.

Finally the summary of the thesis is given in Chapter 9.



Chapter 2

QUANTUM TUNNELING IN
MULTI-DIMENSIONAL
SYSTEMS

In this chapter, theoretical frameworks to describe quantum tunneling, which are neces-
sary for a description of the fusion process, are detailed. After discussing the one dimen-
sional barrier penetration problem, quantum tunneling in systems with many degrees of
freedom is considered. Two different approaches, i.e. the coupled-channels formalism and
the path integral method are presented.

2.1 Analytic solutions of penetrability through one
dimensional potentials

2.1.1 Square potential

For most of potential barriers, the penetration probability cannot be analytically evalu-
ated. In this section, a few examples of one dimensional potential which have an analytic
solution of the penetrability are presented. The first example we consider is a square
potential defined by (see Fig. 2.1)

Viz) = 0 lz| > a
=W lz| < a. (2.1)
The Schrédinger equation for a particle under the influence of this potential reads
h2 d2
(~Buds ) vior = >
h? d?
(_ﬂgﬁ + Vo — E) P(x)=0 lz| < a, (2.2)

where p is the mass of the particle and E is the incident energy. The solution of these
equations can be explicitly written down. The incident wave function to the left of the
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Figure 2.1: Quantum tunneling through a square potential given by Eq. (2.1).

barrier and the transmitted wave to the right are

Y(z) = €* +Re e z<-—a
Tek= z > a, (2.3)
respectively. Here k is the wave number of the particle defined by \/2uE/ %, and 7 and
R are the transmission and the reflection coeffecients, respectively. When the energy is

below the barrier height, i.e. E < V,, the wave function underneath the barrier is a
superposition of exponentially decreasing and increasing components and is given by

Y(z) = Ae™ + Be™™ -a<z<a, (2.4)

where & is defined as \/ 2u(Vo — E)/h?. The coefficients A, B, T and R are determined by
the condition that the wave function ¢(z) and its derivative diy/dz are continuous at the
boundaries £ = +a. This condition leads to the following four equations

e~ik0 4 Reika —  pp—Ka 4 Beno
ik(e—ika _ Reika) — K,(AC_KG _ Bena)
Ae®® + Be " = Te'*e
k(Ae™ + Be ") = ikTe™*®, (2.5)



from which the transmission coefficient 7 follows

2kx

_ —2ika
T =€ S cosh 2ra i(k? — k?)sinh 2xa’

(2.6)

Since the penetrability is defined as the ratio of the transmitted flux to the incident flux,
it is evaluated as

_RRTP/u (2kr)?

P(E) = Eh/p (k% 4+ k2)2sinh® 2xa + (2kk)? (B < W) (2.7)

In the same way, the penetrability for energies above the barrier is found to be

(2kk')?

k)= E >V 2.8
P(E) (k2 — k2)2sin® 2k'a + (2kk’)? (B> V), (28)
with k' = \/2u(E’ - Vo)/R2.
2.1.2 Eckart potential
The next example is an Eckart potential defined by
Ve
V(z) = —2—. (2.9)
cosh (f)
For 8uV,a?/h? < 1, the penetrability of this potential is given by
sinh? am/g%E )
P(E) (omy/% (2.10)

sinh? (a'rr, /3#25) + cos? (zzr_ 1— sg;lfoaz) ’
while it is
sinh? (am/2E)

sinh? (aﬂ'\/?i?—) + cosh? (g,/é%ﬁ — 1) ’

for 8uVa®/h? > 1 [85).

2.1.3 Parabolic potential

The last example is an inverted parabolic potential given by
1
Viz) =V — Epﬂza?, (2.12)

where %S} is the curvature of the potential. The penetrability of this potential is given by
[85-88]
1

P(E) = 1+exp [Z&(Vo - B)|

(2.13)
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For any potential barrier which has the same structure as the parabolic potential, its
shape can be approximated in a similar form as Eq. (2.12)

1
V(iz) ~Vp — é-,qu(x —zg)?%, (2.14)
with
142V
0=,|- -2~
J pdz?| _ (215)

in the vicinity of the barrier position zg. The penetrability of such potential is then
approximated by Eq. (2.13). This approximation is referred to as the parabolic approxi-
mation, and has often been used in analyses of fusion excitation function in the potential
model [27]. Such an approach to heavy-ion fusion reactions will be discussed in the next
chapter.

2.2 Path integral representation of one dimensional
penetrability and WKB approximation

Feynman'’s path integral method [89] provides an alternative approach to quantum me-
chanics. This formalism, and in particular the semi-classical approximation derived from
it, has been widely used in many branches of physics. In this section, the path integral
formalism is applied to the problem of quantum tunneling of one dimensional potential.

2.2.1 Definition of the path integral

The path integral is defined in the following way. Consider a transition of a particle
from an initial position z; to a final position z; after a time interval T. The transition
amplitude is expressed as

K(:Cf, :C,',T) =< (Bf'ﬁ(.’L‘,T)'.’E,’ >, (2.16)

where 4(z,t) is the time evolution operator of the system which obeys an equation

0
ih—a—tﬁ(x, t) = H(t)i(z,t) (2.17)
with the initial condition @(z,¢ = 0) = 1. Here, H(t) is the Hamiltonial of the system
and is assumed to be
H(t) = At & + V{(z,t) (2.18)
= 5. a7 z,t). .
We are considering here a general case where the potential V' explicitly depends on time.
A time-independent potential can be regarded as a special case of this potential.
In order to obtain the path integral representation of the tramsition amplitude, we
devide the time interval (0,7T) into N equal subintervals 0,---,¢, = nAt,---,ty = T,
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where At = T/N is the interval of each step. During the small time interval At, the
potential would remain a constant. The solution of Eq. (2.17) is then given by

iz, At) = 1— %AtH(At) (2.19)

up to the first order of A¢. Using this expression, the time evolution operator from the
initial time ¢ = 0 to the final time ¢ = T' reads

i(z,T) = Jim (1 - EAtH(tN)) (1 - %AtH(tN_l)) (1 - %AtH(tQ) . (2:20)

Inserting the complete set of the coordinate z at each time steps, the time evolution
operator is expressed as

iz, T) = hm /dmg -dey|zy > ﬁ{(mi‘l - %AtH;

m,-_1>} < o, (2.21)

where H; is defined as H(t;).
Any operator A can be expressed in a different form by using the complete sets of the
coordinate z and the momentum p as

./1 = /dpldp2d$1d$2|$1 >< :Bllpl >< p1|x:1|p2 >< p2|:cg >< .'le (222)
dp,dp,dz,d o )
[ B o1 >< il Alpe >< wofermpeeh (2.23)
Changing the set of variables from (pi, p2, 1, z2) to (P, u, z', v), which are defined by
'+ u o=z + L
Dh=p 2 3 11— 2 )
/ ]' ! ]'
P2=P — 5% T2 =T v (2.24)

Eq. (2.23) is transformed to

i /dp’dvda: ip'u/h

1 1 1. 1 "
 + = f_ /= /- iz'u/hi
+ 2v> <:r: 5Y /du <p + 2u|A‘p 2u>e

2rh
(2.25)
— dp dvdz’ 1p fufh | 1 ! 1 ;o

Here the momentum representation of the Wigner transform Ay (p', ') of the operator A
is defined by
1 o
Aw(p, 2’ /du < Al - -2-u> et =u/h, (2.27)

Combining Eqgs. (2.21) and (2.26), we find, after a few algebra, that the time evolution
operator @(z,T) is given by

w(z,T) = P}i_r)réo/da:o---da:N|a:N>

12



N APi ipizi-2z;_1)/h 1 Ti+ T
x 1T { ﬁe'f' (@i=zi-1)/ [1 - EAtHw (p,-, —t)} <z (2.28)
- A}gnw/dmo---dmN|xN >

(

N dp; T; + Ti—
B {f o [ (-2 a0, 222 )] <

2
(2.29)
where the Wigner transform of the Hamiltonian Eq. (2.18) is given by
12
Hy (o', t) = g—ﬂ + V(&' 8). (2.30)

After performing the gaussian integrations with respect to the momentum, we finally
obtain a desired form of the transition amplitude as

D = ot B ()
K(zs,z:,T) Am it i 27rhz'Atdz'

ifp(Ti—zi)? (xi+w¢-1 )
X exp [h {2 (__At ) 14 — N }At] - .(2.31)
This is the definition of the path integral, and we express it as
K(zs,2:,T) = / Diz(t)]er5E=D), (2.32)
Here S(z,T) is the classical action defined by
T . T/1
S@T) = [ Lt = | (Eux - V(z,t)) dt, (2.33)

and the integral in Eq. (2.32) is performed over all the paths which satisfy the boundary
conditions z(0) = z; and z(T) = z;.

2.2.2 Path integral for quantum tunneling

Quantum tunneling can be regarded as a transition in the coordinate space from an
initial position z; at the one side of a potential to a final position z; at the other side. In
scattering problems, the total energy of a system is fixed. Therefore, time is an irrelevant
variable and the transition amplitude in the energy representation has to be considered.
This is defined as the Fourier transform of K(zy,z;,T) and is given by

G™M(z4,2:, E) = %/0 dTK(:L‘,,:v,-,T)e‘E(HT/". (2.34)

Here E() is defined as E + in, 1 being an infinitesimal quantity. This quantity is intro-
duced to impose the outgoing wave boundary condition. As is shown in Appendix A, the

Green function G (x4, z;, E) is related to the transmission coefficient 7~ by
h kh .
T=< lim —e*r )G (a2, B). (2.35)
zf—»—co
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The penetrability is thus expressed in the path integral representation as{90]

2
P = i, ()

:f—)—oo

oo . . 2
/ T T/ / Dix(t))eSENA| (2.36)
0

This representation of penetrability is suitable if one intends to introduce the semi-classical
approximation, as will be discussed in the next subsection.

2.2.3 WKB approximation

The WKB approximation is derived by evaluating the path integral in Eq. (2.36) in the
stationary phase approximation. The resultant formula for the penetrability reads [91]

1

PE) = 1+exp [2 fr d:v\/%‘é(V(a:) - E)J .

(2.37)

Here z, and z, are the inner and the outer turning points defined by V(z) = E, re-
spectively. Eq. (2.37) uses the uniform approximation and takes into account multiple
reflections under the barrier[91]. This formula is, therefore, valid both above and below
the barrier. When the energy is well below the barrier, the second term dominates in
the denominator in Eq. (2.37), and the formula in the primitive WKB approximation
is obtained. For energies above the barrier, the turning points are found, in general, in
the complex z plane [92-95]. The integral in Eq. (2.37) is then carried out between the
complex turning points.

If a potential is a quadratic function, the WKB approximation gives the rigorously
exact solution. For potential given by Eq. (2.12), the integral in Eq. (2.37) can easily
be evaluated to m(E — V;)/hQ, leading to the identical formula to the exact solution Eq.
(2.13).

Using the expression of penetrability in the WKB approximation (2.37), the shape of
the potential barrier can be constructed if penetrabilities at energies below the barrier
height V; are known. The thickness of the barrier, i.e. the difference between the outer
and the inner turning points z, — z, at each energy E reads [33, 96]

h2 Vo dE' '
w(E) - za(B) =~ 5 \/E,__dE, (2.38)

where S(FE) is related to the penetrability as

s(E) = [ dx\/é—‘;(V(a:) - log ( - (1E) 1) . (2.39)

The barrier height V; is estimated from the condition P(E = V;) = 1/2. This inversion
method was used by Balantekin et al. to obtain an effective inter nuclear potential for
heavy-ion fusion reactions (see Sec. 3.2.4) [33].
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2.3 Coupled-channels method for multi-dimensional
tunneling

2.3.1 Coupled-channels equations

Let us now consider the effects of coupling to intrinsic degrees of freedom on the quantum
tunneling of a collective coordinate (macroscopic degree of freedom). When the number
of the intrinsic degrees of freedom is not so large, one can adress this problem by explicitly
solving the total Schrédinger equation.

For simplicitly, consider here the case where one dimensional macroscopic degree of
freedom 7 couples to a single environmental degree of freedom £. We assume that the
total Hamiltonian for this system is given by

R? 02
H(r,§) = o552 Vo(r) + Ho(€) + Veoup(, €)- (2.40)
u Oor
Here, p is the mass for the macroscopic motion, Vy(r) the bare potential in the absence
of the coupling, Hy({) the Hamiltonian for the intrinsic motion, and V., the coupling
between them. The Schrédinger equation for the total wave function then reads

( K? 92
- T V) + Ho) + Vonn(8)) ¥, 6) = BU(E). (241

We expand the total wave function ¥(r, £) with the eigen states of the intrinsic Hamil-
tonian Hy(£) as

U(r,€) = D ua(r)en(£), (2.42)
where ¢, (€) satisfies
HO(E)‘Pn(g) = 6n‘Pn(§)- (2.43)
The total Schrédinger equation (2.41) can then be transformed to a set of coupled equa-
tions
—Ez-ﬁ-l-V(r)—E Un(r) + D Vam(r)um(r) =0 (2.44)
24 dr? 0 " s TmA M T :
where
Vam(r) = endnm + [ dE@H(E)Veoup(r, €)m(€) (2.45)

is the coupling matrix. These equations are called the coupled-channels equations and are
solved by impsoing the boundary conditions

un(r) — e""‘"'é,,,o + R,k r — 00, (2.46)
= Tne T T — —00, (2.47)

where k, = @(E — €,)/h? is the wave number of the n-th channel and we have assumed
that the intrinsic motion is in the ground state (n=0) before the collision. For many
examples, we are interested only in the inclusive process, where the intrinsic degree of
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freedom emerges in any final state. Taking a summation over all possible intrinsic states,
the inclusive penetrability is given by

P(B) =X T (2.48)

n

The coupled-channels method presented here is the standard way to adress the effects of
couplings on heavy-ion fusion reactions. Such applications will be discussed in the next
chapter. The numerical method to solve the coupled-channels equations (2.44) is given in
Appendix B.

2.3.2 Sudden tunneling limit and barrier distribution

In general, the solutions of the coupled-channels equations (2.44) can be obtained only
by numerically solving them. What make them complicated are the couplings among the
channels through the off-diagonal components of the coupling matrix (2.45). If the cou-
pling matrix can be diagonalised, each channels are decoupled, and the problem reduces
to a much simpler one dimensional problem. However, the unitary matrix A which diago-
nalises the coupling matrix depends in general on the coordinate r. Hence, if one attempts
to diagonalise the coupled-channels equations (2.44) with such unitary transformation, the
resaltant equations become

[“27;7 +Va(r) + dn(r) - E] () + 2 [A"’ (_Z_ﬂddAm)] -

R2 dALY\ [ dvm(r)

where A,(r) are the eigenvalues of the coupling matrix at each r and v,(r), which are
referred to as the eigen-channel wave functions, are defined by v,(r) = ¥, Aum(7)um(r).
Because of the non-comutatibility between the unitary matrix A and the kinetic energy
operator, their still remain the couplings among the eigen-channels.

There are some special cases where the coupled-channels equations can be decoupled.
One of them is the sudden tunneling limit where the excitation energy of the intrinsic
motion is zero. Since time is the Hermite conjugate variable of energy, the sudden tunnel-
ing limit corresponds to the case where the tunneling occurs instantaneously. To obtain
the formula of penetrability in the sudden tunneling limit, we further assume here, be-
sides the zero excitation energy, that the coupling Hamiltonian Vie,(7, &) is separable, i.e.
Veoup(r, &) = F(r)I'(§). Although it will be shown in Sec. 2.4.2 by using the path integral
approach that the separability of the coupling Hamiltonian is not necessary to derive the
final formula, we introduce this assumption in order to make the following discussion more
transparent. The coupled-channels equations (2.44) then become

h? @2

——EW + %(T) -F ‘an(T) + F("') Z Fn,mum('r) =0, (250)
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where T,,,, is defined as
Tom = [ et (€)T()mE)- (2.51)

These equations can now be diagonalised with the unitary transformation which diago-
nalises T’
Z A,‘ijkA;:ll = /\;J;J. (252)
ik

This gives a set of uncoupled equations
R &2
__[.I.T + %(7‘) + /\nF('I‘) - F ’Un(T) =0. (2.53)

By satisfying the appropriate boundary conditions, one finds that the inclusive penetra-
bility is given by [53]
P(E) =Y waPo(E, Vo(r) + A F(r)), (2.54)

where Py(E, V(r)) is the penetrability of a one dimensional potential V (r) with the energy
E, and w, = |Apo|? is the probability of finding the entrance channel in the n-th eigen-
channel. Note that the unitarity of the matrix A leads to the fact that the sum over all
weight factors ¥, wy, is one [53].

The resultant formula (2.54) in the sudden tunneling limit can be interepreted in
the following way. In the absence of the coupling, the incident particle encounters only
the single potential barrier Vp(r). When the coupling is turned on, the bare potential
splits into many barriers. Some of them may be lower than the bare potential and some
of them higher. In this picture, the potential barriers are distributed with appropriate
weight factors w,,. Noticing that the classical penetrability of a one dimensional potential
V(r) is given by Pyo(E,V(r)) = 8(E — B), B being the height of the potential, one finds
that the first derivative of Eq. (2.54) is expressed in the classical limit as

d—Pde—Ez = Zn:wnJ(E - B,), (2.55)
where B, is the height of the eigen-barrier Vy(r) + A, F(r). One thus sees that the
underlying structure of the barrier distribution is contained in the first derivative of the
penetrability. Although the quantum tunneling effects smear the structure of the first
derivative of the penetrability, it will still be manifest if the total width of the barrier
distribution is significantly greater than the width which is originated from the quantum
tunneling effects. This is the main idea of the fusion barrier distribution proposed by
Rowley et al. [56]. We will discuss this application in Chapter 4.

2.3.3 Adiabatic tunneling limit and potential renormalisation

The coupled-channels equations decouple also when the excitation energy of the intrinsic
motion is positive and is much larger than the curvature of the bare potential barrier. This
is the opposite limit to the sudden tunneling limit discussed in the previous subsection,
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and is called the adiabatic tunneling limit. In this limit, the quantum tunneling takes
place so slowly that the intrinsic motion adiabatically follows the tunneling motion. The
intrinsic degree of freedom, therefore, remains in the ground state at every instant. The
tunneling probability is then given by

P(E) = Po(E; Vo(r) + (7)), (2.56)

where Ag(r) is the lowest eigen-value of the coupling matrix (2.45) at each position of r.
In this limit, the bare potential V() is replaced by the renormalised potential given by

‘/ad('r) = %('I‘) -+ Ao('l"). (257)

More rigorous derivation of this formula, without resorting to the intuitive discussion as
above, will be given in the next section by using the path integral approach.

2.3.4 Constant coupling approximation and eigen-channel ap-
proach

Another example of solvable model is obtained by assuming that the coupling Hamiltonian
Veoup (7, €) is constant througout the interaction range, i.e. independent of position r. This
approximation is called the constant coupling approximation[79] and is often used when
the excitation energy of the intrinsic motion is intermediate between the sudden and the
adiabatic limits. In this approximation, the unitary matrix A again becomes independent
of r, and the penetrability is given by a formula similar to Eq. (2.54) but with diffent
eigen-values and weiht factors. Evaluating the coupling Hamiltonian at a chosen position
Tw, the unitary transformation (2.49) reads

Zk: Aij(ro)Vik(rw)Ag () = Ai(rw)di;. (2.58)

The penetrability is then given by

P(E) =) wa(ruw)Po(E; Vo(r) + An(rw)), (2.59)

where the weight factors are defined by wy,(7y) = |Ano(Tw)|?>. The sum over all the weight
factors ¥, w,(ry) again becomes one, as is the case of zero excitation energy. In order to
take into account the radial dependence of the coupling Hamiltonian, an approximation
was proposed, where the coupling matrix is diagonalised to obtain the eigen-barriers at
each position of the macroscopic coordinate r while the weight factors are evaluated at the
chosen position r,, [97]. The penetrability in this eigen-channel approximation is given by

P(E) =) wa(rw)Po(E; Vo(r) + An(r)). (2.60)

n
In the next section, we will reformulate this approximation based on the path integral
approach, where it will be shown that the weight factors depend in general on the total

energy of the system.
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2.3.5 Two level model

We now concretely illustrate the effects of channel couplings on quantum tunneling dis-
cussed above by using the two level model[79]. The coupled-channels equations in this

model read
St (4 0 (30)-#(3). e

where F(r) is the coupling form factor and € is the excitation energy of the intrinsic
motion, respectively. The eigen values of the coupling matrix is given by

Aulr) = (e +Je + 4F(r)2) /2, (2.62)

and if we ignore the non-commutatibility between the unitary matrix which diagonalizes
the coupling matrix and the kinetic energy operator, the weight factors are given by

wi(r) = F(r)*/ (F(r)* + A:(r)?). (2:63)
The approximate formula in the eigen-chanel approximation (2.60) then becomes

P(F) = Zi:wi(rw)PO(E; Wo(r) £ As(7)). (2.64)

When the excitation energy € is zero, i.e. in the sudden tunneling limit, the weight
factors wy (2.63) become independent of r,, and the barrier penetrability is ezactly given
by

P(E) = 5 [Po(B; Vo(r) + F(r) + Po(E; Va(r) = F()]. (2.65)

Due to the coupling, the bare potential V(r) splits in two eigen-barriers Vy(r)+|F(r)| and
Vo(r) — |F(r)|, which are higher and lower than the bare potential, respectively (see Fig.
2.2). A half of the incident flux encounters the lower barrier and a half the higher barrier.
Fig. 2.3 illustrates the penetrability in this model as a function of energy. The solid line is
the penetrability in the presence of the coupling, while that in the absence of the coupling
is denoted by the dotted line. Contributions from the lower and the higher barriers are
also shown separately by the dashed and the dot-dashed lines, respectively. One can
immediately sees that the channel coupling leads to enhancement of the penetrability
at energy below the barrier and reduction at above the barrier. The former effects can
be associated with the large enhancements of fusion cross sections at subbarrier energies
relative to predictions of the potential model, which will be discussed in detail in the next
chapter.

When the excitation energy € is huge and positive, the weight factor associated with
the higher barrier is much smaller than one. Accompanied with the fact that the height
of the higher barrier is substantially larger than the bare potential, the contribution to
the penetrability from the higher barrier can, therefore, be neglected. The penetrability
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Figure 2.3: Effects of coupling to a degenerate level on penetrability. The solid line is the
penetrability in the presence of the channel coupling. The contributions from the lower
and the higher barriers to the penetrability are denoted by the dashed and the dot-dashed
lines, respectively. The dotted line is the penetrability in the absence of the coupling. The
height of the bare potential barrier Vg is represented by the arrow.
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Figure 2.4: Dependence of penetrability on the excitation energy in the two level problem.
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the absense of the coupling. The solid line is obtained by numerically solving the coupled-
channels equations, while the dotted and the dashed lines are the results in the sudden
and the adiabatic tunneling approximations, respectively. See text for the bare potential
and the coupling form factor.

in the eigen-channel approximation (2.64) thus becomes that in the adiabatic limit given
by (2.56), i.e.
P(E) = Py(E; Vo(R) + A_(1)). (2.66)

The situation is, however, drastically different when the excitation energy ¢ is huge but
negative, as is often encountered in heavy-ion transfer reactions. In this case, the weight
factor for the lower barrier is much smaller than that for the higher barrier. One might,
therefore, think that the main contribution comes from the higer barrier. However, the
barrier height of the lower barrier is much lower than that of the bare potential, and
the penetrability may thus be enhanced by an order of magnitude at energies below the
barrier because of the exponential dependence of the penetrability on the barrier height.
Figure 2.4 shows the dependence of the enhancement factor, i.e. the ratio of the
penetrability to that in the absence of the coupling on the excitation energy of the intrinsic
motion. The gaussian shape for both the bare potential and the coupling form factor,

Vo(r) = Voe ™72 F(r) = Foe ™ /%, (2.67)

is assumed. The parameters are chosen following Ref. [79] to be V; = 100 MeV, Fp
= 3 MeV, and s = s; = 3 fm, respectively, which mimic the fusion reaction between
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two 3Ni nuclei. The mass y is thus taken to be 29 my, my being the nucleon mass.
The solid line is the result of the exact numerical calculations of the coupled-channels
equations, while the dotted and the dashed lines are obtained by using the formulae in
the sudden and the adiabatic limits, respectively. Those results are evaluated at £ = 95
MeV, i.e. 5 MeV below the bare potential barrier. One can see that, for positive e,
the finite excitation energy reduces the penetrability compared with that estimated for
zero excitation energy (the dotted line), though the penetrability is still larger than that
in the absence of the coupling. For negative e (i.e. positive Q-value), the situation is
completely opposite: the penetrability is enhanced drastically compared with that in the
sudden limit. The adiabtic approximation, on the other hand, always overestimates the
penetrability irrespective to the sign of the excitation energy. In the next chapter, we will
use the path integral approach to understand these behaviours of the penetrability, i.e.
deviations from the adiabatic and the sudden approximations.

2.4 Deviation from the sudden and the adiabatic
limits

2.4.1 Path integral approach to multi-dimensional quantum
tunneling

Let us now discuss deviation of tunneling probability from the sudden and the adiabatic
limits. Path integral approach to quantum tunneling provides a convenient framework to
address this question. Balantekin and Takigawa have extended the path integral formu-
lation for one-dimensional quantum tunneling presented in Sec. 2.2 to multi-dimensional
systems|75]. For the total Hamiltonian given by Eq. (2.40), the transmission coefficient
T is expressed in the path integral representation as

koh . o . )
Ta= lim —=elhrimion) [ dre R [ Dlr()]eS D™ < golir(t), T)lpo >
r,—o—oo

(2.68)
Here, 4 is the time evolution operator of the intrinsic motion along a given path r(¢) and
obeys the differential equation

ih%ﬂ(r(t), £) = [Ho(£) + Vioup(r €)] i(r(£), 1), (2.69)

with the initial condition @(r(t),t = 0) = 1. Sy(r,T) is the classical action of the macro-
scopic motion and is given by

Sy(r, T) = /0 ! (%m‘-? - Vo(r)) dt. (2.70)

Eq. (2.68) is a natural extension of Eq. (2.35) to multi-dimensional system. The inclusive
penetrability is then expressed by

P(E) = z’,j—';mlz, (2.71)



. kok B2
= lim =L
r,—i—oo

[Dlr®)] [ D@D SED Y, (50, Tre), T),  (272)
where the two-time influence functional pys is defined by
pm(FE), Tir(t),T) = Y < pold(#(?), T)lpn >< wali(r(t), T)lpo >,  (2.73)

= < pola(F(E), T)a(r(t), T)|po > . (2.74)

In writing Eq. (2.72), it has been assumed that the energy dissipation to the intrinsic
motion is small as compared to the total energy and the channel wave number %, has
been replaced by the final wave number k; which is independent of the channels.

Eq. (2.72) is still exact and is equivalent to the coupled-channels formalism discussed
in Sec. 2.3. An attempt to solve Eq. (2.72) in the semi-classical approximation has been
made in Ref. [77] by introducing the so called dynamical norm method.

00 . oo -
| dr &= [ af eiET
0 0

2.4.2 Dissipation in fast quantum tunneling

We first consider the case where the quantum tunneling takes place relatively fast, i.e.
the deviation from the sudden tunneling limit[54]. In the sudden tunneling limit, the
excitation energy of the intrinsic degree of freedom is zero. We hence discard the intrinsic
Hamiltonian Hy(€) in Eq. (2.69). The time evolution operator @ can then be solved as

i(r,t) = exp (—% J ‘ & Vo7 (), 8)) - (2.75)

If the coupling Hamiltonian Voyup(7, ) does not contain the conjugate momentum operator
of £, the time evolution operator 4 is diagonal in the coordinate space of the environmental
degrees of freedom. Denoting the eigenvalue of £ by z, the two time influence functional
(2.74) therefore takes the form

ou(F (D, Tir(®),T) = [ del <aloo > [*

X exp [-% ( / T dt V(r(t), z) / T Vmp(f(f),:c))] (2.76)

Inserting this expression into Eq.(2.72), the inclusive barrier penetrability in the sudden
limit is found to be

P(E) = /_:dxlcpo(a:)ﬁ{r]im (kokfh)

rfr-o0

[ ar eEn

x [ Dlr(t)] exp [ﬁ [ a (e —%()—vw.,p(r,z))] } (2.77)

= /_ : dz|o(z)|* Po(E; Vo(r) + Veoup(, ). (2.78)
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This is a general expression of the penetrability in the sudden tunneling limit. This
approach does not use the assumption of the separability of the coupling Hamiltonian,
and it also clearly shows that the weight factors are given by the square of the ground
state wave function of the environmental degrees of freedom.

In order to discuss the deviation from the sudden tunneling limit, we treat the intrinsic
Hamiltonian Hy(¢) in Eq. (2.69) by a perturbation theory. To the first order of Hy(§),
we find that the penetrability is given by [54]

P(E) = [ dalpo(®)PRo(B; Vg (r,)), (2.79)

where the effective potential V,z; is defined by

ih 0% Veoup(r(t), 7)
‘/eff('r, IB) - %(T‘) + Vcoup(r, -'L') + E ‘/0‘ dt 522

1 [t OVep(r(t),2)\" | iR 1t 0Veoup(r(t), ) dpo(z) 1
3D (/o at Oz + D/o dt oz dz  o(z)’ (2:80)

D being the moment of inertia of the intrinsic motion. If we consider as an example a
linear oscillator coupling, i.e.

R 1,
Ho(§) = ToDde + 5D, (2.81)
‘/coup(ri f) = f(’")'fu (282)
Eq. (2.79) is transformed to [54]
2
P(E) = P,y4(E) exp [—%’r (F ?2"”) %] . (2.83)

Here, ag = y/i/2Dw is the amplitude of the zero point motion of the oscillator, and

L /: da:e_io!Po (E;Vo(r) + = f(r)) (2.84)

\V2mad /-

is the penetrability in the sudden tunneling limit. In deriving Eq. (2.83), we have assumed
a constant coupling form factor, i.e. f(r) = F and that the bare potential Vp(r) is
expressed by a parabola (see Sec. 2.1.3). Equation (2.83) clearly shows that the finite
excitation energy of the environmental degree of freedom leads to a reduction factor
which reduces the barrier penetrability estimated in the sudden tunneling approximation.
The reduction factor also shows that the validity of the sudden tunneling approximation
depends both on the ratio of the excitation energy to the barrier curvature w/§2 and on
the coupling strength between the macroscopic and the environmental degrees of freedom
F.

Psud(E) ==
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2.4.3 Mass renormalization in slow quantum tunneling

We next discuss the effects of the coupling to fast environmental degree of freedom, i.e.
the deviation from the adiabatic tunneling limit [76]. To this end, we introduce the
eigen-channel (or the adiabatic) basis as

(Ho(€) + Veoup(r: €))Xa(r: €) = An(r)xn(r, €), (2.85)

and expand the intrinsic wave function at time ¢ in this basis
. it
a(r, D)lgo >= 3 an(t) exp [‘g /0 dt ,\,,(r(t'))] xa(r()) > . (2.86)

Inserting Eq. (2.86) into Eq. (2.69), we obtain the following coupled equations:

in(®)+ Samtt)exp [ [ 0n(t) = 3nlt)] (xar). 0|2

xm(r(t>,s>> Ht) = 0.

(2.87)
Up to the second order of 7, we find
ao(t) ~ exp [% / t dt'%au(r(t'))ﬁ] , (2.88)
where
Su(r(t) =20 Y . Kx (+(0),) \i xolr(2) €)> L es9)
250 dm(r (@) = Ao(r(2)) [\"7F T |Or(2) ’ ’

which is nothing but the cranking mass. If we assume that the intrinsic degree of freedom
emerges in the ground state, i.e. the excitations to the excited states occur only virtually,
the penetrability is expressed by

P(E) = Jim ’“°zgh2 7 ar =T [ aF e F T [ Dir(e)] [ Dl (@)ool T)ao(T)"
it

~ ; T . i.“
i[Se(r.T) - Se(F.T)}/h _ t Sy (=(F
xe exp [ . /(; dt/\o(r(t))] exp [h/o dtz\g(r(t))] , (2.90)

2
_ { 1 (kokéh)
i 7

Rf—i-—oc

[ dr eEmin
0

} . (291)

P(E) = Po (E; 1+ 6pu(r); Vo(r) + Ao(r)) (2.92)

x [ Dlr(t) exp [% | "t (%(u T+ 5u(r))P — Vi(r) - Ao(r))]

This result can symbolically be expressed as
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where Py(E;m;V(r)) is the probability for a particle of mass m with a kinetic energy E
to traverse a potential barrier V(). One can thus see that the correction to the adiabatic
approximation can be expressed in terms of mass renormalization[76]. Since the mass
renormalization is positive, it always work to reduce the tunneling rate estimated in the
adiabatic tunneling approximation. For the linear coupled oscillator Eqs. (2.81) and
(2.82) discussed in the previous subsection, the modified adiabatic formula Eq. (2.92)
reads[76]

P(E) = (E— L+ 2.2 (jf) Va(r) - %f(rf) L (29

2.4.4 Eigen-channel approximation in path integral approach

Finally we reformulate the eigen-channel approximation Eq. (2.64) based on the path
integral approach[63]. Combining Eqgs. (2.72) and (2.86) gives

2 o0 . o0 - Lo~
P(E) = lim [y gmin [T g BT
e H o Jo 0

f D)) [ PEO) S an(Tam (D) < xn(FDn(r(T)) >
x et JT a(3ut ) aa) T o ! (10 ol () (2.94)

We use here the semi-classical approximation, and for energies well below the barrier,
where the single paht dominates, evaluate the path integral along the classical path

r(t) =F(E) =ra(t)) T=T"=Ta (2.95)
In this case, the orthogonalitiy of the adiabatic basis leads to

P(E) = an YPo(E; Vo(r) + Aa(r)), (2.96)

where the weight factors are given by
Wn(B) = |an(Ta) . (2.97)
The weight factors depend implicitly on the energy F through the time evolution of the

intrinsic system along the classical path. We will study the energy dependence in Sec.
4.4,
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Chapter 3

HEAVY-ION FUSION BELOW
THE COULOMB BARRIER

In this chapter, heavy-ion fusion reactions at energies near and below the Coulomb bar-
rier are discussed as typical examples of quatum tunneling in multi-dimensional system.
Systems which are dealt with in this thesis are those where the sum of the charge of the
projectile and the target Z, + Zr is larger than 12 and the charge product Z,Z7 is less
than 1800. For lighter systems, e.g. "Be + p or '2C + « reactions, which play an impor-
tant role in elemental nucleosynthesis in a steller environment [98], the reaction rate is
often determined by specific resonances. Fusion reactions in such systems are, therefore,
governed not only by quantum tunneling but also by electromagnetic radiations. Fusion
may thus take place even outside the Coulomb barrier. For heavier systems, the level
density of the compound nucleus is higher, and there exist bound states of the compound
nucleus which are readily accessible via strong nuclear interaction. Therefore, once the
Coulomb barrier is overcome, there are many ways in which the energy of the relative
motion between the colliding nuclei are dissipated and details of the entrance channel are
quickly lost. For such systems, fusion reactions are predominantly governed by quantum
tunneling and no details after passing the Coluomb barrier have to be taken into account
in evaluating fusion cross sections. When the charge product ZpZr becomes larger than
about 1800, however, other mechanisms come into play [58]. The large charge product
causes the Coulomb barrier to appear in a relatively inside region where there is a sig-
nificant overlap between the projectile and the target nuclei. Hence, the relative motion
may be lost before passage inside the Coulomb barrier, and one has to take into account
friction effects outside the Coulomb barrier. These effects are known as ‘extra-push ’[99]
and play an important role in discussing the production of super heavy elements [100].
In this work, we shall treat fusion reactions in intermediate systems between the two
extremes discussed above. We thus assume that fusion is certain to take place once the flux
traverses the Coulomb barrier and that the fusion cross section is uniquely determined by
quantum tunneling. This has appeared to be a reasonable approximation for the systems
we consider in this thesis. We first review the experimental methods to measure fusion
cross sections. The simplest potential model is introdunced and its failures in reproducing
the observed fusion cross sections for meadium weight mass systems are demonstrated.
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Figure 3.1: The experimental evaporation residue and fission cross sections for the 160 +
186W (the left panel) [62] and 60O + 208Pb (the right panel) [71] reactions. The evaporation
residue cross sections are denoted by the filled circles, while the fission cross sections are
open circles. The total fusion cross sections are defined by the sum of the evaporation
and the fission cross sections.

Coupled-channels formalism formulated in the previous chapter are then applied to heavy-
ion fusion reactions.

3.1 Experimental methods

In general, the compound nucleus formed in heavy-ion fusion reaction is highly excited
and decays either by emitting neutrons, protons, ¢ particles, - and X rays, or by fission.
If the charge of the compound nucleus is smaller than about 70, the probability of fission
is negligible, and the compound nucleus essentially decays only by the former processes,
i.e. evaporation. The decay product is called a evaporation residue and has mass and
charge close to the compound nucleus. For a heavier compound nucleus, decay by fission
competes successfully with evaporation [101-103]. The total fusion cross section is then
defined by the sum of the fission and the evaporation residue cross sections. Figure 3.1
shows measured evaporation residue and fission cross sections for the '°0 + ¥W [62] and
160 + 2P} [71] reactions. The closed and the open circles are the evaporation residue
and the fission cross sections, respectively. One can immediately see that evaporations
dominate in the decay modes of the compound nucleus formed in the 0 + 18W reaction,
while fission plays a major role in the more fissile 10 + 28Pb system.

When the charge of the compound nucleus is larger than about 90, fission dominates
in the decay processes and the contribution from evaporation becomes negligible even
at energies below the Coulomb barrier. For such fissile systems, quasi-fission may some-
times take place, especially when the target nucleus is deformed [72-74]. Quasi-fission is
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Figure 3.2: Experimental angular dlstnbutlons of evaporation residues for the 10 -+
1%4Sm reaction. Taken from Ref. [51].

interpreted as a process where the dinucleus, which is formed by overcoming the Coulomb
barrier, separates into two nuclei before traversing the fission potential to form the com-
pound nucleus. Strictly speaking, cross sections of quasi-fission should not be included
in the total fusion cross section, since the compound nuclei is not formed in such pro-
cesses. However, if a theoretical model does not take into account the dynamics after
the Coulomb barrier is overcome, as that used in this thesis, measured quasi-fission cross
sections have to be added to the total fusion cross section in order to make a comparison
between the experimental data and such theory [72]. In such case, fusion cross sections
are regarded as barrier traverse cross sections, rather than cross sections of the compound

nucleus formation.

3.1.1 Evaporation residue detection

Direct detection

The direct detection is (if possible) the most unambiguous method of determining evap-
oration residue cross sections. Evaporation residues have a similar momentum to the
incident beam, and their angular distribution lies within a few degrees peaked about the
beam direction. Figure 3.2 shows typical angular distributions of the evaporation residues
for the 20 + *Sm reaction [51). One can find that the evaporation residues are emitted
in the forward direction and are peaked around 0 degree. The angular distributions of the
evaporation residues have two peaks. For angles close to the beam direction, the main
contribution is from neutron and proton evaporations, while the shape of the angular
distributions at the larger angle results from a-particle evaporations because of the larger
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Figure 3.3: Schematic view of the experimental set-up which was used by the Canberra
group to detect evaration residues. Taken from Ref. [106].

momentum transfer associated with the a-particles. The angular distribution of elasti-
cally scattered beam particles is also peaked at 0 degree, and such beam-like particles are,
at forward angles, up to 10'° times more intense than the evaporation residues. Therefore,
in order to accurately measure evaporation residue cross sections in the presense of the
intense beam-like particles, one has to spatially separate the evaporation residues from
the beam-like particles. Recoil separators [104], electrostatic deflectors [105], and compact
velocity filters [60] are used for this purpose.

We present here as an example the compact velocity filter used by the Canberra group
to measure the evaporation residue cross sections for the 160  144148.154Gy; 186\ 35 well
as 170 4 *4Sm reactions [51]. Figure 3.3 shows a sketch of the experimental set-up (see
Refs. [51, 60, 106] for more details). Particle entering the velocity filter are subjected
to orthogonal electric and magnetic fields. Assuming that the velocity of the particle is
in the z-direction, the electric and the magnetic fields are imposed in the z- and the y-
directions, respectively. The force acting on the particles is then directed towards the z-
direction and its strength is given by

F = q(€ — vB), (3.1)

where ¢ is the charge of the particle, v its velocity, and £ and B are the strength of the
electric and the magnetic fields, respectively. One can, therefore, select a particular ratio
of the electric and the magnetic fields so that the force acting on a particle which has a
certain velocity is zero. Only particles which have such velocity are not deflected and are
then transmitted through the detector. In practice, the ratio is determined so that the
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Figure 3.4: Energy loss plotted against time of flight for the *0 + *4Sm reaction at 68
MeV in the laboratory frame. Taken from Ref. [51].

deflection of the evaporation residues is minimised. The beam-like particles suffer from
more deflection and the most of them are stopped before entering the detector.

Although the intense beam-like particles are drastically supressed by the velocity fil-
ter, not all of them are prevented from entering the detector. The identification of the
evaporation residues is accomplished by measuring their energy loss in the detector and
the time-of-flight (TOF). Particles which pass through the gas detector jonise the gas
molecules and lose their energy according to the Bethe-Bloch formula for stopping pow-
ers, which depends on the charge, the velocity, and the mass of the particle (107]. In
the gas detector, an electric field is applied in order to collect electrons generated by
the ionization processes, before they recombine together with ions to form molecules.
Within a certain range of the electric field, the energy loss of the particle is approxi-
mately propotional to the number of electrons which are ionised, and thus the energy
loss can experimentally be determined by counting the number of electrons. Figure 3.4
shows the energy loss plotted against the time-of-flight for the *0 + *4Sm reaction at 68
MeV in the laboratory frame [51] as an example. The energy loss and the time-of-flight
cannot simultaneously specify the charge, velocity, and mass of particles which enter the
detector. Nevertheless, it is remarkable that the evaporation residues are well separated
from the beam-like particles.

The number of events Y is then converted to the differential cross section do/dS2
according to

do(8,E) Y(6,E) 1
a4 ~ IN AQ’

(3.2)
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Figure 3.5: Experimental angular distribution of fission frragments for the **5i + **Pb
reaction, in energy steps of 4 MeV in the laboratory frame. Taken from Ref. [72].

where I and N are the number of beam particles per unit time and the number of target
nuclei per unit area, respectively. AQ is the solid angle of the velocity filter. The product
IN is determined by monitoring the elastic scattering at a certain angle fpr. Assuming
that the cross section of the scattering can be well described by the Rutherford scattering

at 07, the product IN reads

IN =

Yar(6a1, E) {don(E,0x)\
AQar ( Rdﬂ M) ’ (3.3)

where Yas is the number of elastic scattering events, and A,y is the solid angle of the
monitor detector. dor/df? is the Rutherford differential cross section given by

dG’R(E,gM) _ l ZPZT62 ? 1 (3 4)
dQ T4 2E sin*(0p/2) )

Combining Egs. (3.2) and (3.3) gives

do(6,E)  Y(0,E) AQy don(E,84)
i Yu(6, BE) AQ 4o

The total fusion cross section is then obtained by integrating Eq. (3.5) over all angles 4.

(3.5)

Indirect detection

Alternative methods to detect evaporation residues are to measure their characteristic
X-rays [28] or o decays [71]. The idea of the X-ray detection is based on the fact that
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electron captures and internal conversion processes become the major decay modes for
heavy nuclei. For lighter systems where this method is not so efficient, y-rays are measured
instead of X-rays, if the v decay spectrum for all the residues are known in detail. The
method of the a-particle detection was recently applied by the Canberra group to detect
the evaporation residues for the 60 + 2%Pb reaction [71]. Since each evaporation channel
for this reaction is characterised by a decay chain whose o energies and half-lives are well
known, measured multiplicities of o particles, accompanied with their energy, can be
converted to evaporation residue cross sections.

3.1.2 Fission detection

Fission cross sections are obtained by measuring the angular distribution of the fission
fragments. Fission fragments are separated from the beam-like particles either by mea-
suring the energy loss and the time-of-flight [71], as in the case of evaporation residue
detections, or by simultaneously detecting both fission fragments from the compound nu-
cleus or its daughters [73]. Figure 3.5 shows the experimental angular distributions of
the fission fragment for the 28Si + 28Pb [72] as typical examples. In systems where the
target is fissile, a transfer reaction with positive Q-value followed by fission may take
place before the projectile traverses the Coulomb barrier. This yield is called the transfer
fission, and has to be excluded from the total experimental fusion cross sections. Such
experimental techniques have been developed by the Canberra group and applied to the
160 4+ 2387 gystem to obtain the high precision fusion cross sections [73].

3.2 One dimensional potential model

3.2.1 Ion-ion potential

Theoretically, the simplest approach to heavy-ion fusion reactions is to use the one di-
mensional potential model where both the projectile and the target are assumed to be
structureless. The potential between the projectile and the target is given as a function
of the relative distance r between them. It consists of two parts:

Vo(r) = Vn(r) + Ve(r). (3.6)
Vn(r) is the nuclear potential, and V¢ (r) is the Coulomb potential given by

ZpZre?
Ve(r) = =221, (3.7)

r

in the outside region where the projectile and the target do not overlap with each other.
Figure 3.6 shows a typical potential Vo(r) for the s- wave scattering of the %0 + 1%4Sm
reaction. The dotted and the dashed lines are the nuclear and the Coulomb potentials,
respectively, while the total potential V4(r) is denoted by the solid line. One can find
that a potential barrier appears due to a strong cancellation between the short-ranged
attractive nuclear interaction and the long-ranged repulsive Coulomb force. This potential
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Figure 3.6: A typical potential barrier for the s-wave scattering of the the 0 + **Sm
reaction as a function of the relative distance between ®0O and *4Sm. The dotted and
the dashed lines are the nuclear and the Coulomb interactions, respectively. The total
potential is denoted by the solid line. Also shown by arrow is the touching radius where
the projectile and the target nuclei begin to overlap.

barrier is referred to as the Coulomb barrier and has to be overcome in order for fusion
reactions to take place. The arrow in Fig. 3.6 is the touching radius where the projectile
and the target nucleus begin to overlap. It is seen that the position of the Coulomb barrier
is larger than the touching radius. This is a characteristic feature for systems where the
charge product ZpZr is not so large.

There are several ways to estimate the nuclear potential Vy(r). One way is to fold a
nucleon-nucleon interaction in the projectile and the target densities [108]. The nuclear
potential in this double folding procedure is given by

Vw(r) = / drydrauyy (r2 — 11 — ©)pp(r1)pr(rs), (3.8)

where vyy is an effective nucleon-nucleon interaction, pp and pr are the densities of the
projectile and the target, respectively. Akyiiz and Winther numerically performed this
procedure and parametrised the nuclear interaction in the Woods-Saxon form as [109]

Vo
Vel(r) = — 3.9
w(r) 1 +exp[(r — Ro)/a]’ (3.9)
with
Vo = 167vRa, (3.10)
Ry = Rp+ Rr+0.29, (3.11)
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R; = 1.233AY3-0.984"'%  (i=PT), (3.12)

R = RPRT/(RP+RT), (3.13)
_ NP—ZP) (NR—- L

v = [1 1.8( yP ™ )] (3.14)

where a = 0.63 fm, and g = 0.95 MeV fm—2.

Another way to determine the nuclear potential is to assume a certain form of it and
determine the parameters so that they reproduce experimental data. Chistensen and
Winther used the experimental data of elastic scatterings to derive the nuclear potential
in a form of [110]

Vn(r) = 50Rexp[—(r — Rp — Rr)/a), (3.15)

where Rp, Ry, R and a are the same as those in the Akyiiz-Winther potential described
avobe. A method to use the experimental data of heavy-ion fusion reactions at energies
above the Coulomb barrier is discussed in Ref. [32]. Recent high precision experimental
data of fusion cross sections suggest that such procedure leads to a Woods-Saxon potential
which has a much larger surface diffuseness paramter a than that extracted from the
experimental data of elastic scatterings, i.e. ¢ = 0.63 fm [51]. The suggested values of the
surface diffuseness parameter range from 0.84 to 1.1 fm for the fusion reactions between
160 and several isotopes of Sm as well as %W [51]. It has later been shown that the
effects of internal excitations play an important role in determining the empirical nuclear
potential for the 1*0 + %4Sm reaction [111]. However, those effects are negligible for the
deformed systems 60 + '%4Sm, %¢W at energies above the Coulomb barrier where the
experimental data are fitted, and thus the origin of the large surface diffuseness parameter
has still remained as an open problem.

The relation between the surface diffsuness parameter of nuclear potential and the
parameters of the Coulomb barrier, i.e. the curvature, the barrier height, and the barrier
position is given in Appendix C for exponential and Woods-Saxon potentials.

3.2.2 Formal theory of scattering

In this subsection, we derive a basic formula to calculate fusion cross sections. The
Schrodinger equation in three dimensions with a potential given by Eq. (3.6) reads

[-h—zvz FVa(r) - E] b(x) =0, (3.16)
2p

where u is the reduced mass of the system. In the absence of the potential Vy(r), this
equation can be explicitly solved in a form ¥(r) = exp(ik - r), k being the wave number

vector whose magnitude is given by k = \/2uE/h%. This solution has an asymptotic form
of

- Py(cos 6) r — o0, (3.17)

. S ) —i(kr—1In/2)
Y(r) = KT 5 =S+ 1)t 2
2%k &

ilkr—1m/2) )
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where @ is the angle between r and k, and P are the Legendre polynomials. In the presence
of the potential, the behaviour of the wave function is modified. Since the potential goes
to zero at infinity, the asymptotic form of the wave function can be written down in a
similar way to Eq. (3.17). Replacing the plane waves with the corrsponding Coulomb
waves, we write it as

H (kr)

(+)
$ir) > o Z(zz+1) ( _gH r(’")) P(cosd) r—oo,  (3.18)

where H,(+)(kr) and H,(_)(kr) are the outgoing and the incoming Coulomb waves, respec-
tively. S; is called the S-matrix and is in general a complex quantity.

Fusion reactions can be regarded as absorption of the incident flux. When the potential
is complex, the absolute value of the S-matrix is less than one, i.e. |8 < 1, and the
difference of the total radial lux between the incoming and the outgoing waves is evaluated

from Eq. (3.18) as
. : kh
Jin = Jout = k2 Z(zl + 1) (1 - |Sz| ) (319)

In evaluating Eq. (3.19), the radial flux ha,s been integrated for all possible values of 6.
Divided by the incident flux, the fusion cross section is then given by

o(E) = % Y@+ (1-15P). (3.20)
1

Practically, the S-matix is evaluated as follows. Expanding the wave function ¥(r) by
the spherical harmonics as

’l,b(l‘) Z Z Al'm

1=0 m=-i

F), (3.21)

A being expansion coefficients, the Schrédinger equation which u;(r) obeys reads

n? d? I +1)R?
This equation is solved under the boundary conditions of

w(r) ~ r? r— 0, (3.23)

= HONkr) = SHMkr) = oo (3.24)

In heavy-ion fusion reactions, instead of imposing the regular boundary condition at
the origin (3.23), the so called incoming wave boundary condition (IWBC) is often applied
with keeping the potential real [79, 112]. Under the incoming wave boundary condition,
the wave function has a form

w(r) = Trexp (—i /rr k,(r')dr’) 7 < Tabs, (3.25)
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at the distance smaller than the absorption radius rqss, which is taken to be inside the
Coulomb barrier. k(r) is the local wave number for the I-th partial wave, which is defined

by
ki(r) = \ji_g‘ (E —V(r) - z(z;u—:z)n) (3.26)

The incoming wave boundary condition corresponds to the case where there is a strong
absorption in the inner region such that the incoming flux does not return back. For
heavy-ion fusion reactions, the final result does not depend so much on the choice of the
absorption radius 7, and it is often taken to be at the minimum position of the potential
(see Fig. 3.6). In the incoming wave boundary condition, 7; in Eq. (3.25) is interpreted
as the transmission coefficient, and thus the S-matrix S; in Eq. (3.24) is nothing but the
reflection coefficient. Therefore, Eq. (3.20) is transformed to

o(E) = g; S (2 + 1)P(E), (3.27)
1

where Pj(E) is the penetrability for the l-wave scattering defined as

kl (Tabs)

R(E) =1-|S* = =

7l (3.28)
for the boundary conditions (3.24) and (3.25). The averaged angular momentum of the
compound nucleus is evaluated in a similar way as

<> (E)= (% ;z(zz + 1)P,(E)) / (% zl;(zz + 1)P,(E)) . (3.29)

3.2.3 Parabolic approximation and Wong formula

As was discussed in Sec. 2.1.3, if the Coulomb barrier is approximated by a parabola,
penetrabilities in Eq. (3.27) can be analytically evaluated. In Fig. 3.7, the Coulomb
barrier for the s-wave scattering of 1°0 + *4Sm reaction is compared with the parabolic
potential. Akyiiz-Winter potential Eqs. (3.9-14) is used for the nuclear potential. The
curvature, barrier height, and barrier position of this potential are 4.52 MeV, 61.3 MeV,
and 10.90 fm, respectively. Because of the long ranged Coulomb interaction, the Coulomb
barrier is asymmetric, and thus the parabolic potential has less width compared with
the realistic situation. However, the parabolic approximation works more than what
would be expected from Fig. 3.7. Figure 3.8 compares the penetrability of the s-wave
scattering obtained by numerically solving the Schrodinger equation with that obtained
in the parabolic approximation. Although the parabolic approximation overestimates the
penetrability at energies well below the Coulomb barrier due to the smaller thickness, the
agreement between the exact solutions and the parabolic approximation is remarkable,
especially at energies above the Coulomb barrier.

Using the parabolic approximation, Wong has derived an analytic expression of fusion
cross sections [25]. He assumed that (i) the curvature of the Coulomb barrier is
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independent of the angular momentum [, and (ii) the dependence of the penetrability on
the angular momentum can be well approximated by the shift of the incident energy as

)

3.30
o (3.30)

where g is the position of Coulomb barrier for the s-wave scattering. If many partial
waves contribute to fusion cross section, the sum in Eq. (3.27) can be replaced by an
integral:

o(B) = /0 “dl (21 + 1)R(E). (3.31)

Changing the variable from [ to I(l + 1), the integration can be explicitly carried out,
leading to the so called Wong formula

Al , 27
o(E) = Yol log [1 + exp (E(E - VB))] , (3.32)
where Q and Vp are the curvature and the height of the Coulomb barrier for the s-wave,
respectively. At energies well above the Coulomb barrier, this formula gives the classical
expression of fusion cross section

Vi
o(B) =} (1-2)  (BE>Va). (3.33)
Figure 3.9 shows the comparison of fusion cross section for the *0Q + !%*Sm reaction
obtained by the Wong formula with exact numerical solutions. One can observe that the
Wong formula works very well except well below the Coulomb barrier, where the parabolic
approximation breaks down.

Corrections to the Wong formula

Although the Wong formula works quite well in evaluating fusion cross sections, it has been
pointed out that it may not be very satisfacory in applying to the inversion procedure to
determin parameters of nuclear potential from experimental data [113]. In this connection,
it should be mentioned that Balantekin et al. have improved the Wong formula by taking
into account the angular momentum dependence of the barrier radius [114]. Up to the
first order of #%/u?Q%r%, they found that the barrier radius for the I-th partial wave rpg
is given by

(1 + 1)R®

TBl =TB — P (3.34)

This equation suggests that the barrier position decreases as the angular momentum !
increases. Since the height of the Coulomb barrier for the [-th partial wave Vg, is then
given, to the same order, by

11+ 1A% 12(1+1)%R
2ur? 2030278

VBl = VB + (335)
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the integral in Eq. (3.31) is modified to

I e 1+ 1)K P+1)%*
o(E) = E/o dl (21 + 1) P, (E BT 2 ) (3.36)
At energies well above the barrier, this equation leads to [114]
VB 27
O'(E) = 7”‘.28 (1 - f) — m—zE(E - VB)2 (E > VB)' (3.37)

Comparison between Egs. (3.33) and (3.37) shows that the Wong formula overestimates
fusion cross section at energies well above the Coulomb barrier.

3.2.4 Comparison with experimental data: failure of the po-
tential model

We now compare the one dimensional potential model for heavy-ion fusion reaction with
experimental data. Figure 3.10 show the experimental excitation functions of fusion
cross section for several systems. The solid lines are predictions of the potential model
obtained by using the parabolic approximation [32]. One can find that the potential model
reproduces the experimental data very well for relatively light systems, i.e. the 1*N + 12C,
%0 + ?7Al, and '*C + °Si reactions. Slight deviations at low energies can be attributed
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to the inadequacy of the parabolic approximation discussed in the previous subsection.
The situation is, however, very different for the heavier systems. The potential model
systematically underestimates fusion cross sections, suggesting that it is too simplistic
to describe the realistic situation. Figure 3.11 shows the experimental fusion excitation
functions for the 60 + 1441481545 reactions [51] and comparisons with the potential
model (the solid line). These are plotted as functions of center of mass energy divided
by the barrier height for each reaction. The barrier height and the result of the potential
model are obtained by using the Akyiiz-Winther potential. We again observe that the
experimental fusion cross sections drastically enhance compared with the prediction of
the potential model. Moreover, we observe that the degree of enhancement of fusion cross
section depends strongly on the target nucleus. The enhancement for the %0 + !54Sm
system is order of magnitude, while that for the ®0 + #4Sm system is about factor four
at energies below the Coulomb barrier.

Inversion of experimental data

The inadequacy of the potential model was demonstrated in a more transparent way
by Balantekin et al[33]. Eq. (3.32) suggests that the barrier penetrability of s-wave
scattering is propotional to the first derivative of Fo. Using the s-wave penetrabilities
thus obtained from experimental data of fusion cross section, Balantekin et al. applied the
inversion formula given by Eq. (2.38) to construct an effective one dimensional potential
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between heavy-ions. Figure 3.12 shows effective potential barriers constructed based on
the inversion procedure [33]. The phoenomenorogical potential of Krappe, Nix, and Sierk
(KNS potential) [115] is also shown by the dashed lines as comparisons. For the light
systems shown in the upper panel of Fig. 3.12, the obtained potentials are close to the
KNS potentials. However, for heavier systems shown in the lower panel, the thickness
of the effective potentials are unphysically thin, suggesting that the assumption of a
local one-dimensional potential which is independent of incident energy is inconsistent for
heavy-ion fusion reactions. This result was confirmed also by the systematic study of Ref.
[116].

3.3 Coupled-channels formalism for heavy-ion fu-
sion

3.3.1 Coupled-channels equations with full angular momen-
tum coupling

Extensive experimental as well as theoretical studies have revealed that the inadequacy
of the potential model, i.e. large enhancements of fusion cross section against predic-
tions of the potential model can be attributed to the effects of couplings of the relative
motion between the colliding nuclei to several nuclear intrinsic motions [33-36]. Among
possible intrinsic excitations of a nucleus, single particle states couple so weakly to the
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ground state that they do not affect heavy-ion fusion reactions. Also, their excitation
energy is in general much larger than the curvature of the Coulomb barrier between the
colliding nuclei. Couplings to giant resonances are relatively strong. However, since their
excitation energy is again much larger than the barrier curvature and is also a smooth
function of a mass number [117], their effects can be effectively incorporated in a choice of
inter nuclear potential through the adiabatic potential renormalisation discussed in Sec.
2.3.3. Therefore, the most relevant nuclear intrinsic motions to heavy-ion fusion reactions
are low-lying collective motions, e.g. low-lying vibrational excitations with several multi-
polarities, or rotational motions of deformed nuclei. In this section, we reformulate the
coupled-channels framework discussed in Sec. 2.3 by taking into account the finite multi-
polarity of nuclear intrinsic motion and discuss the effects of the couplings on heavy-ion
fusion reactions.

Consider a collision between two nuclei in the presence of the coupling of the relative
motion between the centers of mass of the colliding nuclei, r = (7, 1), to a nuclear intrinsic
motion £. We assume the following Hamiltonian for this system

2
H(r,€) = —%Vz + V(") + Ho(€) + Vaoup(r, €), (3.38)

where Hp(€) and Vooup(r, §) are the internal and the coupling Hamiltonians, respectively.
In general the internal degree of freedom £ has a finite spin. We therefore expand the
coupling Hamiltonian in multipoles

‘/coup r f) Z fx(’l‘ Y,\(!' T,\(E) (339)

A>0

Here Y, (f) are the spherical harmonics and T)(£) are spherical tensors constructed from
the internal coordinate. The dot indicates a scalar product. The sum is taken over all
values of A except for A = 0, which is already included in Vg(r).

For a fixed total angular momentum J and its z component M, the expansion basis
of the coupled-channels equations are defined as

<FE|(nID)JIM >= Y <Imdmy|JM > Yip (£)pnrm, (£), (3.40)

my,mjy

where [ and I are the orbital and the internal angular momenta, respectively. @pim,(§)
are the wave functions of the internal motion which obey

HO(E)(pnImy(E) = enl@nlm,(&) (341)

Expanding the total wave function with this basis as

Ty(r,6)=>. u—!“# < £€|(nl)JM >, (3.42)

n,lI

the coupled-channels equations for u],;(r) read

R d2  I(l+1)R?
l: 2“ d‘l‘2 + ( 2#1, + V( ) -E+ €nr n”(’l') + nl;p nil; nlup ) :/pp = 0, (343)
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where the coupling matrix elements V}j;..p(r) are given as

I/n{I;n'l’I’ (r) = < JIM(U)|[Veop(r,|(n 1) IM >, (3.44)
- Z(_)H’“'H Al <Yl >< oI||T||n' T >

x\/(2l+1)(2I+1){ L lI ‘/(} (3.45)

The reduced matrix elements in Eq. (3.45) are defined by
<Im|Yaull'mp >=< Umpdpllm >< ||| > . (3.46)

We have suppressed the index M in V... p(r), since they are independent of that quan-
tum number as is seen in Eq. (3.45). These coupled-channels equations are solved with
the incoming boundary conditions

.
Upy(r) ~ Tirexp (—i / knu(r')dr') T < Taps, (3.47)
Tabs

= l(—) (knjr)é,,,,,‘dl,,i&;,fi + Ri11H1(+)(an7') T — 00, (3.48)

where k. = \/ZL(E — €n7)/H?, and the local wave number kp;(r) is defined by

mmwj%@ww—ﬂgﬁ—%m Vi) (049

Once the transmission coefficients 7;J; are obtained, the penetration probability through
the Coulomb potential barrier is given by

! rﬂ 8
Pl (E) = 3 fulrad) o (3.50)
n,lJ

where k = k,,, is the wave number for the entrance channel. The fusion cross section for
an unpolarized target is then given by

P,,(E 2J +1 p

o(E Z P (E). (3.51)
kzl%:, 2L +1 R4S 2L+1 1

If the initial intrinsic spin I; is zero, the initial orbital angular momentum /; is J. Su-
pressing the indices /; and I; in the penetrability, Eq. (3.51) thus becomes

o(E) = % 3 (27 + 1)P’(E), (3.52)
J

which is similar to Eq. (3.27) except that the penetrabilities P’/(E) are influenced by the
channel couplings.
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3.3.2 No-Coriolis approximation

The full coupled-channels calculations (3.43) quickly become very intricate if many phys-
ical channels are included. The dimension of the resulting coupled-channels problem is
in general too large for practical purposes. For this reason, an approximation named the
no-Coriolis approximation, which is sometimes referred to as the rotating frame approxi-
mation, has often been introduced [53,118-122|. This is a sudden tunneling approximation
(see Sec. 2.3.2) concerning the centrifugal energy and it greatly reduces the number of
coupled-channels to be solved. The no-Coriolis approximation was first introduced in the
field of chemistry under the name centrifugal sudden approximation [123-125]. Recently,
it has also been applied to the problem of electron-molecule scattering[126].

Let us assume, for simplicity, that the initial intrinsic spin is zero. Extention to the case
where the intrinsic state has a finite initial spin will be given in the next sub-subsection.
In the no-Coriolis approximation, one transforms the whole system to the rotating frame
where the z axis is along the direction of the relative motion r at every instant [78]. This
is achieved by replacing the angular momentum of the relative motion in each channel by
the total angular momentum J, i.e.

W+ DA J(J + 1)
2ur? | 2ur?

(3.53)

This corresponds to the assumption that the change of the orbital angular momentum
between the colliding nuclei due to the excitation of the intrinsic degree of freedom is
negligible. As the operator for a rotational coordinate transformation in the whole space
then commutes with the centrifugal operator for the relative motion, one can make the
transformation to the rotating frame without introducing any complications {78]. Using

Yau(F = 0) = /(2A + 1) /470, 0, the coupling Hamiltonian (3.39) in the rotating frame

becomes
coup r E Z
A>0

2)\+1

Fa(r)Tao(€)- (3.54)

Since the coupling Hamiltonian does not depend any more on the angular component
of the relative coordinate between the colliding nuclei, the complicated angular momen-
tum couplings disappear in the no-Coriolis approximation, and thus the coupled-channels
equations are reduced to those in a spin-less system discussed in Sec. 2.3. A remark-
able fact is that the dimension of the coupled-channels equations drastically reduces in
the no-Coriolis approximation. For example, for quadrupole mode of excitation (A=2),
the original coupled-channels equations have 13 dimensions for J > 4, when the excita-
tions are truncated at the second excited states, while the dimension reduces to 3 in the
no-Coriolis approximation.

In order to derive the coupled-channels equations in the no-Coriolis approximation,
we expand the total wave function in the rotating frame as

¥,(,6) = ¥ 0@ )pm0(6). (35

nJ
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The radial wave function for the (nI)-th channel v, is related to the original radial wave
function as [127]
vl(r) =3 < 10J0JI0 > w)y (7). (3.56)
1

The coupled-channels equations for v;;(r) then read
K& JU+)R
2u dr? 2ur?

220+1
47

+VW(r)-E + e,,;] vl (r)

fA(’I‘) < (PnIITAol()on'I' > 1),{,1:(1‘) =0. (357)

+2.3

n'I’ A>0

These coupled-channels equations are solved by imposing the incoming boundary condi-
tions

r
vr{I(r) ~ Tyexp (—i s knJI(T')dT') T < Tabs, (3.58)

= HS ) knrr)bnn b1z + R H (knir) r — 00, (3.59)

where ky,; and k,j;(r) are defined in the same way as in the previous subsection. The
fusion cross section is then given by Eq. (3.52) with the penetrabilities of

PI(B) = ¥ 21Te) e (3.60)
n,l

The validity of the no-Coriolis approximation for heavy-ion fusion reactions has been
investigated in Refs. [119, 128]. It was shown in these references that the no-Coriolis
approximation leads to negligible errors in calculating fusion cross sections. Here we
reinvestigate its validity in connection with fusion barrier distribution, which will be
detailed in the next chapter. We also investigate the range of accuracy by varying the
excitation energy of the intrinsic motion. We choose the *0O + 1%*Sm reaction as a typical
example of the rotational coupling. For simplicity, we assume that the relative motion
couples linearly to the ground rotational band of !*Sm, which we truncate at the first
2% state (see next subsection for more detail). The literature value of the deformation
parameter is used and the excitation energy of the first 2* state is initially set to be zero.
Figure 3.13 compares the results in the no-Coriolis approximation (the dotted line) with
those obtained by solving the coupled-channels equations with full angular momentum
couplings (the solid line). The upper panel shows the fusion cross section, while the lower
panel is the so called fusion barrier distribution which is difined by the second derivative
of Fo. One can find that the no-Coriolis approximation works very well both for fusion
cross section and for fusion barrier distribution. This conclusion does not alter even when
we set the excitation energy of the first 2% state to be 2 MeV (Fig. 3.14). We thus
conclude that the change of the centrifugal potential due to the finite multipolarity of
intrinsic degrees of freedom can safely be neglected for heavy-ion fusion reactions. We
shall, therefore, always take the no-Coriolis approximation in the rest part of the thesis
unless explicitly mentioned.
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Path integral approach to no-Coriolis approximation

The no-Coriolis approximation has been derived by several different methods. The authors
in Refs. [53,118-120] used properties of Racah coefficients, and Ref. [121] used the Green’s
function method. Symmetry considerations using tidal spin have been used in Ref. [122].
Here we present a derivation of the no-Coriolis approximation using the path integral
method (see Sec. 2.4.1) [54]. This approach had already been used in Ref.[129], but the
angular momentum coupling was not treated explicitly. A salient point of this derivation
is that it enables us to easily extend to the cases where the initial spin of the colliding
particles is not zero, and where there is a spin-orbit force in the scattering process. It can
also be easily applied to the cases where the internal degrees of freedom are not collective
coordinates, but the coordinates of the constituent particles of the colliding system. It
also clarifies the underlying assumption of the approximation.

Since fusion reactions are processes where two nuclei approach close to each other, we
treat the radial component of the relative motion as the macroscopic degree of freedom
and its angular part and the internal degrees of freedom as environmental degrees of
freedom. For the Hamiltonian given by Eq. (3.38), the barrier transmission probability
is then expressed by (see Eq. (2.72))

Ti—00
rf——oo

J —  tim (PPLN [7 g7 JmET [T o5 —G/RET
P, (E) lim (#2 ) /0 dT e /0 dT e
X / D[r(t)] / D[ (})]et/ M- D-5E Dy (7(F), Ty r(t), T),  (3.61)

where p; and p; are the classical momenta at the initial and the final positions r; and ry,
respectively. S;(r,T) is the action for the translational motion along a path r(¢), and is
given by

SirT) = [ de (Gur(e? - Vatr()) (3.62)

The effects of the couplings to the environmental degrees of freedom are included in the
two time influence functional pjs, which is defined by Eq. (2.74)

pu(F(E), T;7(t), T) =< (L) I M|a (7(8), T)a(r(¢), T)|(niLi i) IM >, (3.63)
with 5 152
ihoi(r,t) = [ R Ho(€) + Veoup(r, 1, g)l a(r,t). (3.64)

@(r,t) is the time evolution operator of the environmental degrees of freedom along a
given path r(¢). The formal solution of Eq. (3.64) can be written as

. t 12h2
i(r,t) = Texp [/0 dt’ (W + Ho(€) + Veoup(r(t'), T, E))} , (3.65)

where T' is the time ordering operator. Hereafter the time ordering is supposed to be
properly treated in all solutions of @&, and we shall not write it explicitly.
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We now assume that the angular part of the translational motion is much slower than
the radial motion, and replace the operator I? in Eq.(3.65) by some c-number A(A+1)[54].
This is a kind of sudden approximation and is exact if there is no angular momentum
transfer from the relative motion between colliding nuclei to nuclear intrinsic motion. A
can be any c-number, though one often takes A to be the total angular momentum J. If
we denote the coordinate representation of ¢ by &' [54], we obtain

< T ENIM > = exp | [ a (RS 4 Hl€) + Vong(r (6.7, )|

X Z < l,-m,I,"m1|JM > }/limt(i")l‘PmIiml > . (366)

my,my

We next make a rotational coordinate transformation in the whole space to the coor-
dinate system where the z axis is along the direction of the radial vector r' = (r',1') =
(r',60',¢") [121). We call the new coordinate system the rotating frame (RF) in order to
distinguish it from the space fixed frame(SF). The operator for this coordinate transfor-
mation is given by ,

R(#,6',0) = e XEVA, (3.67)
In Eq.(3.67), x is the rotation vector which specifies the direction and the magnitude of
the rotation. Note that the third Euler angle in this rotating frame is zero. Since the time

evolution operator @(r,t) [see Eq.(3.65)] does not change by rotation in the no-Coriolis
approximation, we obtain

< #la(r, T)|(nliL)IM > = <RV, 0, 00R(¢,¢,0)a(r,T)

X’R‘-l (¢,’ 01’ O)R(Qy, €I1 O)I(n!ltIt)']M > (368)
= Y a(r(t),T) < ¥ = 0|(nilil;)JK > Dy p(¢',6',0) (3.69)
K

= Y a(R(t),T) < LOLK|JK > |25+ 1

T D;(M(d"’olao)l(p"glilf >
K

(3.70)

where D}, is Wigner’s D function and the time evolution operator in the rotating frame
@(r,T) is defined as

wnd) = e[ (A0 B@ + Vet =0.0) | @)
_ T . [AA+1)R? 2 +1 ,
= exp [/0 dt (—W +Ho(€)+z,\: in f,\(T(t))T,\o(E))}
(3.72)

In order to obtain Eq. (3.70), we used

R(¢',8,0)|# >=|t' =0>, (3.73)
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and

20; +1
<# = 0fYim >= 1 %5,,,,,0. (3.74)

The two time influence functional then becomes

onG(@), T, r(t), T) = / sin0'df'dg’ < (nliL)IM |3t (F(E), T)¥' >

x < #la(r(t), T)|(ndi ) IM > (3.75)
= > if] :h < LOLK|JK > |?
x < Puegxc| T (F(E), T)a(r(8), T)lon, ik > - (3.76)
In obtaining Eq.(3.76) from Eq.(3.75), we used the orthogonality of the D function
/ sin 8d8d4 DY (9,6, 0) Dfers (#,6,0) = 141 bk (3.77)

The time evolution operator in the rotating frame @(r(t), ) obeys

22 +1
4T

A(A + 1)R?
(Z,u;r"’)_’_HO(S)-}-Z

A>0

ihoa(r,) = f,\(T)TAo(f)] ary.  (379)
Eq.(3.78) shows that the z component of the internal spin m; is conserved in the no-
Coriolis approximation. Since the wave functions with different values of m; never couple
to each other during the reaction process, the dimension of the coupled-channels equations
is drastically reduced. The effective Hamiltonian in Eq.(3.78) has the same form as that
in the system where the internal spin is zero. The effects of the finite intrinsic spin enters
only through a scaling factor /(2A + 1)/4w of the coupling strength.

From Eqgs.(3.51), (3.61), and (3.76), the fusion cross section in the no-Coriolis approx-
imation finally becomes

T 20; +1
= — : 0. K| 2
o(E) =) le.»: EK: T - < LOLKIJK > |

< Jim, (BEL) [7 a7 ET [7 4T &P [Dir(e)] [ DIF()

rf—t-oo

xe(i/h)[St(r'T)_S‘(F,T)] < (pnifiKlat(f(f)’T)ﬂ(r(t)’T)l(me.’K >
(3.79)

This is nothing but the solution of the reduced coupled-channels equations (3.57). If the
initial value of the internal spin is zero, the initial angular momentum for the relative
motion l; equals J, and the summation in Eq.(3.79) becomes simple. The fusion cross
section in that case can be calculated by treating as though the relative motion couples to
a spinless mode of excitation except for the scaling factor /(2A + 1)/4m mentioned above.
If the initial spin of the internal motion is finite, the influence functional is obtained by
first calculating it for a fixed K-quantum number, and then by taking sum with the weight
following Clebsch-Gordan coefficients.
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3.3.3 Coupling to low-lying collective states
Vibrational coupling

Let us now discuss the explicit form of the coupling Hamiltonian Ve, in the problem of
heavy-ion fusion reactions. We first consider couplings of the relative motion to the 2*-pole
surface vibration of a target nucleus. In the geometrical model of Bohr and Mottelson,
the radius of the vibrating target is parameterized as

R(0.8) = Fr 1+ T 00, 15,6.9)). (3.80)

where Rr is the equivalent sharp surface radius and s, is the surface coordinate of
the target nucleus. To the lowest order, the surface oscillations are approximated by a
harmonic oscillator and the Hamiltonian for the intrinsic motion is given by

2A+1)

Hy = hw (z af\“a,\,, + —2‘ (381)
o

Here hw is the oscillator quanta and af\p and a,, are the phonon creation and annihilation
operators, respectively. The surface coordinate o, is related to the phonon creation and
annihilation operators by

Q= 0y (a&" + (—)"a,\,,) , (3.82)

where aq is the amplitude of the zero point motion. It is related to the deformation pa-
rameter by ap = 81/v/2A + 1 [117] and can be estimated from the experimental transition
probability using (see Eq. (3.89))

o = 1 4m B(EX) t
T V2AF13ZRAY e2

The surface vibration modifies both the nuclear and the Coulomb interactions between
the colliding nuclei. In the collective model, the nuclear interaction is assumed to be a
function of the separation distance between the vibrating surfaces of the colliding nuclei.
It is conventionally taken as

(3.83)

V(N) (I‘, a,\,‘) = VN (1‘ - RT Z a,\,,Y;“(f)) . (3.84)
u
If the amplitude of the zero point motion of the vibration is small, one can expand this
equation in terms of a,, and keep only the linear term:

dVn(r .
VN (r,ax,) = Vn(r) — Rr (’;T( )ZaApY;'“(r). (3.85)
I3

This approximation is called the linear coupling approximation, which has often been used
in coupled-channels calculations. The validity of this approximation will be examined in
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Chap. 5. The first term of the r.h.s. of Eq. (3.85) is the bare nuclear potential, i.e.
the nuclear potential in the absence of the coupling, while the second term is the nuclear
component of the coupling Hamiltonian.

The Coulomb component of the coupling Hamiltonian is evaluated as follows. The
Coulomb potential between the spherical projectile and the vibrating target is given by

Z Z e? Z Zre? 47rZ e
'#0 o

where pr is the charge density of the target nucleus and Qs the electric multipole
operator defined by

QA:”: = /erTem‘(r)T/\,YAIyl(f). (387)

The fist term of the r.h.s. of Eq. (3.86) is the bare Coulomb interaction, and the second
term is the Coulomb component of the coupling Hamiltonian. In obtaining Eq. (3.86),
we used the formula

1 _z i
AN+ 1l me

— Vi E)¥i6), (3.88)

and assumed that the relative coordinate r is larger than the charge radius of the target
nucleus. If we assume a sharp matter distribution for the target nucleus, the electric
multipole operator is given by

36 '
Qv = ZEZTR'} Caula N Oy (3.89)

up to the first order in the surface coordinate a,,. Therefore, by combining Egs. (3.85),
(3.86), and (3.89), the coupling Hamiltonian is expressed by

‘/coup(r; a)\) = f,\(?‘) Z a,\”Y;“(i‘), (390)
u
up to the fist order of ay,. fi(r) is the coupling form factor, which is given by
vy 3 , B}
falr) = _RTF D) " 3ZPZT6 v (3.91)

where the first and the second terms are the nuclear and the Coulomb coupling form
factors, respectively. The coupling form factor fy has the value

ZPZTG?( 3B RT) (3.92)

TB

NH(re) =

20+3r3y 718

at the position of the bare Coulomb barrier 7.
Transforming to the rotating frame, the coupling Hamiltonian used in the no-Coriolis
approximation is then given by

2A+1

I/coup (T; O.’)\o) =

fa(r)ax = \/_f,\(r) (a,\0 + a,\o) (3.93)
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In the previous subsection, we showed that the no-Coriolis approximation drastically
reduces the dimension of the coupled-channels equations. A further reduction can be
achieved by introducing the n-phonon channels [118, 127]. In general, the multi-phonon
state of the vibrator has several levels and they are distinguished from each other by
the angular momentum and the seniority {117]. For example, for the quadrupole surface
vibrations, the two phonon state has three levels (0*,2%,4%). In the harmonic limit,
these two-phonon triplet is degenerate in the excitation energy. One can then replace the
couplings to all the members of the two-phonon triplet by the coupling to a single state
given by

1
2>= < 2020}10 > |10 >= ——(al,)?
I 1—_-02,:2,4 ' | \/g( 20)

In the same way, one can introduce the n-phonon channel for a general multipolarity A as

0> . (3.94)

In >= ﬁ(ago)ﬂo > (3.95)

If we truncate to the two-phonon states, the corresponding coupling matrix is given by

0 F(r) 0
Veoup = ( F(r) hw  V2F(r) ) , (3.96)
0 V2F(r) 2hw

where, F(r) is defined as 3, fx(r)/v4w. The deviations from the harmonic oscillator limit
presented in this subsection will be discussed in Chap. 7.
Rotational coupling

We next consider couplings to the ground rotational band of a deformed target. In dis-
cussing them, it is convenient to transform to the body fixed frame where the 2z axis is
along the orientation of the deformed target. The surface coordinate ay, is then trans-
formed to

Ap = Z D;)’p((pdv eda Xd)aAu" (397)
o

where ¢4, 84, and xq are the Euler angles which specify the orientation of the target. If we
are particularly interested in the quadrupole deformation (A=2), the surface coordinates
in the body fixed frame are expressed as

ax = pPacosy, (3.98)

1 .
Q2 = Q2= ﬁﬂz s 7. (3-99)

If we further assume that the deformation is axial symmetric (¢ = 0), the coupling
Hamiltonian for the rotational coupling becomes (see Eq. (3.90))

Veoup(T, 84, $a) = f2(r) Zﬁz\/‘_i—?yzp(ad, $a) Yy, (F). (3.100)
]
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In obtaining Eq. (3.100), we use the identity

4
Dizo(9:6,%) = {5757 Yim(: ). (3.101)

The coupling Hamiltonian in the rotating frame is thus given by

Veoup(, 8) = f2(r)B2Y20(6), (3.102)

where 6 is the angle between (84, ¢4) and F, i.e. the direction of the orientation of the
target measured in the rotating frame. Since the wave function for the |[I0 > state in
the ground rotational band is given by |I0 >= Y}, the corresponding coupling matrix is

given by‘
eoup F(T) € + 2\/5F(1‘)/7 ! ’

when it is truncated at the first 2% state. In Eq. (3.103), ¢, is the excitation energy of the
first 2% state, and F(r) is defined as (B, f2(r)/v4n. The matrix elements in Eq. (3.103)
are calculated by using

_/Yllm1 ()i, me () Yiyms (O = \/(211 + 1)(2124: 1)(2l3 + 1)

L I I3 L U I3
(BB (5 h )

One of the main differences between the vibrational (3.96) and the rotational (3.103)
couplings is that the latter has a diagonal component which is propotional to the defor-
mation parameter 8,. This is referred to as the ‘reorientation effect’and has been used
in the Coulomb excitation technique to determin the sign of the deformation parameter
[130].

The effects of the v deformation on subbarrier fusion were studied in Ref. [131]. If
there is a finite v deformation, the coupling Hamiltonian in the rotating frame becomes

Vewup(r: 0, 8) = lr) (ﬂz cos Yn(6) + = 5in 2 (¥in(6,6) + Ya-a(0 ¢>)) . (3.105)

Higher order deformations can be also taken into account in a similar way as described
above. For example, if there is an axial symmetric hexadecapole deformation in addition
to an axial symmetric quadrupole deformation, the couplig Hamiltonian reads

Vcoup(ra 0) = f2(r)ﬁ21f20(0) + f4(7‘),34)/40(9), (3106)

where (3, is the hexadecapole deformation parameter.
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IBM coupling

An alternative approach to the low-lying collective states in medium heavy nuclei is the
interacting boson model (IBM) [132]. In this model, the low-lying collective quadrupole
states are described in terms of s and d bosons, which are considered to approximate the
J™ = 0% and 2* coherent pairs of valence nucleons, respectively. A model for subbarrier
fusion reactions, which uses the IBM to describe the effects of channel couplings, has been
developed by Balantekin et al. [129,133-136]. They assume that the coupling Hamiltonian
has a similar form to that of the collective model Eq. (3.90). In the linear coupling and
the no-Coriolis approximations, it is given as

__w _[5
Veoup(T, §) = < 21110,110, >\/;f2(7‘)Q20- (3.107)

Here, Q2 is the quadrupole operator in the IBM, which is given by

Qa0 = stdy + sdl + x2(dld)?, (3.108)

where tilde is defined as d, = (—)*d_,. v, in Eq. (3.107) is the quadrupole coupling
strength. The scaling factor of the coupling strength < 2,[|@2||0, > has been introduced
to ensure the equivalence of the results of the IBM and those of the geometric model in
the large N limit, N being the total boson number.

Ref. [134] further discusses the effects of non-linear coupling, which we will detail
in Chap. 5. Systematic studies of subbarrier fusion with this model indicate that the
coupling strength used in this model v, is very similar to that in the geometrical model
B2 [135]. We will use this model in Chap. 7 to discuss the effects of anharmonicity of
nuclear vibrations on heavy-ion fusion reactions.
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Chapter 4

FUSION BARRIER
DISTRIBUTION

4.1 Barrier distribution representation

In Sec. 2.3.2, it has been shown that the effects of channel coupling can be expressed
in terms of distribution of potential barriers when the excitation energy of the intrinsic
motion is zero, and the underlying structure of the barrier distribution can be detected
by taking the first derivative of penetrability. It has also been shown in Sec. 2.3.4 that
this picture approximately holds even when the excitation energy is finite, provided that
the eigen-channel approximation is good. In the problem of heavy-ion fusion reaction,
the experimental observable is not penetrability, but fusion cross section, and thus if one
intends to discuss the effects of channel-coupling on fusion in terms of the first derivative
of penetrability, one has to convert fusion cross sections to penetrabilities of the s-wave
scattering. The Wong formula given by Eq. (3.32) suggests one prescription for this,
i.e. it suggests that the first derivative of the product of fusion cross section ¢ and the
center of mass energy E with respect to the energy, d(Eo)/dE, is propotional to the
penetrability of the s-wave scattering

d(Eo) _ nry
dE 1+ exp [—%(E - VB)]

= 1ryPy(E). (4.1)

This equation immediately leads to a relation between the first derivative of the penetra-
bility and the fusion cross section [56]

d*(Eo) o, 2 e2r(E-VB)/ha o, APy(E)

dE? ~ "BRQ (14 emBVana)? T BT GE (4.2)

This quantity, which is conventinally called fusion barrier distribution, is peaked at the
height of the Coulomb barrier for the s-wave scattering Vg, with the height and the full-
width half maximum (FWHM) of n?r% /28 and hQ log(3+1/8) /7 ~ 0.56A8, respectively.

In order to enquire how well the first derivative of Eo describes the the s-wave pene-
trability, the upper panel of Fig. 4.1 compares the first derivative d(Eo)/dE obtained by
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Figure 4.1: The upper panel: comparison of the first derivative of Eo (the solid line) with
the s-wave penetrability (the dotted line) for the 32S + 4Ni reaction. The latter quantity
is scaled by nr%, rp being the radius of the Coulomb barrier. The internal excitations
of both the projectile and the target nuclei are not taken into account. The lower panel:
comparison between the second derivative of Fo (the solid line) and the first derivative
of the s-wave penetrability which is scaled by 7r% (the dotted line).

numerically solving the Schrédinger equation without using the Wong formula, with the
numerical solution of the s-wave penetrabilities scaled by wr%. The system is the same as
that studied in Ref. [56), i.e. 32S + ®Ni reaction. The same parameters as those in Ref.
[66] are used for the nuclear potential. The solid line in the upper panel of Fig. 4.1 is the
first derivative of Eo, while the dotted line is the product of the penetrabilities and nr}.
One can find a good agreement between the solid and the dotted lines, suggesting that the
first derivative of Eo is actually propotional to the s-wave penetrability. The solid line
decreases at high energies, while the dotted line becomes close to one. This descrepancy
can be attributed to the angular momentum dependence of the barrier radius discussed in
Sec. 3.2.3. The lower panel of Fig. 4.1 shows a comparison between the second derivative
of Eo (the solid line) and the first derivative of penetrability dPy/dFE (the dotted line).
We again observe that the agreement is excellent.
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Figure 4.2: The orientation dependence of fusion potential for the %0 + '5*Sm reaction.
The solid and the dashed lines are the potentials when the orientation of a deformed
1549m is § = 0 and 7/2, respectively. The potential when the '**Sm nucleus is assumed
to be spherical is denoted by the dotted line.

In the presence of the coupling, fusion cross sections may be given by an average over
the contributions from each eigen-barrier with appropriate weight factors (see Egs. (2.54)
and (2.60))

o(B) = wnoo(E; Vo(r) + An(r)), (4.3)

where o¢(E; V(1)) is the fusion cross section of a one dimensional potential V(r). The
second derivative of Eo is then expressed by
d?(Eo) o2 e?™E-Vea)/hn o dPy(E;Vo(r) + Au(r))

_ 2 _
dE? Z:w"wf’" A, (1 + o2 (B—Vanina ) ;w"wB" dE

(4.4)
where 7,0y, and Vp, are the radius, the curvature, and the height of the n-th eigen
potential barrier Vy(r) + A, (r), respectively. The second derivative of Eo has many peaks
at energies corresponding to the height of each eigen-potentials, and the height of each
peak is propotional to the product of the corresponding weight factor and the square of
barrier radius, w,7%,. In the problem of heavy-ion fusion reactions, the barrier radius
TBn strongly depends on the channels due to the fact that the coupling extends outside
the Coulomb barrier. This can easily be understood by considering fusion reactions of
a spherical projectile on a deformed target which has infinite rotational excited states
with zero excitation energy, i.e. a classical rotor. In this case, the potential between the
projectile and the target depends on the orientation of the target nucleus, which does
not alter during the fusion reaction in the sudden tunneling limit. If the target has a
positive B, deformation, the attractive nuclear interaction is applied from relatively large
distance when the orientation is zero degree, i.e. when the projectile and the target
aligne along the symmetry axis of the target. The Coulomb barrier is thus lowered and
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appears at relatively larger distance compared with the case where the target is spherical.
The opposite happens when the orientation is 7/2, i.e. when the projectile incident in
a direction perpendicular to the symmetry axis of the target. In this case, the Coulomb
barrier increases and the barrier radius becomes smaller. Figure 4.2 shows the Coulomb
barrier for the 0 + '%Sm reaction as a typical example of fusion of a prolate nucleus.
The solid and the dashed lines correspond to the cases where the orientation of 1*4Sm is
zero and 7/2, respectively. The dotted line is the potential when the ®*Sm is spherical.
Due to the effects of deformation (#2=0.3), the barrier height is distributed from 54.91 to
61.73 MeV, and the barrier radius from 10.07 to 11.98 fm.

Because of the strong dependence of the barrier radius on channels, one has to be
careful in interpretending the shape of fusion barrier distribution, d*(Ec)/dE?. For ex-
ample, the shape may become asymmetric after multiplying the square of barrier radius
even when the original distribution is symmetric. In order to demonstrate this, let us
consider the 0 + 28Pb fusion reaction in the presence of coupling of the relative motion
to the octupole surface vibration of 2°®Pb. If we truncate the vibrational states at the
one phonon state, the coupling matrix in the linear coupling approximation Eq. (3.96)
becomes identical to that in the two level problem discussed in Sec. 2.3.5. When the ex-
citation energy of the surface vibration is zero, the fusion cross section is then expressed
by

o(E) = 3 [oo(B: Va(r) + F(1) + oo(B; Vo(r) - F(r))]. (43)

The upper panel of Fig. 4.3 shows the eigen-potentials V4(r) & F'(r) (the solid lines) and
the bare Coulomb barrier V3(r) (the dotted line), while the coupling form factor F(r)
is shown in the lower panel. The deformation parameter (8; was slightly modified from
that estimated from the electric transition probability in order to emphasise the effects of
channel coupling. Because the peak of the coupling form factor F'(r) appears at the differ-
ent position from that of the bare potential Vy(r), the barrier radii of the eigen-potentials
are considerably different from each other. Figure 4.4 shows the corresponding fusion
barrier distribution d?(Ec)/dE? obtained by numerically solving the coupled-channels
equations. Because of the peculiar radial dependence of the coupling form factor, the
shape of the barrier distribution is significantly asymmetric, though the original weight
factors themselves are symmetric.

This observation suggests that the constant coupling approximation Eq. (2.59) does
not work well for heavy-ion fusion reactions. It is apparent from Fig. 4.3 that the
variation in barrier height at the fixed barrier radius is inconsistent with the realistic
situation. Figure 4.5 shows the fusion cross section (the upper panel) and the fusion
barrier distribution (the lower panel) for the %0 + 28Pb reaction obtained by setting
the excitation energy of the first 3~ to be 2.6 MeV. The double phonon coupling is also
included in the harmonic limit. The exact solutions of the coupled-channels equations
are denoted by the solid line, while the dotted line is the results in the constant coupling
approximation. The strength of the coupling form factor used in the constant coupling
approximation was estimated at the barrier position of the bare Coulomb barrier, as is
often adopted (79, 97]. The constant coupling approximation overestimates the fusion

99



Potential (MeV)

(MeV)

F(r)

r (fm)

Figure 4.3: The effective potentials for the the 180 + 2%Pb reaction. The coupling of the
relative motion to the one phonon state of the octupole vibration in the 2°Pb nucleus
is taken into account in the sudden tunneling approximation, i.e. zero excitation energy.
The solid lines in the upper panel are the two effective potential barriers Vo(r) &+ F(r),
while the dotted line is the potential in the absense of the coupling, Vp(r). The lower
panel shows the coupling form factor F(r).
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Figure 4.4: Fusion barrier distributions d*(Ec)/dE? for the *0 + 2%Pb reaction. The
solid takes into account the couplings to the first 3~ state in the 2°Pb nucleus in the
sudden tunneling approximation, while the dotted line is the fusion barrier distribution
in the absense of the coupling.
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Figure 4.5: The fusion cross section (the upper panel) and the fusion barrier distribution
(the lower panel) for the 50 + 208Pb reaction obtained by several methods. The double
phonon excitations in the 2°®Pb nucleus are taken into account in the harmonic limit. The
solid line is the numerical result of the coupled-channels calculation. The dotted and the
dashed lines are obtained by using the constant coupling (CCFUS) and the eigen-channel
(CCMOD) approximations, respectively.

cross section and leads to the incosistent shape of fusion barrier distribution. Both the
heigts and the position of each peaks of the fusion barrier distribution are not reproduced.
One way to avoid this discrepancy is to take the eigen-channel approach. Actually, the
computer code CCMOD [42] does not use the constant coupling approximation, but uses
the formula in the eigen-channel approximation given by Eq. (2.60). This code adopts
the barrier position of the bare Coulomb potential for the position where the weight
factors are estimated. The result of CCMOD is denoted by the dashed line in Fig. 4.5.
The improvement from the constant coupling approximation is significant. The CCMOD
properly reproduces the peak positions of the fusion barrier distribution. Note that the
relative height of each peaks of the barrier distribution is still inconsistent with that in the
exact calculations. This indecates that the determining the weight factors at the barrier
position of the bare barrier is not satisfactory. We will discuss this problem in Sec. 4.4.
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4.2 Extraction of fusion barrier distribution from
experimental data

In order to extract fusion barrier distributions directly from experimental data, the
second derivative (4.4) may be approximated by point difference formulae. The simplest
one is the three point formula given by

d*(Eo)
dE?

_ (Eo)i-1 — 2(Eo)i + (Eo)ia
- (AE)? ’

(4.6)

E:E,’

where (Eo); are evaluated at energies F;. We have assumed the constant energy spacing
AE. The experimental uncertainty dpp associated with the second derivative at energy
E; is then approximately given by [51]

dpp ~ (ALE)Z\/(‘SU:'-Q2 + 4(60;)? + (00i41), (4.7)

where d0; are the experimental uncertainties in the fusion cross sections. Equation (4.7)
shows that the uncertainties of experimental fusion barrier distribution are directly propo-
tional to the energy E, and thus excitation functions of fusion cross section have to be
measured with high precision in order to deduce meaningful barrier distributions. This
is clearly demonstrated in Fig. 4.6, where the fusion barrier distributions for the *0 +
154Gm reaction extracted from two different experimetal data set are shown. Also shown
are theoretical calculations obtained by assuming a positive (the solid line), zero (the
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dashed line), and negative (the dotted line) hexadecapole deformation 84 of !%¢Sm in ac-
company with the quadrupole deformation of 8, = 0.3. The left panel is the fusion barrier
distribution extracted from the experimental data measured by Stokstad et al. [28], which
has an experimental uncertainty of 10%. This experimental accuracy is a typical one for
the data prior to the new generation of high precision measurement. The experimental
fusion barrier distribution extracted from such data is poorly defined, and it cannot dis-
tinguish the difference of the shape of the fusion barrier distribution originated from the
sign of the small hexadecapole deformation parameter. The right panel of Fig. 4.6 shows
the experimental fusion barrier distribution extracted from the recent high precision data
of the Canberra group which has a typically 1 % of uncertainty[51]. The improvement
is apparent and remarkable. The experimental fusion barrier distribution is well defined,
and is consistent with the theoretical calculation with positive hexadecapole deformation
[59].

Even with very high precision data, however, fine-tuning of the energy spacing AF
is required in order to extract a well defined fusion barrier distribution [137]. Mathe-
matically, the second derivative of Eo is defined by Eq. (4.6) in the limit of AE — 0.
However, in the realistic situation where the experimental uncertainty of fusion cross sec-
tions is finite, the fusion barrier distribution becomes ill defined as the energy spacing
AFE decreases, as can be detected from Eq. (4.7). One way to avoid this is to take a
large value of AE in the point difference formula. Although the fine structure containing
within an energy scale smaller than AFE is lost, the experimental uncertainty of the fusion
barrier distribution dgp reduces and the quality of the barrier distribution is better de-
fined. When the energy spacing AFE is too large, on the other hand, the main interesting
feature originated from the couplings to the nuclear intrinsic motions is missed. There-
fore, the size of AE is chosen as a compromise between these two cosiderations. Figure
4.7 shows fusion barrier distributions for the %0 + !%*Sm reaction obtained by using the
point difference formula with several choices of the energy spacing AE. Coupled-channels
equations are numerically solved by including both the quadrupole and the octupole sin-
gle phonon states in the harmonic limit (see the following chapters for more details). The
error bars are simurated by assuming that the theoretically obtained fusion cross sections
have a hypothetical uncertainty of 1%, which is a typical level of uncertainty in the present
experimental status[51]. We can find that the error bars of the fusion barrier distribu-
tions obtained by setting AE = 0.5 as well as 1 MeV are too huge to see a meaningful
structure in the barrier distributions. On the contrary, if we take a larger value of the
energy spacing, i.e. AE = 2 MeV, the fusion barrier distribution is relatively well defined
and a clear double peaked structure can be seen. This structure is somewhat smeared if
AFE is set to be 3 MeV. The main qualitative feature does not alter even if we use a more
complicated five point formula, as is shown in Fig. 4.7. (e) and (f).

The most of high precision measurement of fusion cross sections by the Canberra group
have been analysed by using the point difference formula of three point (4.6) with AFE
= 2 MeV in the laboratory frame [51]. This procedure will be adopted for most of the
experimental fusion barrier distributions presented in this thesis. In order to be consistent,
the theoretical fusion barrier distribution will be evaluated in an identical manner when
it is compared with the experimental data.
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Figure 4.7: Fusion barrier distributions for the '*0 + **Sm reaction obtained by point
difference formulae with several values of the energy spacing AE. The single octupole
and quadrupole phonon states in the 4Sm nucleus are included in the calculations. The
error bars are generated by assuming that the theoretical fusion cross sections have a
hypothetical uncertainty of 1%. Fig. 4.7 (a), (b), (c), and (d) are obtained by using the
point difference formula of three point with AE of 0.5, 1, 2, and 3 MeV in the center of
mass frame, respectively. Fig. 4.7 (e) and (f) are results of the five point difference formula
with the energy spacing AF of 1 and 2 MeV in the center of mass frame, respectively.
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4.3 Advantages of barrier distribution analyses

Apparently, excitation functions of fusion cross section contain the same amount of in-
formations as the fusion barrier distributions extracted from them. What would then be
advantages of analysing the experimental data of fusion cross section in terms of fusion
barrier distributions? When the large enhancement of fusion cross sections at subbarrier
energies was first observed, there was an argument that it may be hard to identify the un-
derlying physical mechanism of the enhancement of fusion cross sections, since any sort of
couplings of the relative motion can lead to the enhancement of the fusion cross sections.
The experimental fusion cross section may thus be able to be fitted equally well by two
completely different theoretical models. The recent high precision data have challenged
to this claiming. The observed fusion barrier distributions were found to be quite sensi-
tive to the details of the channel couplings, while the fusion cross sections themselves are
rather featureless [51). These analyses suggested that the representation of fusion process
in terms of the second derivative of Eo is a very powerful method to study the details of
the effects of nuclear structure, and thus provides a good opportunity to test theoretical
frameworks for subbarrier fusion. Here we present two examples of such analyses.

The first example is the %0 + 13®W reaction where the effects of hexadecapole de-
formation on subbarrier fusion reactions were clearly demonstrated [51, 62]. Figure 4.8
shows the experimental data of fusion cross sections (upper panel) and fusion barrier dis-
tributions (lower panel) for this system, which are compared with theoretical calculations.
The solid, the dotted, and the dashed lines are obtained by setting the sign of the hex-
adecapole deformation paramter to be negative, positive, and zero, respectively. One can
find that the enhancement of the fusion cross section due to the hexacecapole deformation
is very similar among these three cases. Especially, these three lines are indistinguishable
at high energies. On the other hand, the fusion barrier distribution drastically changes
if the sign of the hexadecapole deformation parameter is inverted, as is seen in the lower
panel.

This example demonstrates that the fusion barrier distribution is very sensitive to
the sign of deformation parameters. This observation was possible only when the cross
sections have high precision. In this connection, a work to investigate the role of higher
order deformation, i.e. the B¢ deformation in subbarrier fusion is now being in progress
[138].

The next example is the 0 + 144Sm collision, where the effects of the couplings to
the phonon states in *Sm on fusion reactions have been confirmed for the first time
through the barrier distribution[51, 64]. Figure 3.11 indecated that the enhancement of
fusion cross section for this system against the prediction of the one dimensional potential
model is not so large. One might, therefore, think that the observed experimental fusion
cross section can be fitted in the potential model by varying their parameters. Actually,
Di Gregorio et al. analysed this system using the Wong formula (3.32) with the barrier
radius g, the barrier height Vg, and the barrier curvature A2 of 10.24 fm, 59.76 MeV,
and 3.9 MeV, respectively [139]. The result of such calculation for the fusion cross sections
is shown by the solid line in Fig. 4.9. Although the quality of the fit at high energies is
not so good, the theoretical calculation, at a glance, seems to fit the experimental data
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reasonably well over the wide energy range.
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The inadequacy of such approach, however,

has already revealed in the fact that any Woods-Saxon potential does not lead to the
Coulomb potential which has the same parameters as those used by Di Gregorio et al.
(see Appendix C.2). The inconsistency of the model becomes more transparent if it is
compared with the experimental fusion barrier distribution d?(Ec)/dE?. Such compari-
son is presented in the lower panel of Fig. 4.9. It is clearly seen that the one dimensional
potential model cannot reproduce the experimental fusion barrier distribution. The ex-
perimental fusion barrier distribution has a clear double peaked structure, while the one
dimensional potential model which Di Gregorio et al. used gives only a single peak of
the fusion barrier distribution. This example clearly demonstrates the possible dangers
of analysing experimental data only in a form of fusion cross section, and the advantages
of being able to “see”the fusion barrier distribution {51].
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4.4 Fusion barrier distribution in systems with fi-
nite excitation energy

As was shown in Chap. 2, the barrier distribution representation, i.e. the second derivative
of Ea, has a clear physical meaning only if the excitation energy of the intrinsic motion
is zero, and the concept holds only approximately when the excitation energy is finite.
Nonetheless, this analysis has been successfully applied to systems with relatively large
excitation energies[51, 64, 65]. For example, as we have already discussed in the previous
section, the second derivative of Eo for %0 + *4Sm fusion reaction clearly shows the
effects of coupling to the octupole phonon state in **Sm, whose excitation energy is 1.8
MeV, much more clearly than the fusion cross section itself [51, 64]. Also the analysis of
the fusion reaction between *®Ni and %°Ni, where the excitation energies of quadrupole
phonon states are 1.45 and 1.33 MeV, respectively, shows that the barrier distribution
representation depends strongly on the number of phonon states included in coupled-
channels calculations[65]. These analyses suggest that the representation of fusion process
in terms of the second derivative of Eo is a very powerful method to study the details
of the effects of nuclear structure, irrespective of the excitation energy of the intrinsic
motion.

Despite these successes, however, there remains the question whether the second
derivative of Eo represents a “distribution”of fusion potential barriers when the exci-
tation energy of the intrinsic motion is not zero. To address this problem, we treat here
the weight factors as energy dependent variables, as was suggested from Eq. (2.96). The
possibility of the energy dependence of weight factors when the excitation energy is finite
has been suggested in Ref. [140]. Here, we explicitly study the energy dependence by
performing exact coupled-channels calculations [63]. It will be shown that the energy
dependence is quite weak for a wide range of excitation energy, suggesting that the eigen-
channel approximation works well even when the excitation energy of the intrinsic motion
is not small.

Let us consider, for example, the case where the intrinsic degree of freedom has only
two levels (see Sec. 2.3.5). One may attempt to use the CCMOD approximation (2.60)
discussed also in Sec. 4.1, to address the question whether the picture of barrier dis-
tribution holds in systems with finite excitation energies. Even when we introduce this
approximation, however, the weight factors are still functions of the chosen position r,
at where the weight factors are evaluated, and the results might strongly depend on
that choice. Usually r, is chosen to be the position of maximum of the bare potential
barrier[42, 97]. However, there is no theoretical justification that this is the optimum
choice, as is indecated from Fig. 4.5, and furthermore, it is not obvious whether one can
determine the weight factors independent of the incident energy.

In order to avoid these drawbacks and examine the energy dependence of the weight
factors, we parametrize the penetrability as

P(E) = ,(E)P4(E) + & (E)P_(E), (48)
and evaluate the weight factors w, at each incident energy E. Here P.(E) are the

penetrabilities of the eigen-potentials Vy(r) + AL (r), respectively, A4(r) being the eigen-
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(the lower panel) as a function of the relative distance r. The solid and the dashed lines
in the lower panel are the weight factors for the lower and the higher eigen-potentials,
respectively. The dotted line in the upper panel represents the bare potential barrier.

values of the coupling matrix at each position of r, which are given by Eq. (2.62). If
the weight factors slowly vary as functions of the incident energy, the effects of channel
coupling can be interpreted in terms of the barrier distribution, even when the excitation
energy is non-zero. Since the weight factors have to satisfy the unitarity condition[53],
they can be uniquely determined in the present two level problem, and are given by

w(E) = (P(E)- P-(E))/(P(E) - P(E)), (4.9)
w-(E) = (Py(E)- P(E))/(P+(E) - P_(E)). (4.10)

We performed coupled-channels calculations to examine the energy dependence of
the weight factors. To this end, the coupled-channels equations have to be solved with
good accuracy, since the penetrabilities P(E) and P.(E) in Egs. (4.9) and (4.10) are
exponentially small quantities at energies below the barrier. The incoming wave boundary
condition, which is often used in coupled-channels calculations for heavy-ion collisions (see
Eq. (3.47)), can bring some numerical errors, though they would be small enough for the
purpose of calculating fusion cross sections. In order to avoid this, we use here a schematic
model of heavy-ion fusion reactions by Dasso et al.[79], discussed in Sec. 2.3.5, where the
radial motion between colliding nuclei is treated as a one dimensional barrier penetration
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problem. We use the same bare potential and the copling form factor as thosed used in
Sec. 2.3.5. The excitation energy e is initially set to be 2 MeV.

The upper panel of Fig. 4.10 shows potential barriers for the present problem. The
dotted line is the bare potential V4(r) and the solid and the dashed lines are the eigen-
potentials Vy(r) + A_(r) and Vp(r) + A4 (), respectively. If we adopt the eigen-channel
picture, Fig. 4.10 means that the potential barriers are “distributed”and the original
bare potential (the dotted line) splits into the two potentials (the solid and the dashed
lines). Because of the non-commutatibity of the unitary matrix which diagonalizes the
coupling matrix, and the kinetic energy operator, the standard eigen-channel picture
does not apply. If we ignore this non-commutatibity (i.e., if we adopt with the CCMOD
prescription) the weight factors are given by Eq. (2.63). They are shown in the lower
panel of Fig. 4.10 as a function of the distance r. Although they do not vary so much
near the barrier position, their changes are appreciable throughout the barrier region.
Therefore, the prescription to fix the weight factors to the values at the barrier position
may not be satisfactory.

The results of exact coupled-channels calculations are shown in Fig. 4.11. The first
and the second panels are the penetrabilities and their first derivative with respect to
the energy, respectively. The latter corresponds to the second derivative of Eo [56], as
we discussed in Sec. 4.1. We use the point difference formula with AE = 2 MeV to
obtain the first derivative of the penetrability, as is often done in the analyses of heavy-
ion fusion reactions[51] (see Sec. 4.2). The first derivative of the penetrability has a clear
double-peaked structure, which could be associated with the two eigen-potential barriers
and could thus be interpreted in terms of a ‘barrier distribution’. In order to see whether
this is the case, we plot in the last panel of Fig. 4.11 the optimum weight factors defined
by Egs. (4.9) and (4.10). The solid and the dashed lines in the figure correspond to the
weight factors for the lower and the higher potentials, respectively. We observe that the
optimum weight factors change only slightly as functions of the incident energy; their
change is barely 2.6 % from 10 MeV below the barrier to 10 MeV above the barrier.
Another important result of this calculation is that the weight factors are considerably
different from those estimated in the usual way, i.e. at the barrier position. When the
constant coupling approximation was first introduced, it was expected that the choice of
the position where the weight factors are estimated is not critical to calculate tunneling
probabilities because the weight factors vary slowly across the barrier region(79, 97|. The
position was then chosen to be the barrier position of the uncoupled barrier. Contrary
to this expectation, our calculations show that determining the weight factors at the
barrier position does not give proper weight factors even though the weight factors do not
have a strong radial dependence. The situation would be much more serious in realistic
calculations, since the weights are still changing at the barrier position due to the fact
that the coupling extends outside the Coulomb barrier[140] (see Fig. 4.5).

The same calculations were repeated for different values of the excitation energy e
and the results are shown in Fig. 4.12. The quantities shown in each panel are the
same as those in Fig. 4.11 except for the third panel, where only the optimum weight
factors for the lower barrier are plotted. We again observe that the weight factor changes
only marginally as a function of the incident energy, even when the excitation energy is
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the result without channel coupling, while the solid line is obtained by taking into account
the coupling to an excited state whose excitation energy is 8 MeV.

finite. We thus conclude that the eigen-channel approach is still applicable even when the
excitation energy of the intrinsic motion is finite.

When the excitation energy e is zero, the barrier distribution, i.e. the first derivative
of the penetrability has two symmetric peaks and the weight factor has no incident energy
dependence (the solid line). As the excitation energy increases, some strength is transfered
from the higher peak to the lower peak, and the barrier distribution becomes asymmetric.
As the excitation energy significantly exceeds the curvature of the bare barrier, which is
about 4 MeV in our example, one expects to reach the adiabatic limit, as was discussed
in Sec. 2.3.3. To illustrate this, Fig. 4.13 shows the influence of the coupling to an
excited state whose energy is 8 MeV. The figure also contains the result for the the no
coupling case (the dotted line) for comparison. In this case, the weight for the higher
peak is considerably smaller than that for the lower peak, and the barrier distribution
has essentially only a single peak. The peak position, however, is shifted towards a lower
energy. This is consistent with the adiabatic picture, i.e. the main effect of the coupling
to a state whose excitation energy is much larger the barrier curvature is to introduce an
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energy independent shift of the potential accompanied with the mass renormalization (see
Eq. (2.93)). Correspondingly, the barrier distribution is only shifted without significantly
changing its shape unless the coupling form factor has a strong radial dependence. It
is thus clear that the second derivative of Eo can represent a wide range of situations
between the two extreme limits, i.e. from the adiabatic limit where the coupling leads
to an adiabatic potential renormalization, to the sudden limit where the coupling gives
rise to a barrier distribution. We will apply this fact in Chap. 6 to discuss the effects of
projectile excitations on subbarrier fusion reactions.
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Chapter 5

VALIDITY OF THE LINEAR
COUPLING APPROXIMATION
IN HEAVY-ION FUSION
REACTIONS

As we discussed in the previous section, fusion barrier distributions offer a useful test
of theoretical models for heavy-ion fusion reactions[51]. In this Chapter, we investi-
gate the validity of the linear coupling approximation in the coupled-channels approach.
Coupled-channels equations are numerically solved both for heavy nearly symmetric and
for asymmetric systems.

5.1 Present status of coupled-channels calculations

Theoretically the standard way to address the effects of the coupling between the relative
motion and the intrinsic degrees of freedom is to solve the coupled-channels equations,
including all the relevant channels. We have already discussed this approach in Sec.
3.3. Most of the coupled-channels calculations performed so far use the linear coupling
approximation, where the coupling potential is expanded in powers of the deformation
parameter, keeping only the linear term (see Eq. (3.85)). Whilst this approach reproduces
the experimental data of fusion cross sections for very asymmetric systems, it does not
explain the data for heavier and nearly symmetric systems [40, 42, 43, 48, 49]. Thus, it
is of interest to examine the validity of one of the main approximations in these calcula-
tions, namely the linear coupling approximation, and see whether the effects of non-linear
coupling improve the agreement between data and the theoretical calculations for such
systems. Even in asymmetric systems, the non-linear couplings might be important to
reproduce precisely measured data.

The effects of non-linear coupling can be easily studied if the excitation energy of the
intrinsic motion is very small so as to allow one to use the sudden tunneling approximation
(see Secs. 2.3.2 and 2.4.2). For example, when the target nucleus is axial symmetrically
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deformed, the fusion cross sections in the sudden tunneling limit are expressed by

27 T
— 2 M
o(B) = [ ds [ db(%o(8,8)P 0u(B; V(r,c056)), (5.1)
1
= /; d(cos @)oo (E; V (r,cos b)), (5.2)
where the orientation dependent potential V' (r, cos ) is given by
Vo
V(r,cos8) = -—
( ) 1 + exp[(r — Ry — Rr X5 BrYao(cos6))/a]
ZPZT€2 3 2 Rfl\u
t——+ ;ﬂ}‘ T 1ZpZTe TI\TY,\O(COS 8). (5.3)

Here, a Woods-Saxon shape is assumed for the nuclear interaction, and, for simplicity, only
the non-linear terms in the nuclear couplings are taken into account (see the discussion in
Sec. 5.2). The experimental data of the excitation function of the fusion cross section as
well as the barrier distribution for the %0 + 1%Sm, %W reactions were analyzed in this
manner{51, 61). The effects of higher order couplings on barrier distributions in the limit of
zero excitation energy has been explicitly discussed by Balantekin, Bennett, and Kuyucak
in the framework of the interacting boson model(IBM) [134, 135]. However, for nuclear
surface vibrations the excitation energies cannot be neglected in most cases, and one has
to solve full coupled-channels equations. Due to the complexity of such calculations, very
few studies have addressed the effects of the higher order couplings for the vibrational
motion. Esbensen and Landowne expanded the coupling potential up to the second order
with respect to the deformation parameter, and have shown that second order coupling
leads to a better agreement between the theoretical calculations and the experimental
fusion cross sections for reactions between different nickel isotopes|[141]. The quadratic
coupling approximation was applied also to the 585¢Ni + 92100Mo reactions[45). There it
was shown that the experimental data of both the fusion cross sections and the angular
momentum distributions are well reproduced by the coupled-channels calculations in the
quadratic coupling approximation. Coupled-channels calculations including full order
coupling and the finite excitation energy of nuclear surface vibrations have recently been
performed for the %8Ni + ®'Ni reaction[65, 142]. It is seen that higher order couplings
are essential in reproducing the experimental data for this system, and the shape of the
barrier distribution changes drastically when the effects of the higher order couplings are
taken into account. Refs.[65, 142] do not, however, discuss the quality of the quadratic
coupling approximation and the convergence of the expansion of the coupling potential.

Although all the above studies and the multi-dimensional tunneling model in Ref.[143]
show the effects of higher order couplings in specific systems, there has not been any
systematic effort to identify their degree of importance for different systems. Furthermore,
it is not obvious whether calculations to all orders are necessary or the expansion up
to the second order is sufficient. In view of the high precision data that have recently
become available, a critical examination of the effects of these approximations on the cross-
sections and barrier distribution is necessary before making quantitative comparisons with
experimental data.



In this chapter we solve the coupled-channels equations including the finite excitation
energies of the vibrational states, and without introducing the expansion with respect to
deformation parameters [80]. The results of these calculations for fusion cross sections,
average angular momenta and barrier distributions are compared with those using the
linear and the quadratic coupling approximations. In Sec. 5.2, the coupled-channels
calculations which include higher order couplings are formulated. Explicit expressions for
the matrix elements of higher order terms in both the nuclear and the Coulomb couplings
are presented. It is seen that inclusion of up to the first order term in the Coulomb
coupling is sufficient, but higher order terms are necessary for nuclear coupling. In Sec.
5.3, the coupled-channels equations are solved for the 84Ni + 929Zr systems, where the
experimental data of both the fusion cross sections and the average angular momenta
of the compound nucleus are available. The asymmetric systems 0 + !'12Cd, *4Sm
are also studied in this section and the calculations are compared with measured fusion
cross sections, barrier distributions, and the average angular momenta of the compound
nucleus.

5.2 Coupled-channels equations with non-linear cou-
plings

Consider the problem where the relative motion between colliding nuclei couples to a
vibrational mode of excitation of the target nucleus. For simplicity excitations of the
projectile are not considered in this section. It is straightforward to extend the formulae
to the case where many different vibrational modes are present and where projectile
excitations also occur. Introducing the multi-phonon channel defined by Eq. (3.95), the
coupled-channels equations in the no-Coriolis approximation read (see Eq. (3.57))

B JJ+ )R
_ﬂaﬁ + —2#1.2__ + VN(T) +

Z pZT€2

+ nhw — E| va(r) + Z Vam(T)vm(r) = 0,

(5.4)
where hw is the excitation energy of the vibrational phonon. We have dropped the index
J from the wave functions for simplicity. V,,, are the coupling matrix elements, which in
the collective model consist of Coulomb and nuclear components (see Eq. (3.91)). These
two components are discussed in the following sub-sections.

5.2.1 Coulomb coupling

We first consider the effects of higher order terms of the Coulomb component. In Refs.
[134, 141] it has been reported that the higher order Coulomb couplings are not important
in heavy-ion fusion reactions. However, Ref.[141] studied only the excitation function
of the fusion cross section, and did not discuss the barrier distribution. On the other
hand, Ref.[134] ignored the finite excitation energy of nuclear intrinsic motions, though
it discusses the effects on barrier distribution. Here we investigate the effects of higher
order Coulomb couplings on both the excitation function of the fusion cross section and
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the barrier distribution and do not ignore the energy of nuclear intrinsic excitations.
Initially, we consider the case where the target has only a single phonon excitation.

The Coulomb potential between the spherical projectile and the vibrational target is
given by Eq. (3.86). In the no-Coriolis approximation, it becomes

dnZpe [2XN +1 1

/\,2#:0 22X +1 A @xo A+’

_ ZP ZT62
B T

Vc(T)

(5.5)

Eq.(5.5) uses the fact that the angular momentum for the relative motion does not change
in the no-Coriolis approximation, and that the associated spherical harmonics are eval-

uated at the forward angle ¥ = 0, leading to the factor /(2)\' + 1)/4n. Provided that a
phonon excitation of multipolarity A, then the electric multipole operator is given by[144]

36 ' '
Qxo = EZTR/}\' {a,\o&\,x + (=) (

28012 ).

up to second order in the surface coordinate ay,.

The Coulomb components of the coupling form factors V,,, in Eq.(5.4) are obtained
by taking the matrix elements of V between n- and m- phonon states. Since we assume
that there exists only the one phonon state in the vibrational excitation of the target,
the Coulomb coupling form factors up to second order of the amplitude of the zero point
motion g (see Eqs. (3.82) and (3.83)) are given by

©(y — Oy _ 3 2 Bp [2A+1
Voo '(r) = Wo'(r) = Z)H_IZPZTC vl Ry (5.7)
3(2X + 1)(N A
Vi) = 23 (=) 3@A+ DX +2) < AOXO|NO >2 a2 ZpZre? By (5.8)

xZ0 8w(2A + 1) AN+
If there exist two-phonon multiplets, then the formalism becomes much more complicated
in the case of non-linear coupling. We have shown in Sec. 3.3.3 that, in the case of the
linear coupling, the no-Coriolis approximation enables us to replace the couplings to all
the members of the two-phonon multiplets by the coupling to a single state by making an
appropriate unitary transformation. This leads to a significant reduction of the dimensions
of the coupled-channels problem. This property is lost if one keeps higher order terms
of the Coulomb coupling since the radial dependence of the coupling form factor for the
Coulomb part explicitly depends on the multipolarity of the nuclear excitation.

We now apply Egs. (5.7) and (5.8) to fusion reactions between two ®Ni nuclei, where
the importance of second order couplings in the nuclear interaction has been reported[141].
We take into account the quadrupole vibrational state at 1.45 MeV, and truncate the
whole space at the one phonon state. The parameters for the nuclear potential and the
deformation parameter from Ref.[141] have been used. Since at this stage we want to
investigate the effects of higher order Coulomb coupling, a linear coupling for the nu-
clear interaction has been used, for ease of calculation. The coupled-channels equations
are solved by imposing the incoming wave boundary condition in the inner region of the
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Figure 5.1: The barrier distribution for fusion between two *2Ni nuclei. The one phonon
state of the quadrupole surface vibration is taken into account. The nuclear interaction
is treated in the linear coupling approximation. The dotted line corresponds to the case
where the Coulomb coupling potential is also treated in the linear coupling approximation,
while the solid line takes into account non-linear terms up to the second order.

fusion potential. We found that the second order coupling in the Coulomb interaction
causes no visible effects to the fusion cross section. It changes the fusion cross section by
only about 0.2 % in the energy region we considered, i.e., from about 10 MeV below the
Coulomb barrier to about 10 MeV above the Coulomb barrier. Fig. 5.1 shows the fusion
barrier distribution (d?(Ec)/dE? ) as a function of the bombarding energy. As seen from
the figure, second order Coulomb couplings modify only very marginally the barrier dis-
tribution. Further calculations showed that the situation does not change when the value
of the deformation parameter is varied within physically plausible limits. Therefore we
hereafter use the linear coupling approximation for the Coulomb coupling and investigate
the effects of the higher order terms only for nuclear coupling. The matrix elements of
the Coulomb coupling form factor in Eq. (5.4) are now given by

3 A oA +1
Vo) = TP IZPZTez%\/ 2 Co(Vnbnmir + Vit 16,m1) (5.9)
3 2 B} Ba
= 22 + 1ZPZT6 A+l —E(\/ﬁan,mﬂ +vn -+ 16n,m-1)- (5.10)

Note that we have defined the multi-phonon channels by taking the appropriate linear
combinations of the multi-phonon multiplets. As remarked before, this is possible only
for the linear coupling approximation in the Coulomb interaction.
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5.2.2 Nuclear coupling

In the collective model, the nuclear interaction is assumed to be a function of the sepa-
ration distance between the vibrating surfaces of the colliding nuclei. It is conventionally
taken as (see Eq. (3.84))

Vo
1+ exp[(r — Ry — /32! RTaAO)/a]

VW™ (7, ap) = — (5.11)

Volume conservation introduces a small term which is non-linear with respect to the
deformation parameter ayg in the denominator of the above Eq.(5.11). This is ignored
for simplicity in the present study. As in the case of Eq.(5.5) for the Coulomb coupling,
here we consider the coupling form factor for the forward angle, which is needed to
obtain the coupled-channels equations in the no-Coriolis approximation. We assume a
Woods-Saxon form for the nuclear potential. The structure of the resultant formulae
in this subsection, however, remain unchanged for other forms of the nuclear potential.
Denoting the eigenvalue of ayg by z, the matrix elements of the nuclear coupling form
factor read

-
1+ exp|(r — Ro — /22 Rr)/a]

VN (r) / dz .y}, (z)pm(z) (5.12)

Here @n(z) is the eigen function of the n-th excited state of the harmonic oscillator and
is given by

1 1 T 2 2
z) = H, —o /A 5.13
#nl) = onl awt ()¢ (>13)

where H,(z) is the Hermite polinomial.
The expectation value of the nuclear potential in the ground state is often replaced
by the phenomenological potential

Vo
1 + exp[(r — Ro)/a}’

which is assumed to be known empirically[141]. If we take this prescription, the nuclear
coupling matrix elements in Eq.(5.4) are calculated as

VN(T) = —

(5.14)

—V,
1+ exp|(r — Ro — \/”‘“R z)/a]

b -V
—bn.m dz|pg(x) ,
'/-°° ()l 1+ exp|(r — Ry — /£ Rrz)/a]

The last term in this equation is included to make the coupling interaction vanish in the
entrance channel. Eq. (5.15) represents the coupling matrix elements which contains
couplings to all orders. We use these form factors in the next section in order to discuss

Vi) = [ degi(@)en(a)

(5.15)
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the effects of higher order coupling to vibrational modes of excitation of the colliding
nuclei on heavy-ion fusion reactions.
Instead of introducing a phenomenological potential given by Eq.(5.14) as the bare

potential in the entrance channel, one could use VO(ON ) in Eq.(5.12) as the nuclear potential
in the entrance channel. The use of Eq.(5.14) makes it easier to examine the convergence
of the effects of higher order terms by comparing the results of the calculations in the
linear and the quadratic approximations and the full order calculations. Notice that Vo((fv )
is identical with the potential given by Eq.(5.14) in the linear coupling approximation.

5.3 Importance of all order couplings

5.3.1 Nearly symmetric systems

We now present the results of our calculations of fusion cross sections, average angular
momenta of the compound nucleus, and fusion barrier distributions. We first discuss heavy
nearly symmetric systems. The experimental data of the average angular momentum
of the compound nucleus for several systems are summarized in Fig.5 of Ref.[49]. It
suggests that the conventional coupled-channels calculations do not work for heavy nearly
symmetric systems. We analyse in particular 8Ni + %2%7Zr reactions which are typical
examples where the conventional coupled-channels calculations with the linear coupling
approximation fail to reproduce the fusion cross sections and average angular momentum
data[43]. Our aim is to investigate whether the failure is due to the linear coupling
approximation by performing linear, quadratic and full coupling calculations.

We take into account the couplings up to two phonon states of the quadrupole surface
vibrations of %¢Ni and %2Zr, and of the octupole vibration of %6Zr. We also take their
mutual excitations into account. We ignore the effects of transfer reactions, because it
has been reported in Ref.[43] that they have only small effects on the fusion cross sections
and the average angular momenta in these reactions. The excitation energies of the single
phonon states in 5Ni, 92Zr, and %Zr are 1.34, 0.934, and 1.897 MeV, respectively. We
assumed the radius parameter associated with the coupling interactions to be 1.2 fm in
all cases. The deformation parameter of ®*Ni was taken to be B, = 0.19 [141]. Following
Refs.[127, 145] we used [, = 0.25 for the nuclear coupling associated with the quadrupole
vibration of %2Zr, while the deformation parameter in the Coulomb coupling interaction
was estimated from the measured B(E2)t value to be 0.108. The different value for
the nuclear deformation parameter from that of the Coulomb coupling parameter was
required in order to fit the angular distribution of the inelastic scattering of 160 from %2Zr
at 56 MeV[145]. The deformation parameter 35 of %Zr was estimated from the recently
measured B(E3)1 value[146] to be 0.268. We assumed the same value for the deformation
parameter for the nuclear coupling as that for the Coulomb deformation parameter for
this nucleus. The nuclear potentials used in this paper are the same as in Ref.[43].

The excitation function of the fusion cross section for these two systems obtained by
numerically solving the coupled-channels equations are compared with the experimental
data in Figs. 5.2 and 5.3 (upper panels). The experimental data, taken from Ref. [43],
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consist only of the evaporation residue cross sections, and do not include fission follow-
ing fusion. The dotted lines are the results in the one dimensional potential model, i.e.,
without the effects of channel coupling. As is well known, the experimental fusion cross
sections at subbarrier energies are several orders of magnitude larger than the predictions
of this model. The dot-dashed lines are the results of the coupled-channels calculations
when the linear coupling approximation is used, which are similar to the results of the
simplified coupled-channels calculations reported in Ref.[43]. They considerably underes-
timate the fusion cross sections at sub-barrier energies for both systems. The situation
is slightly improved when the quadratic coupling approximation is used, i.e., when the
nuclear coupling potential up to the second order of the deformation parameter[141], is
included (dashed lines). However, there still remain considerable discrepancies between
the experimental data and the results of the coupled channels calculations. When we
include couplings to all order, we get the solid lines, which agree very well with the exper-
imental data. Dramatic effects of the higher order couplings on fusion cross sections are
observed, especially at low energies. The slight underestimate of the fusion cross section
at 121.6 MeV in the ¢ Ni+%Zr reaction will be improved by taking the effects of transfer
reactions into account[147].

The lower panels in Figs. 5.2 and 5.3 compare the results of our calculations of the av-
erage angular momentum of the compound nucleus (see Eq. (3.29)) with the experimental
data as a function of the bombarding energy. The meaning of each line in these figures is
the same as in the upper panels. We again observe that the experimental data are much
better reproduced by taking the effects of couplings to all orders into account. We thus
conclude that coupling to all orders are essential to simultaneously reproduce the fusion
cross sections and the average angular momentum data for heavy (nearly) symmetric sys-
tems. This is in agreement with the calculations required to fit the barrier distribution
for 58Ni + %Ni reaction[65].

5.3.2 Very asymmetric systems

We next consider the effects of higher order couplings for very asymmetric systems where
the product of the charges ZpZy is relatively small. For such systems, the coupled-
channels calculations in the linear coupling approximation have achieved reasonable suc-
cess in reproducing fusion excitation functions. However, no study has been performed to
see whether the effects of higher order couplings on the angular momentum distribution
of the compound nucleus and on the barrier distributions are small. In this subsection we
re-analyse the experimental data for the 1*Q + 1!2Cd reaction, for which both fusion cross
sections and average angular momentum data are available[48], and those for the 60 +
1498m reaction, where the the fusion barrier distribution has been extracted from the
precisely measured fusion cross sections[51]. For simplicity in the calculations we ignore
excitation of the projectile in both reactions. These effects on fusion will be discussed in
the next Chapter, where it will be shown that the octupole vibration of 60 leads to a
static renormalization of the fusion barrier.

In calculating the fusion cross section for 0 + 112Cd scattering, we include the double
quadrupole phonon states and the single octupole phonon state of 1!2Cd and their mutual
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Figure 5.4: Same as Fig. 5.2, but for %0 + !2Cd fusion. In the coupled-channels
calculations, the projectile is assumed to be inert. The one and two phonon quadrupole
states and the one phonon octupole state of the target are taken into account. The
experimental data are taken from Ref. [48].

excitations. The excitation energies are 0.617 and 2.005 MeV for the one phonon states of
the quadrupole and the octupole vibrations, respectively. The deformation parameters of
the quadrupole and the octupole vibrations are estimated to be G, = 0.173 and §; = 0.164,
respectively[48]. The radius parameter in the coupling interaction is taken to be 1.2 fm.
Following Ref.[48], we use a Woods-Saxon potential whose depth, range parameter, and
surface diffuseness are V=58 MeV, rg=1.22 fm, and @=0.63 fm, respectively.

The upper panel of Fig. 5.4 compares the results of the coupled-channels calculations
of fusion cross sections with the experimental data taken from Ref.[48]. Compared with
the symmetric systems studied in the previous subsection, the enhancement of the fusion
cross sections is fairly small. This is partly because the product of the atomic number
ZpZr in this asymmetric system is smaller than the symmetric systems. As is seen in Eq.
(3.92), the coupling strength is proportional to the product ZpZy. This product is 384 for
160 4 112C( scattering, whilst it is 1120 for #Ni + 92%7Zr reactions. The coupling strength
in this asymmetric system is therefore several times smaller than in the symmetric systems
even though the values of the deformation parameters are similar. Another reason that
the enhancement of the fusion cross sections is small in very asymmetric systems is the
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Figure 5.5: Excitation function of the fusion cross section (upper panel) and the barrier
distribution (lower panel) for 0 + !44Sm fusion. In the coupled-channels calculations,
the projectile is assumed to be inert, while the single octupole phonon state of the target is
taken into account. The meaning of each line is the same as in Fig. 5.2. The experimental
data are taken from Ref. [51].

small reduced mass. In the WKB formula for the barrier penetrability, the mass parameter
appears in the exponent (see Eq. (2.37)). Hence the heavier the mass, the more sensitive
the penetrability to a slight change of the potential. Even though the results in the
linear coupling approximation (dot-dashed line) show a relatively small enhancement of
the fusion cross section compared with the no-coupling limit, there is still a significant
change in going to second order coupling, and then to all order coupling. The situation
is similar for the average angular momentum. Thus even in such cases with low ZpZr,
if data of high precision are available, it seems that the linear coupling approximation is
inadequate to allow quantitative conclusions to be drawn from a comparison of data and
calculations.

The role of higher order couplings in very asymmetric systems can be more clearly
seen by investigating the fusion barrier distributions. Therefore, we next consider the 160
+ 4Sm reaction. The authors of Ref.[51] have shown that the fusion barrier distribution
for this system is intimately related to the octupole vibration of 4Sm, and that the
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Figure 5.6: Effective potential barriers for the s-wave scattering of %0 from #4Sm ob-
tained by diagonalizing the coupling matrix. The meaning of each line is the same as in
Fig. 5.5.

quadrupole vibration plays only a minor role. Accordingly, we ignore the effects of the
couplings to the quadrupole phonon states of 1*4Sm and include only the single octupole
phonon state at 1.81 MeV. The deformation parameter 3= 0.205 was used as in Ref.[51].
The ion-ion potential was of a Woods-Saxon form. The depth, radius parameter and
surface diffuseness were 105.1 MeV, 1.1 fm and 0.75 fm respectively, as given in Ref.[106].

The upper panel of Fig. 5.5 shows the fusion excitation function from Ref.[51], and
the calculations. The meaning of each line is the same as in Fig. 5.2. As was the case for
80 + 112Cd, we observe that the agreement of the theory and experiment appears to be
improved only slightly by the inclusion of coupling to all orders. The barrier distribution,
however, reveals significant changes due to the higher order couplings( see the lower panel
of Fig. 5.5). Note that there exist two barriers in the present two channel problem.
Comparing the results of the linear coupling approximation( the dot-dashed line) with
those of the all order coupling( the solid line), one observes that the higher order couplings
transfer some strength from the lower barrier to the higher barrier, and at the same time
lower the energies of both barriers.

This can be viewed in a different way by performing the diagonalization of the coupling
matrix at each position of the internuclear separation to obtain the effective barriers, as
is done in the computer code CCMOD [42]. Fig. 5.6 shows these effective barriers for
s-wave scattering. The meaning of each line is the same as in Fig. 5.5. We observe that
higher order couplings decrease the energies of both the lower and the higher barriers,
consistent with the barrier distributions shown in Fig. 5.5. The higher order couplings
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also increase the width of both potential barriers (Fig. 5.6), leading to narrower peaks in
the barrier distribution. This then results in the apparent better separation between the
two barriers seen in Fig. 5.5.

Figure 5.7 shows the coupling matrix element between the ground state and the one
phonon state V;(r) as a function of the inter nuclear separation distance r. The dotted line
is the coupling matrix element in the linear coupling approximation, while the solid line
includes the coupling to all orders. One can see that the linear coupling approximation
underestimates the coupling strength at the barrier position of the uncoupled barrier
around r= 10.8 fm. On the other hand, it overestimates the coupling strength in the
inner region around r==8.5 fm. As we will see in the next Chapter, the latter fact is
important in discussing the effects of the projectile excitation.

The effects of higher order couplings on fusion barrier distribution become more signif-
icant when there exist more than two channels. In order to demonstrate this, we show in
Fig. 5.8 the barrier distributions for the ®0 + *4Sm reaction, where the double octupole
phonon excitations are allowed in the harmonic limit. One now observes dramatic effects
of higher order couplings on the fusion barrier distribution. The detailed studies on the
effects of double phonon couplings including anharmonic effects in this reaction will be
carried out in Chap. 7.

For these asymmetric reactions, the couplings are relatively weak as a result of a com-
bination of the small product of ZpZ7 and the relatively small deformation parameters.
In such cases the first order approximation might have been expected to be valid. Despite
this, the calculations which include couplings to all orders show significant differences from
first order calculations. It is clear therefore that high precision measurements should be
analysed using all order couplings even when coupling is weak.

86



Chapter 6

ADIABATIC QUANTUM
TUNNELING IN HEAVY-ION
FUSION

One of the interesting aspects of the problem of quantum tunneling with many degrees of
freedom is in determining which of the multitude of degrees of freedom must be explicitly
included in any theoretical description, and which can be omitted. In particular, it is
essential to define the role of excitation energy, or the degree of adiabaticity, in limiting
the effectiveness of a specific degree of freedom. In nuclear physics, heavy-ion fusion
reactions at energies near and below the Coulomb barrier provide an ideal opportunity to
address this question through the fusion barrier distributions. We have already shown in
Chap.4 that the analyses of the fusion barrier distributions have beautifully demonstrated
the effects of couplings of the relative motion to several nuclear intrinsic motions.

Despite these successes, however, there are apparent conflicts regarding the role of
projectile excitation. Each barrier distribution for the reactions *°Ca + 1%4Pt, 1920s shows
a characteristic structure, with a higher energy peak which has been associated with the
octupole excitation of “°Ca[68]. Calculations of fusion cross-sections for the reactions *Q
+ 134Sm, 4Ge in Refs. [148, 149)] indicated that excitation of 0 is important. In marked
contrast, there are no specific features in the measured barrier distribution for the 160
+ 144Sm reaction[64] which can be associated with the excitation of ®0; indeed it was
shown in Ref. [51] that a good theoretical representation of the barrier distribution is
destroyed when the projectile excitation is included.

All the above conclusions were based on comparison of the experimental results with
simplified coupled-channels calculations. The simplification has been achieved by using
one or more of the following approximations :

1. the no—Coriolis approximation, where the centrifugal potential is assumed to be the
same for all channels and equal to that in the elastic channel;

2. the linear coupling approximation, where the nuclear coupling potential is assumed
to be linear w.r.t. the coordinate of the nuclear vibrational excitation;
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3. the constant coupling approximation, where the coupling potential is assumed to be
constant over the interaction range;

4. intrinsic excitation energies are assumed to be negligible or are treated approxi-
mately.

The first approximation, common to most coupled-channel calculations, including
those presented in this thesis, has been shown to work well for heavy-ion fusion cal-
culations (see Sec. 3.3.2). Simplified coupled-channel calculations[51, 66, 97, 149] use
the second approximation in conjuction with either the third or fourth. In the previ-
ous Chapter, we have shown that the linear coupling approximation is not valid even in
systems where the coupling is weak, and that higher order couplings strongly influence
the calculated barrier distributions. It is therefore probable that in reactions with nuclei
like 180 and %%Ca, where the couplings to the octupole vibrational excitations are strong,
barrier distributions calculated with simplified coupled-channel codes like CCFUS[97] do
not provide a good representation of the fusion process.

In this Chapter, we present the results of realistic coupled-channels calculations which
demonstrate the effects of non-linear coupling and finite excitation energy of intrinsic
nuclear (environmental) degrees of freedom, and resolve the apparently conflicting con-
clusions regarding the influence of the projectile excitation [81]. The relevance of the
‘counter term’ prescription of Caldeira and Leggett[20] in heavy-ion fusion reactions is
also discussed and the double counting problem of coupling effects is clarified.

6.1 Role of 0O excitation in subbarrier fusion

We first discuss the role of projectile excitations in the 160 + 44Sm reaction. The coupled-
channels equations are solved by imposing the incoming wave boundary condition to sim-
ulate the strong absorption inside the fusion barrier. The real nuclear potential is assumed
to have a Woods-Saxon shape and the depth was chosen to reproduce the experimental
fusion cross sections at high energies using the single-barrier penetration model. The
same potential and the deformation parameters as those in Sec. 5.3.2 are used in the
calculations.

In order to show the inadequacies of the often used linear coupling approximation,
calculations were performed using the linear coupling approximation. The results of our
calculations for the fusion excitation function and the barrier distribution are shown
in Fig. 6.1. In the following discussion in this chapter, we concentrate on the latter
since they are a more sensitive way to compare experimental data and calculations. The
dotted line shows the result when the excitation of 180 is not included in the calculations.
This calculation well reproduces the features of the experimental barrier distribution.
Calculations including the excitation of the lowest-lying octuple state of ®0O are shown
by the solid line. Even though the experimental barrier distribution around the lower
energy peak (~ 60 MeV) is reproduced, significant strength is missing around the higher
energy peak near 65 MeV. A similar discrepancy between theory and experimental data
was encountered in Ref. [51], where calculations, shown by the long-dashed line, were
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Figure 6.1: Fusion excitation functions (upper panel) and the barrier distributions (lower
panel) for the %0 + *4Sm reaction. The experimental data (filled circles) are taken from
Ref. [51]. The linear coupling approximation is used in the coupled-channels calculations.
In all calculations, the effects of the octupole vibration of *Sm are taken into account.
The dotted line is the results when %0 is treated as inert. The solid line is the result of
the coupled channels calculations when the coupling to the octupole vibration of 60 is
also taken into account; the dashed line is the result of an equivalent CCMOD calculation.

performed using a modified version of the CCFUS code, i.e. CCMOD [42]. It is clear
that both calculations which include the octupole excitation of !0 in the linear coupling
approximation fail to reproduce the experimental barrier distribution.

Realistic coupled-channels calculations were then performed, where the couplings to
the octupole vibrations of both 160 and *4Sm are treated to all orders as we have discussed
in the previous Chapter. It is remarkable that these calculations, shown in Fig. 6.2, re-
establish the double-peaked structure seen in the experimental data, which was absent in
the equivalent linear coupling calculations. The shape of the barrier distribution obtained
by including the octupole vibration of 0O using all order coupling is now very similar
to that obtained by ignoring it. This similarity becomes particularly evident when the
calculated barrier distribution is shifted in energy, as shown by the dashed line in the
figure. This is consistent with the general conclusion that the main effect of the coupling
to inelastic channels whose excitation energies are larger than the curvature of the bare
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Figure 6.2: As Fig. 6.1, but for the case when the coupled-channels calculations have
been performed by including all order coupling. The meaning of the solid and the dotted
lines is the same as in Fig. 6.1, while the dashed line is the same calculation as the solid
line with the average barrier increased by 2 MeV.

fusion barrier, i.e. an adiabatic coupling, is to introduce a static potential shift as well as
a mass renormalization (see Sec. 2.4.3), and hence, the shape of the barrier distribution
does not change unless the coupling form factor itself has a strong radial dependence.
The same conclusion has been reached in Sec. 4.4, where we discussed the effects of finite
excitation energy of the internal motion on fusion barrier distribution.

In macroscopic quantum tunneling in condensed matter physics, the so—called counter
term is often introduced in order to compensate for the static potential renormalization
due to the coupling to the environment{20]. In contrast, in heavy-ion reactions, one
usually estimates the bare potential, for example by fitting the fusion cross section at
high energies, and discusses the effects of channel coupling without introducing the counter
term. Fig. 6.2 shows that this approach reproduces the experimental fusion cross sections
and fusion barrier distributions without explicitly taking into account the excitation of the
octupole vibrational state of 1°0. This indicates that the effects of its excitation is already
included in the bare potential. If this is the case, the effect of the coupling to the 3~ state
of 10 is double counted if the coupled-channels calculations explicitly take it into account,
resulting in a dramatic overestimate of the the experimental cross-sections. A recipe to
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Channel Couplings Potential parameters
Reaction | Nucleus Type A" E* (MeV) B Vo (MeV) 19 (fm) a (fm)
160 + ¥Sm | Sm  vib 3~ 1.81 0.205 105.1 1.1 0.75
160 vib 3° 6.13 0.733
0Ca + 9Pt | *°Ca vib 3~ 3.70 0.339 330.0 1.0 0.84
194py rot 2% 0.328 B = —0.154
Ba = —0.045
40Ca + 19205 | 19205 rot 2% 0.206 B2 =0.167 148.0 11 0.84
Bs = —0.043

Table 6.1: Parameters used in the coupled-channels calculations for the indicated reac-
tions.

cure this problem is to introduce the counter term as in condensed matter physics. Since
the experimental data are well reproduced when the calculated distributions are shifted
to higher energies by 2 MeV, this shift evidently mimics the effects of the counter term.

6.2 Adiabaticity of ‘°Ca excitation

In contrast to the 10+'%4Sm case, the analyses of 4°Ca + %20s and %Pt reactions, also
performed using simplified coupled-channel calculations[68], suggest that the excitation
of °Ca is important in determining the observed barrier distribution. An important dif-
ference between the ®Q and °Ca projectiles is that the excitation energy of the octupole
vibration in the latter is smaller and nearly equal to the energy scale of the curvature of
the fusion barrier, hence the coupling is intermediate between adiabatic and sudden. It
is therefore interesting to investigate the degree of adiabaticity of the octupole excitation
of the “°Ca projectile.

The results of the coupled-channels calculations are compared with the experimental
data in Fig. 6.3. All order couplings to both the target and the projectile excitations have
been included. The nuclear coupling matrix elements for the rotatioal coupling between
I* and I'* states in the ground rotational band, which corresponds to Eq. (5.12), is given
by (see also Egs. (5.1)-(5.3))

)
1+ exp[(r — Ry — Rr X5 BaYxo(cos 9))/(1(]6 :

1
Vi) = /0 d(cos 8)Y;y(cos 8)Yrp(cos )

Although %Pt and '°20s are transitional nuclei which lie between the ~y-unstable and
rotational limits in the interacting boson model[150], we have assumed that they are rigid
rotors with axial symmetry. The ground state rotational band of the target nucleus, with
states up to the 107 member, has been included in the calculations. The parameters of
the calculations are listed in Table 6.1.
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Figure 6.3: The comparison of the experimental fusion cross sections (upper panels) and
fusion barrier distributions (lower panels) for the 4°Ca + 1%4Pt, 1920s reactions with the
coupled-channels calculations. In all calculations, the effects of the excitation of the target
nuclei are treated in the rotational model and couplings to all orders are included. The
dotted lines are the results when “®Ca is treated as inert. The solid lines include the
coupling to the octupole vibrational state in *Ca. The experimental data are taken from
Ref. [68].

When the *°Ca excitation is ignored, barrier distributions are obtained which are
similar to those expected for a classically deformed nucleus and these are inconsistent
with the experimental data. When the octupole excitation of 4°Ca is included in the
calculations, a higher energy peak is introduced which agrees well with that observed in
each reaction. The mutual excitation channels up to 4 @ 37, the former and the latter
refering to the targets and the projectile respectively, are also included in the calculations.
It is apparent that the projectile excitation significantly affects the shape of the barrier
distribution in this case, as suggested in the simplified coupled-channel calculations in
Ref. [68].

As has been shown in the discussions for 1#0 + *4Sm reactions, the correct treatment
of the coupling, without making the linear coupling approximation, significantly reduces
the effect of projectile excitation on the shape of the barrier distribution. Calculations
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of the CCFUS-type, which fail in these regards, would therefore be expected to predict
larger coupling effects than observed experimentally. The apparent success of the CC-
FUS calculations reported in Ref. [68] was probably due to the compensation for this
overestimate by the use of a smaller deformation parameter than that obtained from the
octupole transition strength.

The theoretical calculations for the reactions with the *°Ca projectile still significantly
underestimate the fusion cross section at low energies, even after the excitation of the
projectile is taken into account. As suggested in Ref. [68], coupling to transfer channels,
which have been ignored in the present calculations, might enhance the fusion cross section
at low energies.

It was recently shown that the excitation of the °Ca projectile does not affect the shape
of fusion barrier distribution of the 4°Ca + 9Zr reaction [67]. The difference between the
40Ca + 194Pt, 19205 reactions studied in this thesis and this reaction is originated from the
fact that the validity of the adiabatic approximation depends not only on the difference
of the time scale between the relative motion and the intrinsic motion, but also on the
coupling strength between them (see Eq. (2.93) as well as Ref. [77]). Although the
adiabatic approximation significantly breaks down in the heavier **Ca + 194Pt, 192Qs
systems, it may work quite well for the lighter °°Ca + %°Zr system, because of the smaller
coupling strength compared with that in the heavier systems due to the smaller charge
product. A work is now in progress to clarify the relation among the coupling strength, the
excitation energy, and the barrier curvature, in connection with fusion barrier distribution.
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Chapter 7

ANHARMONIC PHONON
EXCITATIONS IN HEAVY-ION
FUSION REACTIONS

As we have discussed so far, the high precision data have enabled a detailed study of the
effects of nuclear collective excitations on fusion reactions, and have generated a renewed
interest in heavy-ion subbarrier fusion reactions. Nuclear surface oscillations with vari-
ous multipolarities are typical examples where the barrier distribution analyses for fusion
reactions may be applied to study their detailed properties. For instance, the barrier
distribution analysis of the recently measured accurate data on the ¥Ni + %ONi fusion
reaction has shown evidence for couplings to double-phonon states in *Ni and %°Ni [65].
The barrier distributions were shown to be quite sensitive to the number of phonons
excited during fusion reactions. In marked contrast, no evidence for double phonon cou-
plings is seen in the experimental fusion barrier distribution for the *0 + 44Sm reaction
[61, 64, 106]. The aim of this Chapter is to discuss the role of anharmonicities of surface
vibration in subbarrier fusion reactions and show that it plays a very important role in
the latter reaction [82, 83]. We also carry out a systematic study on the effects of anhar-
monicities on subbarrier fusion, and apply the same analysis to the 0 + %8Sm fusion
reaction to study the anharmonic properties of the vibrational excitations in 4¥Sm and
their effects on the fusion reaction. Although the importance of the anharmonic effects on
proton scattering [151], as well as the reorientation effects in phonon spectra on heavy-ion
elastic and inelastic scattering [145, 152] has been pointed out, no systematic studies of
the effects of anharmonicities on subbarrier fusion and on fusion barrier distributions have
been performed so far. In view of the high precision data on subbarrier fusion reactions,
which have recently become available, such studies are necessary in discussing the effects
of vibrational excitations on subbarrier fusion reactions. In the next section, we briefly
summarise the anharmonic effects of nuclear surface vibrations. In Sec. 7.2, we formulate
coupled-channels calculations which explicitly take into account the anharmonic proper-
ties of vibrational excitations using the vibrational limit of the interacting boson model
[132]. We compare the formalism with that in the harmonic limit and point out several
important features of the anharmonic vibrational excitations. In Sec. 7.3, a systematic
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study of the effects of anharmonicities on fusion reactions is presented. These include
the effects of unequal spacing of levels, reorientation, and finite boson number. In Sec.
7.4, the formalism is applied to the 80 + 44$1%8Gm fusion reactions. We extract the
quadrupole moments of the first 2* and 3~ states in !*4#148Sm from the analysis of the
high quality fusion data available for these system.

7.1 Anharmonicities in nuclear vibrations

Collective phonon excitations are common phenomena in fermionic many-body systems.
In nuclei, low-lying surface oscillations with various multipolarities are typical examples.
The harmonic vibrator provides a zeroth order description for these surface oscillations,
dictating simple relations among the level energies and the electromagnetic transitions
between them. Some of the characteristic features of harmonic oscillators are summa-
rized as follows: (i) all the levels in a phonon multiplet are degenerate and the energy
spacing between neighboring multiplets is a constant, (ii) the electric transitions between
neighboring multiplets are linearly related, e.g. B(E2; If — (I-2)f) = (I/2) B(E2; 2{ —
07), (iii) the static quadrupole moment is zero for all the phonon states. In realistic nuclei,
however, there are residual interactions between phonons, which cause deviations from the
harmonic limit [153]). Because of these anharmonic effects, levels are split within a mul-
tiplet and the ratios between various electromagnetic transition strengths are modified.
Furthermore, the anharmonicities generate a finite value of static quadrupole moment in
excited states [154].

In even-even nuclei near closed shells, there are many examples of two-phonon triplets
(0+,2%,4") of quadrupole surface vibrations [117]. Though the center of mass of their
excitation energies are approximately twice the energy of the first 2* state, they usually
exhibit appreciable splitting within the triplet. A theoretical analysis of the anharmonici-
ties for the quadrupole vibrations was first performed by Brink et al. [153], who related the
excitation energies of three-phonon quintuplet (0%, 2%,3*,4%,6%) to those of the double-
phonon triplets, and also gave relations between the electric transition strengths from
the three- to the two-phonon states and those from the two- to the one-phonon states
(see Table 7.1). These relations, however, had not been confirmed until recently because
of the sparse experimental data on three-phonon states. The experimental situation has
improved rapidly in recent years [155], and data on multi-phonon states are now available
for several nuclei. As a consequence, study of multi-phonon states, and especially their
anharmonic properties, is attracting much interest [156-160]. It is worthwhile to men-
tion that anharmonic effects are not restricted to low-lying vibrations but have also been
observed in multi-phonon excitations of giant resonances in heavy-ion collisions [161-163].

In many even-even nuclei near closed shells, a low-lying 3~ excitation is observed at
a relatively low excitation energy, which competes with the quadrupole mode of excita-
tion [117, 164]. These excitations have been frequently interpreted as collective octupole
vibrations arising from a coherent sum of one-particle one-hole excitations between sin-
gle particle orbitals differing by three units of orbital angular momentum [117, 165].
This picture is supported by large E3 transition probabilities from the first 3~ state to
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state energy
27 hw
0; 2hw + €p
2+ 2hw + €3
4’1*- 2hw + €4
0% 3hw + 3ep
25 | 3hw+ Leg + Feu + Bey
3-1‘. 3hw + Efz + 264
4; 3hw + 1762 + 964
67 3hw + 3e4

Table 7.1: Relation among the excitation energy of phonon states in the geometrical
model [153].

the ground state, and suggests the possibility of multi-octupole-phonon excitations. In
contrast to the quadrupole vibrations, however, so far there is only little experimental
evidence for double-octupole-phonon states. One reason for this is that E3 transitions
from two-phonon states to a single-phonon state compete against lower multipolarity E1
transitions. This makes it difficult to unambiguously identify the two-phonon quartet
states (0*,2%,4%,6%). Thus despite the fact that the first 3~ state of 2®®Pb has a large
quadrupole moment, which is indicative of the anharmonic effects in octupole vibrations
[166-169], a direct study of the anharmonic properties in multi-octupole phonon spectra
has not been possible for a long time. Only in recent years, convincing evidences have
been reported for double-octupole-phonon states, as well as double-phonon states built
from single octupole and quadrupole phonon states, in some nuclei, e.g., 2Pb [170], 1*4Sm
[171-174], **"Sm [175], 1%6Sm [176], 143Nd [175], *¢Nd [176], and *8Gd [177, 178].

7.2 Coupled-channels equations for anharmonic phonon
excitations

In this section, we introduce the basic formalism for the problem of anharmonic vibra-
tional excitation in subbarrier fusion reactions. Let us first consider the case where the
relative motion between the colliding nuclei couples to the quadrupole vibrations in the
target nucleus. The Hamiltonian for the fusing system is assumed to be given by Eq.
(3.38), where the vibrational excitations in the target nucleus are generically denoted by
€. In Sub-section 7.2.1, we discuss the coupling of the anharmonic vibrator within the
linear coupling approximation. Although this approximation is too simplistic to describe
realistic systems as we discussed in Chap. 5, it enables us to understand easily the effects
of anharmonicity. Extensions of the model so as to include the couplings to all orders and
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state [ ng v I energy
27 |1 1 2| e+5a+48+6y

0 |2 00 2¢ + 12a

25 2 2 2| 2+12a+ 108+ 67
4 | 2 4| 2¢+ 12a + 1083 + 20y
0f |3 3 0| 3e+2la+188

27 |3 1 2| 3e+2la+46+6y
35 | 3 3 3|3¢+2la+185 + 12y
45 3 3 4| 3e+21a+ 188+ 20y
67 3 3 6|3+ 2la+ 188+ 42y

Table 7.2: Quantum numbers in the interacting boson model for U(5) nuclei.

to the octupole vibrations in the target nucleus are given in Sub-sections 7.2.2 and 7.2.3,
respectively.

7.2.1 Coupling to anharmonic vibrator

We have already discussed the harmonic oscillator coupling in Sec. 3.3.3. Higher order
corrections to Eq. (3.81) lead to anharmonicities in the vibrational spectrum. The effects
of anharmonicity in surface vibrations can be described in many different ways. Among
them, the interacting boson model (IBM) [132] in the vibrational (U(5)) limit provides
a convenient calculational framework to discuss the anharmonic effects. The vibrational
limit of the IBM and the anharmonic vibrator (AHV) in the geometrical model are very
similar, the only difference coming from the finite number of bosons in the former [155,
179, 180]. The eigenvalues of the intrinsic Hamiltonian Hiy in the U(5) limit are given
by [132]

Enpu1 = eng + ang(ng + 4) + fv(v + 3) + vI(I + 1), (7.1)

where n4, v, and I are the quantum numbers giving the number of d-bosons, the d-boson
seniority, and the intrinsic angular momentum, respectively. €, @, 3, and <y are adjustable
parameters. The first term gives equally spaced and degenerate phonon spectra, while
the splitting of multi-phonon multiplets due to the anharmonic effects are caused by the
remaining terms. The quantum numbers for each phonon states are summarised in Table
7.2.

We have discussed in Sec. 3.3.3 a model for subbarrier fusion reactions, which uses the
IBM to describe the effects of channel couplings. In the linear coupling and the no-Coriolis
approximations, the coupling Hamiltonian to the U(5) spectrum of the target nucleus is
given as

5

Vmp(r’g) = mf2(r)Q20- (72)
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Here, N is the boson number and we have introduced the scaling of the coupling strength
with v/N to ensure the equivalence of the IBM and the geometric model results in the
large N limit (see Eq. (3.107)). Q20 is the quadrupole operator in the IBM, which is
given by Eq. (3.108). As we have mentioned, it was found that the coupling strengths
used in the model are very similar to those in the geometrical model [47]. We, therefore,
assume that the coupling strength in Eq. (7.2) is the same as that in the harmonic limit
of the geometrical model, Eq. (3.93). This approximation is valid when the anharmonic
effects are not very large, so as to allow description of vibrational mode of excitations in
terms of the U(5) limit.

In anharmonic vibrators, the multi-phonon states are split within the multiplets. Thus
one has to treat each state as a different channel. The introduction of the multi-phonon
channel, as in the harmonic limit, is possible only when the multi-phonon states are
degenerate in the excitation energies. It will be shown in the next section that one can
safely neglect the effects of the splitting of the multiplets on fusion cross section as well
as fusion barrier distribution. Accordingly, to keep the calculations simple, we assume
in the following that the multi-phonon multiplets are degenerate in the excitation energy
unless explicitly mentioned. The wave function of the n-phonon channel in the framework
of the IBM then reads

=L (sh¥ ()0 >, (7.3)

In>= V(N — n)!

and the corresponding coupling matrix, truncated to the two-phonon states, is given by
0 F(r) 0

Veowp = | F(r) hw — —&—NXZF(T‘) v2(1 = 1/N)F(r) . (7.4)
0 /2(1-1/N)F(r) 2hw+6— X2 F(r)

The parameter ¢ is introduced to represent deviation of the energy spectrum from the
harmonic limit. F(r) is Bafa(r)/V/4x, as in Eq. (3.96). When the x, parameter in the
quadrupole operator is zero, quadrupole moments of all states vanish, and one obtains the
harmonic limit in the large N limit. Non-zero values of x, generate quadrupole moments
and, together with finite boson number, they are responsible for the anharmonicities in
electric transitions. The differences in the coupling scheme between a harmonic oscillator
and an anharmonic one are summarized schematically in Fig. 7.1.

7.2.2 All order couplings

We have discussed in Chap. 5 that the linear coupling approximation for the nuclear
coupling is not adequate in heavy-ion fusion reactions. Higher order nuclear couplings
have to be included in order to describe realistic systems and compare with experimental
data. Extension of the anharmonic oscillator coupling to all orders can be carried out in
a similar manner as that discussed in Chap. 5. Following Refs. [134-136], we assume that
the nuclear coupling Hamiltonian is given in the no-Coriolis approximation by

(N () — —V
e 1+ exp [(r - Ry — RT%QZO) /a] '
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Figure 7.1: Schematic representation of the coupling scheme in vibrational models. The
upper part is for the anharmonic vibrator, while the lower part for the harmonic oscillator.
See text for the notation.
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The matrix elements of Eq. (7.5) can be evaluated most easily by introducing the interac-
tion representation which diagonalizes the quadrupole operator Q29 [136]. Note that this
equation includes the bare nuclear potential Vy in the total Hamiltonian Eq. (3.38). Since
phonon states |n, I, M) with M # 0 do not couple to the ground state in the no-Coriolis
approximation, we do not need to consider the terms d},d,, with m # 0 in the quadrupole
operator, Eq. (3.108). Accordingly, we diagonalize the operator

Qa0 = s'dy + sd} + codhdy, (7.6)
where ¢y = —4/2/7Tx2, in some basis as
Qux=e,BiB, +e_B'B_, (7.7)

where BL (B.) are creation (annihilation) operators of the eigenbosons and e are their
eigenvalues. After working out the commutators

[@0, BL] = e.BL, (7.8)
we find that they are given by
Bl = yost +yud), (7.9)
B! = —y,s' + yod), (7.10)
cot 4+
es = Ofcg’ (7.11)

with yo and y, are defined as

Ja+c—
w o= ——__ (VEtaTa (7.12)
Ji+et \ 24+
es \/4+C(2)+Co
y2 = — —_—. (7-13)
vi+tet \ 24+

The eigenvectors of the quadrupole operator are then given by

Ing,n_ >= y+(BL)™ 0 >, (7.14)

1
- (B!
AVA .I n_: ( *
and the matrix elements of the nuclear coupling Hamiltonian between n- and m- phonon
channels read

l -V
ViV () = 0
- (T) ,g) 1+ exp [(r — Ry — RT%(keJr + (N - k)e_)) /a]

<o (D (65) () ()

V (N —n)nl(N — m)!m!y2i+2j—2k+m+ny2k+2N—m—n—-2i—2j

k'(N — k)! 0 2 '

In evaluating Eq. (7.15), we have used the fact that the sum of the number of each eigen
bosons, n, + n_, must be equal to the total boson number N.

(7.15)
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7.2.3 Coupling to octupole mode

In most of spherical nuclei, the octupole vibrational state has a large collectivity and
their excitations play an important role in subbarrier fusion reactions. Therefore, in
order to apply the model which we discussed above to realistic systems, it is necessary
to extend them so that they include the octupole mode as well. To this end, we use the
vibrational limit of the sdf- IBM [132, 181]. This model has been extensively used to
describe negative parity states in rotational [181] as well as vibrational [182-184] nuclei.
As a natural extension, we assume the following coupling Hamiltonians based on this
model for the nuclear and the Coulomb couplings.

Vs

VM (6 = 7.16
(4] 1+exp [(7' - Ry - RT7Q2='Q20 - RTszo) /a] (7.16)
VO (re) = EZPZT I:T—3 \/%——on + =ZpZre’ & fs—Qso (7.17)

Here, 83 is the octupole deformation parameter, and we take the quadrupole and the
octupole operators in the sdf- IBM as

Q, =std + sd' + Xz(d"ti)(z) + ng(fff)(z), (7.18)
Q3 = Sft + X3(Cift)(3) + h.c., (719)

respectively, where f, is defined as (—)3#f_,. We will apply these models in Sec. 7.4 to
analyze the 150 + 44148Gm fusion reactions.

7.3 Anharmonic effects on fusion barrier distribu-
tions

In order to discuss the effects of anharmonicity on subbarrier fusion reactions, we perform
in this section a series of model calculations without particular regard for the physical
values of the parameters. We consider a fictitious nucleus whose excitation energies are
given by Eq. (7.1) with ¢ = 800, o = 10, 8 = 0 and vy = 25, all in keV. The excitation
energy of the first 2% state of this nucleus is 1 MeV and the double phonon states are
split by 0.5 MeV. We take the total boson number N to be 4 and thus take into account
coupling of up to four phonon states. The y, operator in the quadrupole operator Eq.
(3.108), the quadrupole deformation parameter 3, and the target radius are set to be —3,
0.25 and 6.35 fm, respectively. Finally, the Christensen-Winther parameterization of the
Woods-Saxon potential [110] for the %0 + *8Sm system is used for the ion-ion potential
Vn.

As we discussed in the previous section, introduction of the multi-phonon channels
significantly reduces the dimension of the coupled-channels equations. To see whether
this approximation is good, a calculation is first made by taking fully into account the
effects of the splittings in the phonon spectrum. In order to keep the calculation simple,
we make here the linear coupling approximation. In Fig. 7.2, we show the excitation
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Figure 7.2: Effects of anharmonicity of the quadrupole vibration on the excitation function
of the fusion cross section (the upper panel) and fusion barrier distribution (the lower
panel). The dotted line is the result in the harmonic limit, while the solid line takes the
anharmonic effects of the vibrational excitations into account. The linear order coupling
is assumed.

function of the fusion cross section (the upper panel) and the barrier distribution (the
lower panel) that follow from using the U(5) limit as described above (solid line). Barrier
distributions are obtained using a point-difference formula [51] with AE =2 MeV in the
laboratory frame. To see the effect of the splittings of the multi-phonon states, we have
repeated the same calculation by assuming that the n-phonon multiplets are degenerate
at the excitation energy of the first (2n)* state. We found that this prescription leads
to no visible change in the fusion barrier distribution compared to the actual case with
splitt energy levels. In the following, we shall therefore assume a degenerate multi-phonon
spectrum and use a single multi-phonon channel representing all the states in a multiplet.
In Fig. 7.2, we also compare the results for the anharmonic vibrator with those in
the harmonic limit (the dotted line). One can observe that the anharmonic effects in the
vibrational excitations lead to a significant change in the barrier distribution, though the
excitation function of the fusion cross section itself is modified only marginally.
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Figure 7.3: Dependence of the fusion cross section (the upper panel) and fusion barrier
distribution (the lower panel) on the deviation of the energy spectrum from the harmonic
limit. The solid, the dotted, and the dashed lines are obtained by setting the parameter
0 in Eq. (7.4) to be zero, 0.5, and —0.5 MeV, respectively. The dot-dashed line is the
result in the degenerate limit in the anharmonic vibrator coupling. The phonon spectrum
is truncated at the double phonon levels. The full order couplings are included.

7.3.1 Anharmonicities in excitation energies

In all the following calculations, we take into account the couplings to all orders. We
first discuss the effects of the deviation of the energy spectrum from the harmonic limit.
In order to isolate these effects, we truncate the phonon spectrum at the double-phonon
states in this subsection. Fig. 7.3 shows the dependence of the fusion cross section (the
upper panel) and the fusion barrier distribution (the lower panel) on the parameter § in
Eq. (7.4). The cross section and the barrier distribution are calculated for three different
values of §. The solid line is the result when 6 = 0, while the dotted and the dashed
lines are obtained by setting § to be 0.5 and —0.5 MeV, respectively. Despite the fact
that an unrealistically large value is used for § so as to maximize its effect, the barrier
distribution changes only slightly for different choices of §. This indicates that the main
effects of anharmonicity on fusion barrier distributions come from the deviation of the
transition probabilities from the harmonic limit, including the reorientation effect, rather
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Figure 7.4: Dependence of the fusion cross section (the upper panel) and fusion barrier
distribution (the lower panel) on the sign of the quadrupole moment of the first 27 state.
The solid and the dotted lines correspond to the cases for the negative and the positive
static quadrupole moments, respectively. The dashed line was obtained by setting the
quadrupole moment of the excited states to be zero. The dot-dashed line is the result of
the corresponding calculations in the harmonic limit.

than anharmonicities in the level energies. Note that this observation does not necessarily
mean that fusion reactions are not sensitive to the excitation energy of the phonon states.
To demonstrate this, we show in Fig. 7.3 also the result when both Aw and § is set to be
zero (the dot-dashed line). One can see sizable effects of the finite excitation energy of the
phonon states on the fusion barrier distribution as well as fusion cross section. We thus
conclude that, though the fusion cross section and the barrier distribution are sensitive
to the energy of the single-phonon state, they do not depend so much on the excitation
energies of the multi-phonon states once the phonon quanta Aw is fixed.

7.3.2 Reorientation effects

One of the pronounced features of an anharmonic vibrator is that the excited states have
non-zero quadrupole moments [154, 117]. In the IBM, the E2 operator is defined as
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T(E2) = epQ,, where the quadrupole operator was introduced in Eqs. (3.108) and (7.18)
for the sd- and sdf-IBM, respectively, ep being is the effective charge. In the U(5) limit,
the E2 effective charge ep is related to the E2 transition probability by

B(E2;0f —2]) = 5¢4N. (7.20)

Using the definition of the static quadrupole moment of a state with spin

Q) = ,/-1? < IT(E)|IT >, (7.21)

we obtain for the quadrupole moment of the 2% state

Q2% = \/332—57reBX2. (7.22)

The corresponding formula for the first 3~ state reads

QB37) = 220—17TGBX2f~ (7.23)

Fig. 7.4 shows the influence of the sign of the quadrupole moment of the first 2* state on
the fusion cross section (the upper panel) and the fusion barrier distribution (the lower
panel). The solid line corresponds to the negative static quadrupole moment, while the
dotted line is obtained by inverting the sign of the x, parameter in Eq. (3.108). As seen
from Eq. (7.22), this is equivalent to taking the opposite sign for the quadrupole moment
of the excited state. The dashed line is the result when x, = 0. Fig. 7.4 demonstrates
that the fusion cross section, and especially fusion barrier distribution, strongly depend
on the sign of the x» parameter, hence on that of the static quadrupole moment. This
fact will be used in the next section to determine the quadrupole moments of the first 2+
and 3~ states in **41*8Sm from the experimental fusion barrier distribution for the °0 +
144,148Gm reaction.

7.3.3 Finite N effects

The other important effect of the deviation of the electric transition rates from the har-
monic limit is caused by the finiteness of the boson number. Eq. (7.4) and Fig. 7.1 indicate
that the anharmonic effects weaken the coupling between the one- and two-phonon states

by the factor y/1 — 1/N compared with that in the harmonic limit. For small values of
the boson number N, this factor is significantly smaller than one and large anharmonic
effects on fusion reactions are expected. In order to demonstrate the finite boson number
effects, we show in Fig. 7.4 also the results in the harmonic limit by the dot-dashed line.
One can see a significant difference between this result and that for the zero quadrupole
moment (the dashed line), indicating the importance of the finite boson number effect.
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Figure 7.6: The same as Fig. 7.5, but for
the harmonic oscillator coupling.

Figure 7.5: Convergence of the fusion cross
section (the upper panel) and fusion bar-
rier distribution (the lower panel) as func-
tions of the number of phonon states in-
cluded in the coupled-channels equations,
which are indicated in the inset. The total
boson number N is fixed to be four in all
cases.

Finite boson number effects can also be studied in another, perhaps more instructive
way. Since the couplings to the multi-phonon states are weaker than those in the harmonic
limit if the anharmonic effects are present, one expects that fusion excitation function
converges more rapidly compared with the case in the absence of the anharmonic effects.
Fig. 7.5 shows how the fusion cross sections (the upper panel) and the fusion barrier
distributions (the lower panel) converge with the phonon number for fixed total boson
number N = 4. Although the fusion cross section and the fusion barrier distribution
obtained by including only the single-phonon excitations are quite different from those
in the double-phonon couplings, the difference between the two- and the three-phonon
couplings are small. We observe that the fusion barrier distribution almost converges
at the three-phonon level. The corresponding calculations in the harmonic limit are
performed for comparison. These results are shown in Fig. 7.6. Contrary to the results
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for the anharmonic vibrator, the barrier distribution obtained by taking into account
up to the four-phonon excitations is still significantly different from that obtained by
including up to the three-phonon excitations. We thus conclude that the finite boson
number significantly influences the role of higher phonon states in determining the fusion
barrier distribution.

7.4 Comparison with experimental data

7.4.1 190 + 4Sm reaction

We now apply the formalism to realistic systems. We first analyze in particular the
160 + !%4Sm reaction [82]. We showed in Fig. 5.8 that inclusion of the double-phonon
excitations of *Sm in coupled-channels calculations in the harmonic limit destroys the
good agreement between the experimental fusion barrier distribution and the theoretical
predictions obtained when only the single-phonon excitations are taken into account [106].
On the other hand, there are experimental [171, 173] as well as theoretical [185] support
for the existence of the double-octupole-phonon states in 1#4Sm. Reconciliation of these
apparently contradictory facts may be possible if one includes the anharmonic effects,
which are inherent in most multi-phonon spectra.

The model parameters are determined as follows. The standard prescription for the
boson number (i.e. counting pairs of nucleons above or below the nearest shell closure)
would give N = 6 for 1**Sm. However, it is well known that due to the Z = 64 subshell
closure, the effective boson numbers are much smaller. The suggested effective numbers
in the literature for the proton bosons vary between N, = 1 and 3 [186, 187]. We adopted
N = 2 in our calculations, since there are experimental signatures for the two-phonon
states, but no evidence for three-phonon states in *4Sm. The parameters of the intrinsic
Hamiltonian are simply determined from the excitation energies of the first 2+ and 3~
states in *4Sm as ¢; = 1.66 MeV and ¢; = 1.81 MeV. The nuclear potential parameters
are taken from the exhaustive study of this reaction in Ref. [106] as Vy = 105.1 MeV,
Ry = 8.54 fm and a = 0.75 fm. Finally, the target radius is taken to be Ry = 5.56
fm, and the deformation parameters are estimated to be (3,=0.11 and (3=0.21 from the
electric transition probabilities.

The results of the coupled-channels calculations are compared with the experimental
data in Fig. 7.7. The upper and the lower panels in Fig. 7.7 show the excitation function
of the fusion cross section and the fusion barrier distributions, respectively. The experi-
mental data are taken from Ref. [51]. The dotted line is the result in the harmonic limit,
where couplings to the quadrupole and octupole vibrations in !*4Sm are truncated at the
single-phonon levels and all the x parameters in Eqgs. (7.18) and (7.19) are set to zero.
The dotted line reproduces the experimental data of both the fusion cross section and the
fusion barrier distribution reasonably well, though the peak position of the fusion barrier
distribution around E,, = 65 MeV is slightly shifted. As was shown in Ref. [106], the
shape of the fusion barrier distribution becomes inconsistent with the experimental data
when the double-phonon channels are included in the harmonic limit (the dashed line).
To see whether this discrepancy is due to neglect of anharmonic effects, we have repeated
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Figure 7.7: Comparison of the experimental fusion cross section (the upper panel) and
fusion barrier distribution (the lower panel) with the coupled-channels calculations for *0O
+ 4Sm reaction. The experimental data are taken from Ref. [51). The solid line shows
the results of the present IBM model including the double-phonon states and anharmonic
effects. The dotted and the dashed lines are the results of the single- and the double-
phonon couplings in the harmonic limit, respectively.

the calculations including the x parameters in the fits and using N = 2 in the IBM.
Following the discussion in the previous section, harmonic spectra for the excitation en-
ergies of the phonon states are assumed. The x? fit to the fusion cross sections resulted
in the set of parameters, x2 = —3.30 £ 2.30, x2; = —2.48 £ 0.07, and x5 = 2.87 £ 0.16,
regardless of the starting values. The best fit was obtained by using slightly larger val-
ues for the deformation parameters than those in the harmonic limit, i.e. G, = 0.13,
B3 = 0.23. The slight change in the values of the deformation parameters from those in
the harmonic limit results from the renormalization effects due to the extra terms in the
operators in Egs. (7.18) and (7.19). Since there is no information on quadrupole moments
in 4Sm, the y parameters cannot be estimated from data. Nevertheless, in the neigh-
boring 1*8Sm, where the quadrupole moment of the first 2% state has been measured, one
needs x» = —3.6, consistent with the above value (see next subsection for more details).
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Figure 7.8: Dependence of the fusion cross section and barrier distribution on the sign
of the quadrupole moment of the excited states in *¥Sm. The meaning of each line is
indicated in the inset.

The resulting fusion cross sections and barrier distributions are shown in Fig. 7.7 by the
solid line, which agree with the experimental data much better than those obtained in the
harmonic limit. Thus, inclusion of the anharmonic effects in vibrational motion appear to
be essential for a proper description of barrier distributions in the reaction 60 + %4Sm.

Using the x parameters extracted from the analysis of fusion data in the E2 operator,
and the effective charge eg, which is determined from the experimental B(E2;0 — 2)
value as eg = 0.16 eb, we estimate the static quadrupole moments of various states in
144Gm. For the quadrupole moment of the first 2+ and 3~ states, we obtain —0.89 +
0.63 b and —0.70 + 0.02 b, respectively. The negative sign of the quadrupole moment
of the octupole-phonon state is consistent with that suggested from the neutron pick-up
reactions on *Sm [178, 188].

In Fig. 7.4, we have demonstrated that the shape of fusion barrier distributions
changes significantly when one inverts the sign of the quadrupole moment in a spherical
target. Fig. 7.8 shows the influence of the sign of the quadrupole moment of the excited
states on the fusion cross section and the fusion barrier distribution. The solid line is the
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same as in Fig. 7.7 and corresponds to the optimal choice for the signs of the quadrupole
moments of the first 2+ and 3~ states. The dotted and dashed lines are obtained by
changing the sign of the x, and xos parameters in Egs. (7.18) and (7.19), respectively,
while the dot-dashed line is the result where the sign of both x; and x2; parameters are
inverted. Fig. 7.8 demonstrates that subbarrier fusion reactions are indeed sensitive to the
sign of the quadrupole moment of excited states. The experimental data are reproduced
only when the correct sign of the quadrupole moment are used in the coupled-channels
calculations. Notice that the fusion excitation function is completely insensitive to the
sign of the quadrupole moment of the first 2% state, but strongly depends on that of
the first 3~ state. In contrast, the fusion barrier distribution can probe the signs of the
quadrupole moments of both the first 2+ and 3~ states.

7.4.2 190 + 88m reaction

We next analyze the 180 + %8Sm reaction, whose excitation function of the fusion cross
section was recently measured with high accuracy [51]. We take both the quadrupole
and the octupole vibrational excitations in 4*Sm, while the excitations of ¥Q are not
explicitly included in the coupled-channels calculations following the conclusion which we
have reached in the previous chapter, i.e. the latter effects lead only to the shift of the
fusion barrier distribution in energies without significantly changing its shape, and hence
can be incorporated in the choice of the bare potential.

In order to qualitatively understand the effects of the channel couplings on this reac-
tion, calculations are first performed by assuming the harmonic limit. The quadrupole and
the octupole deformation parameters are estimated from the experimental electric tran-
sition probabilities between the ground and the one-phonon states [189] to be B> = 0.182
and f; = 0.236, respectively, by assuming the target radius of Ry = 1.06A4'/3 fm. The
excitation energies of the phonon states in *8Sm are 0.55 and 1.16 MeV, for the first 2%
and 3~ states, respectively. The parameters for the bare ion-ion potential are obtained
by fitting the experimental fusion cross sections. It has been pointed out that the effects
of channel couplings play an important role in determining the bare potential for the 60O
+ 1*48m reaction [111]. Accordingly, we fit the experimental data by assuming the three
phonon couplings in the harmonic limit (see the following discussion). We use the experi-
mental data between 200 mb and 400 mb to determine the bare potential. We choose this
range because, at the lower energy region, more details of the channel couplings would
be important, and also at the higher energy region some other effects, e.g. the angular
momentum truncation or the dissipation mechanism might play some role [32]. The best

fit parameters which we obtain are Vy = 155.1 MeV, Ry = 0.95(4¥° + AY®) fm, and
a = 1.05 fm, for the depth, the radius parameter, and the diffuseness parameter, of the
Woods-Saxon potential, respectively. Note that the experimental data at high energy
region still require a large diffuseness parameter [51] even after including the effects of the
channel couplings. The origin of this is not fully understood (see Sec. 3.2.1).

Our results for the fusion barrier distribution for the 'O + *8Sm reaction are shown
in Fig. 7.9. The panels differ from each other by the number of the quadrupole phonons
coupled. The experimental data are taken from Ref. [51]. The point difference formula
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Figure 7.9: Comparison of the experimental fusion barrier distribution with the results
of coupled-channels calculations in the harmonic limit for the 60 + 48Sm reaction. The
dotted lines include the single octupole excitations, while the solid lines take the double
octupole phonon couplings into account. The experimental data are taken from Ref. [51].

with AE = 2 MeV in the laboratory frame is used to obtain the fusion barrier distri-
butions. Calculations, which assume that the octupole vibration in *8Sm has only a
single-phonon state, are indicated by the dotted lines in Fig. 7.9. In the three phonon
calculation, for example, we included the 2%, 37, 2t ® 2%, 2t ® 3, 2T ® 2+ ®2*, and
2+ ® 2% ® 3~ states in 8Sm in the harmonic limit. The coupling scheme in the other
panels is defined in the same way. All the dotted lines which are obtained by assuming the
single-octupole-phonon excitations in *¥Sm do not account for the experimental fusion
barrier distribution. However, double-phonon excitations have been found in the neigh-
bouring nuclei, i.e. *4Sm [171-174], }46Sm [176], and *4"Sm [175]. We therefore repeat the
same calculations by assuming the double-octupole excitations in *8Sm (the solid lines).
One can now observe that the experimental data can be explained reasonably well by the
three-phonon calculations. The fit is not as good if the four phonon quadrupole excita-
tions are included in the coupled-channels analysis. These calculations in the harmonic
limit thus suggest that there are strong couplings up to the three quadrupole phonon
states in **8Sm and the coupling between the three and four phonon states are not as
strong as that expected from the harmonic oscillator coupling. They also suggest that
there might be double- octupole phonon excitations in 43Sm.
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Figure 7.10: Comparison of the experimental fusion cross section (the upper panel) and
fusion barrier distribution (the lower panel) with the coupled-channels calculations for the
160 + 148Sm reaction. The experimental data are taken from Ref. [51]. The anharmonic
effects in the quadrupole and the octupole vibrational excitations in 4Sm are taken into
account in the sdf- IBM. The solid line is the result when the best fit parameters are used,
while the dashed line is obtained by setting the quadrupole moments of all the excited
states to be zero. The results including the four phonon couplings in the harmonic limit
is denoted by the dotted line.

Calculations which take into account the anharmonicities of the vibrational excitations
are performed next. Following the suggestions of the calculations in the harmonic limit, we
include the octupole excitations up to the double phonon levels and take the total boson
number NV = 4. The latter is consistent with the observations concerning the effects of the
Z = 64 subshell closure, which we discussed in the previous subsection. There are three
other parameters, i.e. X2, X2, and x3 parameters in the transition operators Egs. (7.18)
and (7.19), which need to be determined. Two of them, x» and x2y, are directly related
to the quadrupole moment of the phonon states, and the other the coupling between
the quadrupole and the octupole modes. Though there exist experimental data on the
quadrupole moment of the first 2+ state of 14Sm [189], the experimental uncertainty is
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not small. There are no other experimental data which can be used to estimate the xaf
and x3 parameters. Therefore, a x2 fit to the experimental fusion cross sections is carried
to determine all the three parameters. In the fitting procedure, all the experimental
data below 200 mb are used, except for the one at E;;= 69.36 MeV, which seems to fall
outside the systematics. The best fit values are x, = —3.12 + 0.77, xoy = 4.63 + 0.43,
and x3 = —1.99 & 0.26. The solid line in Fig. 7.10 shows the fusion cross section (the
upper panel) and the fusion barrier distribution (the lower panel) thus obtained. One
observes that the shape of the fusion barrier distribution is very similar to that for the
three phonon couplings in the harmonic limit (see Fig. 7.9) and that they agree quite well
with the experimental data.

In the last section, we discussed two main effects of the anharmonicities in the electric
transition, i.e. the reorientation effects and the finite IV effects, on subbarrier fusion
reactions. In order to see each effect separately, we repeat the same calculation by setting
both the x, and x2; parameters to be zero. As was discussed in the previous section,
this prescription is equivalent to taking only the finite N effects into account. This result
is shown by the dashed line in Fig. 7.10. The figure also shows the result obtained by
assuming that there are four quadrupole phonon states in the harmonic oscillator limit
in 8Sm, as a comparison (the dotted line). The difference between the dotted and the
dashed lines, and also between the dashed and the solid lines, is significant. This suggests
that both the reorientation effects and the finite N effects play an important role in the
fusion reaction.

From the x, and xay parameters which are obtained by the x? fit to the experimental
fusion cross sections, we estimate the quadrupole moments of the first 2* and 3~ states of
148Sm. The E2 effective charge ep is estimated to be 0.19 eb from the experimental B(E2)
value (see Eq. (7.20)). Using Egs. (7.22) and (7.23), we estimate the quadrupole moments
of the first 2+ and 3~ states to be Q(2%) = -1.00 + 0.25 b and Q(37) = +1.52+0.14 b,
respectively. Note that the value of the quadrupole moment of the first 2 state which
we obtained from the fusion analysis is very close to that measured from the Coulomb
excitation technique, i.e. —0.97 & 0.27b [189]. For the quadrupole moment of the first 3~
state, there is no experimental data to compare our result with. Nevertheless, we can test
the consistency of the fit by taking its opposite sign in the coupled-channels calculation.
Fig. 7.11 shows the sensitivity of the fusion cross section and the fusion barrier distribution
to the sign of the quadrupole moment of the first 3~ state. The solid line corresponds
to the optimal choice for the sign of the first 3~ state, while the dotted line is obtained
by inverting it. We observe that the use of the incorrect sign of the quadrupole moment
destroys the good fit to the experimental data. Our calculations thus strongly suggest
that subbarrier fusion can provide an alternative method to determine the sign as well as
the magnitude of the quadrupole moments in spherical nuclei.
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Chapter 8

THERMAL FISSION RATE
AROUND
SUPERFLUID-NORMAL PHASE
TRANSITION

As we discussed in Sec. 3.1, one of the decay modes of a compound nucleus formed
in heavy-ion fusion reactions is fission. Fission of such hot nucleus has attracted much
interest of nuclear physicists in the past several years to study nuclear dissipation together
with deep inelastic heavy-ion collisions [190-192]. It is known that statistical codes to
calculate the decay of a compond nucleus significantly underestimate the experimentally
observed prefission neutron, charged particle, and v-ray multiplicities at high excitation
energies if the original Bohr-Wheeler formula for the fission width [193] is used, though
they work pretty well at low energies [194-199]. Two alternative interpretations of this fact
have so far been proposed. The one attributes the large prefission neutron emmision to the
so called transient effect[199). In this case, one assumes that some amounts of neutrons are
emitted before the asymptotic fission rate given by the Bohr-Wheeler formula is achieved.
The other is to consider that fission is hinderd by nuclear dissipation. Based on the
latter idea, Thoennessen and Bertsch have analysed fission data on prefission neutron,
charged particle and v ray multipicities for various systems by using statistical codes,
and obtained systematics of the threshold energy, where a dissipation starts to play a
significant role in fission[194]. This systematics has been confirmed by experimentally
studying the excitation energy dependence of the fission probability in 2°°Pb compound
nuclei[197].

On the other hand, the nuclear dissipation does not play any significant role in sponta-
neous fission because of the strong pairing correlation between nucleons|[200, 201]. When
one discusses nuclear fission at moderate excitation energies, one has to take into account
the temperature dependence of the pairing gap. The pairing gap decreases with tempera-
ture and the nucleus eventually undergoes a phase transition from a superfluid to a normal
fluids [202-205). In this Chapter, we investigate the effects of the super-normal phase tran-
sition on the fission width at finite temperatures [84]. This study was partly motivated by
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Figure 8.1: A typical potential for decay problems.

that in Ref.[200], where the effect of pairing on the fission at zero temperature has been
discussed. It is worth mentioning that the pairing interaction plays an important role in
determining the shape of the ground state of a nucleus at zero temperature [206, 207).

8.1 Langer’s ImF method

In order to calculate thermal fission rate, we use Langer’s ImF method, where the decay
width of a metastable state is related to the imaginary part of the free energy [208-212]. In
this method one can describe the decay process for a very wide range of temperature, i.e.
from zero temperature, where the decay process is governed by the quantum tunneling, to
high temperatures, where thermal decay dominates[213]. Also, the method can be applied
to a system with many degrees of freedom[209].

8.1.1 One dimensional decay problem

We first discuss the decay of a metastable state in the absence of couplings to dissipative
environment. The Lagrangian in this system is given by

L= M{ - V(o) (8.1)

where q is the fission coordinate and M is the associated mass. V(g) is a potential which
has a local minimum and maximum at ¢ =0 and ¢ = g3, respectively (see Fig. 8.1).

In order to obtain the free energy, we first express the partition function in the path
integral form. At the temperature kg7 = 1/ it takes the form([214]

Z() = Tr(e™") = [ Dlg(r)le~ =™, (8.2)
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where the path integral is performed over all the periodic paths with the period Sf. The
Euclidean action Sg[g(7)] is given by

o1
Sela()] = [ dr (3M¢ +V(a(r)) (83)
0 2
The free energy is then evaluated as
1
F = —Blog Z(6). (8.4)

In a high temperature regime, where the decay of a metastable state is governed by the
thermal hopping, the decay width I is related to the imaginary part of the free energy by

[208]

2T,

T, being the cross over temperature where the transition between the thermal activated
decay and the quantum tunneling occurs.

We evaluate the path integral in Eq. (8.2) in the saddle point approximation. The
least action paths satisfy the equation of motion

Ma(r) — ‘ng;‘)) =0 (8.6)

with the periodic boundary condition g4(0) = gu(R83). The solutions of this equation
correspond to a real motion in the inverted potential —V'(¢). In the high temperature
regime where we consider in this chapter, the so called bounce trajectry ceases to exist,
at least in the real q space, and the main contribution comes from the two trivial periodic
solutions. The one of them is g4(7) = 0, which sits on the top of the inverted potential
in all the times, the other, g4(7) = ¢, at the bottom of the well.

A periodic trajectory near the classical path g,4(7) = 0 can be expressed by

q(7) = qa(7r) + z(7) = i X,err, (8.7)

n=-o0o

where v, = 2nn/(h are the Matsubara frequencies, and X,, are the expansion coefficients.
Using the identity

Bh 3
the contribution of this path to the Euclidean action (8.3) is found to be
1 (e 0]
Spla(T)] = SMBR 3] MNXnX_n, (8.9)
2 n=-—00
where
A= v+, (8.10)
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= /V"(0)/M being the curvature of the potential at ¢ = 0. The partition function
( 2) evaluated in the vicinity of the classical path g.(7) = 0 is then expressed by

b 2r 1
Z() /oon_l_[ dX exp (——M,Bn_z_ovoX X._n> =n=l—_I°° _ﬂ/f—ﬁ—)\_g (811)

The contribution from the other periodic path near g,(7) = gy is evaluated as follows.
Expanding the path as

() = 0al) +37) =gt 3 Vo, (812)
the Euclidean action in the limit of small flactuation y(7) is given by
Sglq()] = hBVs + Mﬂh 2 XY, Y_,, (8.13)
where Vj is the height of the potential barrier and A}, are given by
A =02 - W2, (8.14)

wp = +/—V"(gs)/M being the curvature of the potential at ¢ = ¢5. In evaluating the
partition function from this Euclidean action, one encounters a problem. Since the eigen
value A = —w? is negative, the gaussian integral over the amplitude Y; diverges. In order
to keep the integral convergent, Langer distorted the integration contour into the upper
half of the complex plane and the evaluated the integral as [208]

/oo dY;, exp (%Mﬂwaf) YoziYo i/oo dY; exp (—%Mﬁwaoz) : (8.15)
oo 0

Taking this prescription, the partition function is evaluated as

az 2r 1 _
H VAL e Y. (8.16)

n——oo
The partition function now has an imaginary part as a consequence of the distortion of the
integration path into the complex plane. Noticing that Zy/Zp contains the exponentially
small quantity exp(—3V;), the imaginary part of the free energy F is evaluated as

1 x /\0 1 wo
ImF = - n e~V — _ 2 " —f’"b. 8.17
25\ 1L, P B L X (8.17)

In evaluating Eq. (8.17), we have used
ImF = Im [-l {log Zo + log (1 + -Z—") }] ~ Im [—l—] . (8.18)
B Zo
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The imaginary part of the free energy is related to the decay rate through Eq. (8.5).
The crossover temperature 7, is identified with the highest temperature at which Eq.
(8.17) diverges [209]. This is the temperature where the so called bounce path which
describes a tunneling decay disappears as one increases the temperature from zero. At
temperatures below T,, the bounce solution domonates the decay and the decay rate has
less temperature dependence[209]. This prescription assigns kgT. to be fw,/2m, where A}
becomes zero. This is consistent with the earlier observation by Affleck on the crossover
temperature [208]. Combining Eqs. (8.5) and (8.17), the decay rate at themperature T
is then given by

[=_— e %, (8.19)

where f, is the quantum correction factor due to the quantum fluctuation of the paths
around the classical paths g4(7) = ¢ and gq(7) = 0, and is given by

oo/\o °°1/2+w2
L=Ila= n_ . (8.20)
G il | &y

At temperature much larger than the crossover temperature, the quantume correction
factor f, is close to one, and thus the decay rate Eq. (8.19) becomes identical to that in
the classical formula [193}, i.e.

Wo _
., = BVs .
) 211'6 (8 21)

This equation is often referred to as the Bohr-Wheeler formula [193], and is frequently
used in statistical codes to calculate the decay of a hot nucleus [215].

8.1.2 Decay rate in dissipative systems

We now discuss the decay rate in the presence of dissipative environment. We consider a
system where a macroscopic degree of freedom g couples to environmental heat bath. We
assume the following Lagrangian for this system[20]

1 1, e cif(9)?
L=:M (9)d® - V(q) + Z §m,(z? w?z?) Xi:%f (@) + Z ot (8.22)

where {z;} and {w;} are the coordinates of the environmental oscillators and the corre-
sponding excitation energies, respectively. M(q) and f(q) are the mass of the macroscopic
motion and the coupling form factor, respectively. We assume general functions of ¢ for
them([210, 212]. The last term is the so called counter term which cancels the static poten-
tial renormalization due to the coupling between the macroscopic and the environmental
degrees of freedom [20]. Takigawa and Abe have suggested that, in contrast to heavy-ion
fusion reactions at subbarrier energies where the static potential renormalization plays
an important role in enhancing the fusion cross section over the predictions of the one
dimensional potential model (see Sec. 2.3.3), the static potential renormalization in the
fission problem can lead to two opposite effects, i.e. it could either lower or increase the
effective fission barrier compared with the bare potential barrier, thus leading to either

119



hindrance or enhancement of the fission rate, depending on the properties of the coupling
form factor f(g) [210]. Both cases lead to a temperature dependent fission barrier height
[195]. In this thesis, we introduce the counter term similarly to Ref.[20].

After integrating out the environmental degrees of freedom, the partition function at
the temperature kgT = 1/ takes the form[216]

2(8) = [ Dlg(r)]eSsrlaN™. (8.23)

Here, the effective Euclidean action Ses¢[g(7)] is given by

Sela(] = [ ar (M) +Via) +3 [ dr [ dr'kis =) f(ar) 1)

(8.24)
with the influence kernel k(7) [210, 216)
_ ¢ sy, __¢ coshfwi(|r| - 38R)]
k(r) = 2,: [m,-w? +8(r) - T 2muw; sinh(%hwi,;) ] (8.25)
where o
:8(r):= Y. 6(t — npPh) (8.26)

n=-0o0
is a generalized delta function with period Sh.
Following to the same procedure as in the previous subsection, we find that the decay
width at temperature T can be expressed as[210]

_ WoWr M (o)
21 wy \| M(gs)

fee, (8.27)

where wg, is defined as 2wkgT./h. The quantum correction factor f, is given by

2 -
o V2+wi+ (‘c_i%)qzqo Vn¥o(Un)

fo= ¢ . (8.28)
ne1 02 —w?4 (4 3
102 —wi+ (dq)qqu UnYs(Vn)
4 is the Laplace transform of the retarded friction kernel [210], and is given by
1 bt z
¥(z) = : 8.29
7(2) M(q) 5': mw? 22 + w? (8.29)

The subscripts 0 and b in Eq. (8.28) denote that the quantities with those indices should
be evaluated at ¢ = 0 and ¢ = ¢, respectively. As in the case without couplings, the
crossover temperature T, is identified with the highest temperature at which the quantum
correction factor f; diverges.

When the coupling form factor f(g) and the mass M(q) are given by f(g) = ¢, and
M(q) = M, respectively, and if the environmental oscillators are distributed according to
20]

T

J(w) = 52 &

;. i

0w —w;) =nw (Ohmic dissipation), (8.30)
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n being the friction constant, Eq. (8.27) for the decay width leads to [209]
T = fTk, (8.31)

where ' is the well known Kramers’s formula [217] at moderate to strong friction for
the decay rate given by

Ty = ‘;—;(\/1 a2 — a)e %, (8.32)

a being 17/2Mw,. The quantum correction factor f; is given in terms of I" functions by
(209]
T =2 /(1= X /v)

fo = T T A =N /)’ (8:33)
where v = 2rkgT/h. Af and A¥ are given by
Moz <1a T (8.34)
b 2 4 " '
g A o i
AE = ot wd, (8.35)

respectively, v being /M. It should be noticed that Langer’s ImF method implicitly
assumes that the coupling of the macroscopic degree of freedom to the environmental
degrees of freedom is strong enough to assure that the system is always in a thermal
equillibrium.

8.2 Fission of a hot nucleus

We now apply Eq. (8.27) to the problem of the fission of a hot nucleus. Following Ref.{200]
we introduce a low cutoff frequency w, to the distribution of the environmental oscillators
in order to mimic that there is no nuclear levels below the two quasi particle state in
even-even nuclei. Accordingly, we set the cutoff frequency to 2A(T)/k, A(T) being the
pairing gap at the temperature T', and take the spectrum density of the environmental
oscillators as[200]

J(w) = nw — we)f(w — we). (8.36)

Note that w, = oo and w, = 0 correspond to two extreme cases where there is no dis-
sipation at all and where the spectrum density is given by the usual Ohmic dissipation
given by Eq. (8.30), respectively. The former and the latter cases give the Bohr-Wheeler
formula and the well known Kramers’s formula at moderate to strong friction for the
decay rate, respectively, with a quantum correction factor (see Egs. (8.19) and (8.31)).
For the spectrum density given by Eq.(8.36), Eq.(8.29) for the Laplace transform of the
damping kernel reads

We w

2 c c
il 1 log ———— —tan™! w_) : (8.37)

&) =) T T M@ ( N :
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Note that the second term in this equation vanishes when the cutoff frequency w, is set
Zero.

We consider here the fission of 248Cf. We take the reduced mass for the symmetric
fission for M(q) and the potential given in Ref.[218] for V'(g). fwq, hws, gy and V, then
take the values of 1.18 MeV, 1.06 MeV, 3.4 fm, and 3.67 MeV, respectively. Though there
are extensive experimental as well as theoretical studies on the dissipation coefficient for
fission, its value is yet quite scattered[190]. In this thesis, we assume 20x 10?! /sec. for the
reduced dissipation coefficient 8 = n/M. This is a typical value which one can find in the
literature[190, 191]. We checked that the results of the following part of this chapter does
not qualitatively change as long as one assumes a value for 3, which is consistent with
data. We assume a bi-linear coupling form factor i.e., f(g) = ¢g. Since we are interested
in the effects of pairing in the super to normal transition region, we use a simplified
expression for the temperatre dependent pairing gap,

8n2

A@):kﬂﬁVKQ

=0 (for T > TP*") (8.39)

(1—(T/TZ*"))  (for T < TZ*") (8-38)

which is valid near the transition temperature[205). In Eq. (8.38) ( is the zeta function
and TP*" the critical temperature for the super-normal phase transition. We assign the
pairing gap at zero temperature to be 12/+/4 [117], A being the mass number of a nucleus,
and estimate the critical temperature TP*" using the relation 77" ~ 0.567A,[204, 205].

Figure 8.2 shows the crossover temperature 7, as a function of the cutoff parameter
hw,.. This is given by the positive root of the equation

2 n 2 27 [we We -1 We
4 _ —— | Zlog —— -t — | =0. 8.40
wR+WrTr — Wy tWR-Fr (wR og ol an wa) (8.40)

Notice that there is only one positive root for Eq.(8.40). It should be remarked that in
calculating the decay rate based on Eq.(8.27) the crossover temperature wp has to be
evaluated at each temperature T with corresponding cuttoff frequency w, i.e., one must
solve Eq.(8.40) by treating w, as though it is independent of temperature. Otherwise, one
cannot recover the decay rate formula of Kramers modified by the quantum correction
factor at temperatures higher than TP%", where the pairing gap vanishes. The solid line in
Fig. 8.2 is the solution of Eq.(8.40). The dashed line is the crossover temperature in the
absence of environments, i.e. hw,/27. If one sets w, to be zero, the crossover temperature
is given by (v1+ a? — a)hwy /27, a being n/2Mw, [209]. This value is denoted by the
dotted line in the figure. The crossover temperature gradually decreases as the cut-off
frequency decreases reflecting the increasing dissipation [200].

Figure 8.3 shows the quantum correction factor given by Eq.(8.28) as a function of
the temperature. In the limits of w, — 0 and oo, the infinite product in Eq.(8.28) can
be simplified by using I" function[209, 211] (see Eq. (8.33)). In the case of finite w,
one has to evaluate it directly until one gets convergence. In general cases, however,
this is a fairly difficult numerical task because the ratio for each n in Eq.(8.28) never
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Figure 8.2: The cutoff frequency dependence of the cross over temperature 7, between
the quantum and the thermal regimes. The solid line was obtained by numerically solving
Eq.(8.40). The dashed and the dotted lines are the crossover temperature in the absence of
environments and that in the system with Ohmic dissipation without cutoff, respectively.
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Figure 8.3: Quantum correction factor as a function of temperature. The dashed and the
dotted lines are the quantum correction factor in the absence of environment and that
in the system with Ohmic dissipation without cutoff, respectively. The solid line is the
quantum correction factor when a lower cutoff frequency has been introduced throuth
the temperature dependence of the pairing gap. The left and the right arrows are the
crossover temperature from a quantal to a thermal decay, and the critical temperature
for the super to normal phase transition, respectively.
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Figure 8.4: Decay rate as a function of temperature. The dashed and the dotted lines are
the decay rate in the absence of environment and in the Kramers limit, where there is no
cutoff, respectively. The solid line takes the effects of cutoff into account.

becomes sufficiently close to one even for very large n. Consequently, numerical errors
accumulate as one performs the production many times. In our applications, where we
used a constant mass and a bilinear coupling, the infinite product series converged. The
dashed and the dotted lines are the quantum correction factor in the limit of w, — 0 and
0o, respectively. The solid line is the quantum correction factor when the lower cutoff for
each temperature has been introduced. The left and the right arrows in the figure show
the crossover temperature from a quantal to a thermal decay, i.e. T.=0.169 MeV, in the
absence of environment and the transition temperature from super to normal fluids, i.e.
TPer=0.432 MeV. The solid line coincides with the dotted line at temperatures higher
than TP*" as is expected. Note that the quantum correction factor approaches to one at
high temperatures.

The decay rate for this system is shown in Fig. 8.4 as a function of the temperature.
The meaning of each line is the same as that in Fig. 8.3. We observe a sudden decrease
of the decay rate at the critical temperaure TP*". This behavior agrees with that found
in Ref.[219], where the diffusion of muons in metal was studied by taking a superconduct-
ing phase transition of the environmental electrons into account. Notice that the cusp
behaiour in the transitional region will be smeared out to some extent in actual cases, for
example, by the gradual disappearance of the pairing gap with temperature.

The critical temperature TP*" which we adopted in this thesis is much lower than
the threshold temperature for the dissipative fission discussed in Ref.[194]. The non-

124



monotonic behaviour of the decay rate shown in Fig. 8.4 might therefore indicate the
existence of the second critical temperature other than the threshold temperature dis-
cussed in Ref.[194]. In this connection, we wish to add comments on the possible change
of our critical temperature due to the yet unsetteled value of the pairing gap in large
nuclear deformation. The important thing is that we should use the pairing gap at the
saddle point in our calculations, because our formula for fission is intimately related to
that in the transition state theory. Studying the influence of the pairing vibration on the
spontaneous fission, the authors in Ref.[220] obtained a fairly large value of the pairing
gap at the saddle point of the fission, which is about two times larger than the standand
value. The large effective pairing gaps were also used in the time dependent Hartree Fock
(TDHF) calculations for the induced fission of 23¢U[221]. If we replace the pairing gap
which we used to obtain Fig. 8.4 by such large effective pairing gaps, the sudden de-
crease of the fission rate due to the disappearance of the pairing gap occurs nearly at the
threshold temperature found in Ref.[194]. In order to draw a definite conclusion on the
connection between our critical temperature and the threshold temperature in Ref.[194],
more detailed studies of the coupling form factor as well as of the temperature and the
coordinate dependences of the friction constant [190,198,222-224] will be required.
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Chapter 9

SUMMARY AND CONCLUDING
REMARKS

Heavy-ion fusion reactions at energies near and below the Coulomb barrier have been dis-
cussed from the point of view of quantum tunneling with many degrees of freedom. When
the excitation energy of nuclear intrinsic motions which couple to the reltaive motion is
zero, quantum tunneling takes place instantaneously, and the effects of the couplings can
be expressed in terms of the distribution of potential barriers. The underlying structure
of the barrier distribution is most dramatically seen when the first derivative of pene-
trabilities dP/dFE is plotted as a function of energy. In the problem of heavy-ion fusion
reactions, this quantity corresponds to the second derivative of Eo, which is referred to as
fusion barrier distribution. Extensive experimental efforts have been successfully carried
out in recent years in aiming at extracting fusion barrier distributions.

Even when the excitation energy of the intrinsic motion is not zero, the eigen-channel
approximation provides the barrier distribution picture. If the probability of finding
each eigen-barriers in the entrance channel, i.e. the weight factor in the eigen-channel
approximation has a weak energy dependence, the barrier distribution picture holds to a
good approximation, and thus it makes sense to call the second derivative of Eo as the
fusion barrier distribution. Performing exact coupled-channels calculations, we showed
that the energy dependence is actually very weak, regardless of the excitation energy of
the intrinsic motion. Therefore, the interpretation of d?(Eo)/dE? as a distribution of
fusion barriers is justified, which makes interpretation of the subbarrier fusion process
much clearer. We also discussed a transition from the sudden to the adiabatic tunneling
limits, and showed that the fusion barrier distribution can represent these two limits in a
natural way.

The adiabatic quantum tunneling can be actually recognised in experimental fusion
barrier distributions. We have performed coupled-channels calculations for the fusion
reactions 0 + *4Sm and “°Ca + 94Pt, 1920s. The calculations show that the dominant
effect of the excitation of the %0 octupole state at 6.1 MeV is to renormalise the static
potential without significantly changing the shape of the barrier distribution. On the
other hand, the excitation of the 3~ state at 3.7 MeV in “°Ca introduces well defined
peaks in the barrier distribution. These results suggest a natural limit to the energy
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of states which need to be considered explicitly in coupled-channels calculations. The
myriad of weak, high energy excitations which might be possible, contribute only to a
potential renormalization without affecting the shape of the barrier distribution. The
effects of these excitations can then be included in the bare potential in coupled-channels
calculations. If these channels are explicitly included in the coupled-channels calculations
without introducing the counter term, they could be double counted depending on the
choice of the bare potential.

In order to reach these conclusions, higher order couplings to nuclear surface vibrations
were shown to play an essencial role. Such higher order terms in the Coulomb coupling can
be safely neglected. Previous work indicated that standard coupled-channels calculations
are not very successful in describing fusion of heavy symmetric systems. We have shown
that the data can be described well by coupled-channels calculations once couplings to all
orders are included. We found that for the *Ni + 2%Zr reactions, terms beyond those
in the quadratic coupling approximation result in further enhancement of the fusion cross
sections at subbarrier energies. The additional enhancement is as large as that due to
the inclusion of quadratic coupling. The inclusion of the coupling to all orders is crucial
to reproduce the experimental fusion cross sections and the average angular momenta.
We performed calculations also for the *Q + !12Cd, *4Sm reactions as examples of very
asymmetric systems where the coupling is weaker. It is found that in such cases higher
order couplings result in a non-negligible enhancement of the fusion cross sections and a
significant modification of barrier distributions as well as the average angular momenta.

High precision fusion cross section measurements to deduce the barrier distribution,
and measurements of angular momentum distributions, are designed to study the impor-
tant couplings in a reaction. The sensitivity to couplings is greatly enhanced by perform-
ing experiments involving target projectile combinations with a large value of ZpZ7. It
has been shown in this thesis that higher order coupling significantly affects the barrier
distribution and average angular momentum even for weak coupling cases like %0 +
11204, 144Gm with values of ZpZ7 ~400. Whilst coupled-channles calculations in the lin-
ear coupling approximation have apparently been very successful in reproducing observed
barrier distributions for asymmetric systems, it is clear from our results that care must be
taken in their interpretation; the approximations used are unreliable even for relatively
weak coupling strengths. Spurious conclusions regarding the nature of couplings could
be reached if high quality experimental data, particularly for heavier systems, are com-
pared with calculations performed only with first order coupling. Exact coupled-channels
calculation with all orders is the only reliable means of quantitatively understanding the
fusion barrier distributions. The stage has now been reached when the standard codes of
the coupled-channels calculations should be revised to include coupling to all orders.

We have also discussed the effects of anharmonic phonon excitations on heavy-ion
fusion reactions at subbarrier energies, using coupled-channels calculations with all or-
ders. Our calculations showed that they play an important role in subbarrier fusion. We
showed that the vibrational limit of the interacting boson model provides a useful frame-
work to address these questions. There are mainly three effects of anharmonicities; the
anharmonicity in excitation energy, the reorientation effects, and the finite boson number
effects. We showed that the anharmonic effects associated with the excitation energy play
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only a minor role and the main effects come from the deviation of transition probabilities
from the harmonic limit, i.e. both the reorientation effects and the finite N effects. We
found that fusion barrier distributions strongly depend on the sign of the quadrupole
moment of excited states in phonon spectra. Using this property, we have analyzed the
high precision experimental data of the 0 + 44148§m fusion reactions and discussed the
anharmonic properties of the phonon excitations in 14448Sm. It was found that the best
fit to the experimental data requires a negative and a positive quadrupole moments for
the first 2% and 3~ states of 8Sm, respectively, whilist negative quadrupole moments for
both the first 27 and the first 3~ states of 4Sm are needed to explain the experimental
fusion barrier distributions. Since the sign of the quadrupole moment of the first 3~ state
of 1441488 are found to be opposite with each other, it would be interesting to measure
that of the nucleus in between, i.e. 45Sm.

We have shown that calculations in the harmonic limit provide only qualitative results
and the realistic situations are much more complicated due to the anharmonicities. It has
been expected that subbarrier fusion reactions may offer an alternative method to identify
multi-phonon states. It is, however, apparent from our results that care must be taken
in the analyses. Although harmonic calculations may be able to determine the minimum
phonon number, it is vital to take into account the anharmonic effects to identify the
maximum phonon number in vibrational nuclei.

One of the decay modes of the compound nucleus formed in a heavy-ion fusion reaction
is fission, which is also affected by the couplings to environment. In this connection, we
made use of the I'mF method of Langer to discuss the fission dynamics of hot nuclei in
the presence of a dissipative environment. We modified the Caldeira-Leggett model by
introducing a low cutoff frequency in order to mimic the effects of nuclear superfluidity
due to pairing interaction. We took into account the temperature dependence of the
pairing gap, and thus the phase transition from a super to a normal liquids. The cutoff
makes the dissipation weak. This accords with the fact that the nuclear dissipation plays
less or no significant role in nuclear fission at low temperatures[225]. The pairing gap
gets smaller as the temperature increases. We suggested that the decay rate suddenly
decreases at the critical temperature where the pairing gap disappears. This could be
related to the threshold phenomena of dissipative fission as well as the sudden decay of
superdeformed band at some critical angular momentum[226].

Cross sections of heavy-ion fusion reactions can now be measured with high precision.
The effects of couplings are much more transparently seen by representating such high
precision experimental data in a form of d?( Ec)/dE?. Together with the fact that one can
easily control several quantities which govern quantum tunneling by a careful choice of
the projectile and target combination, heavy-ion subbarrier fusion reactions thus provide
a flexible tool to understand the dynamics of quantum tunneling in multi-dimensional
space. It would be interesting to exploit the ability of such flexibility of heavy-ion fusion
reactions to address more general problems, i.e. quantum tunneling in systems with many
degrees of freedom.
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Appendix A

RELATION BETWEEN GREEN’S
FUNCTION AND
TRANSMISSION COEFFICIENT

In this appendix, we derive the relation between Green’s function and the transmission
coefficient, given by Eq. (2.35). Green’s function is defined by

(E - H)G(E)=1. (A1)
Taking the coordinate representation, this equation is expressed as
E+h—2d—2—V(:c) G(z,z',E) = 6(z - z') (A.2)
2u dx? s ) '

The general solution of this second order differential equation can be written down using
the two independent solutions y;(z) and y»(z) of the homogeneous equation

2
(E + ;—”gf - V(:z:)) y(z) =0 (A.3)

G(z,2',E) = Az )n(z)+ B(z')yz(z)
+0($ _ zl)z_u [_yZ(x )yl(x) + yl(x )yZ(x)l

h? W W
(e - )% [yzv(;,”')yl(w . ylv((,”')yzm] , (A.4)

where A(z) and B(z) are arbitary functions of £ and W is the Wronskian of y, and y,
defined by W = y4(z)y:(z) — yi(z)y2(z), which is independent of z.

We choose y;(z) to have an ingoing and reflected wave to the left of the barrier and
an outgoing wave to the right

n(r) — e** +Re z — —00, (A.5)
- Tek= T — 00, (A.6)
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and y,(z) to have an outgoing wave to the left of the barrier

yo(z) — e+ Rete T — 00, (A.7)
— Te ke T — —00. (A.8)
Here k is the wave number, and 7 and R are the transmission and the reflection coeffi-
cients, respectively. The Wronskian for this choice is evaluated as W = —2ikT.
We impose here the outgoing wave boundary consition. Green’s function which satis-
fies this condition has the following coordinate dependence:
GH(z,z' E) ~ e*?) T >, (A.9)

~ gkl -2) r<z. (A.10)

From this condition, it follows that the solution of Eq. (A.1) is given by

GH(z,z',E) = —%‘;% [11(2)y2(z)8(z — 7') + yo(z)pn (2)0(z' — 2)]. (A.11)

Combining Eqgs. (A.6), (A.8), and (A.11), we obtain Eq. (2.35).
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Appendix B

NUMERICAL METHOD FOR
COUPLED-CHANNELS
CALCULATIONS

In this appendix, we present one of the numerical methods [227] to solve coupled-channels
equations (2.44). This method directly integrates the second order differential equations,
and is different from the iterative method often used in computer codes for coupled-
channels calculations with full angular momentum couplings, like ECIS [228] or FRESCO
[229].

Our task is to numerically solve a set of coupled equations

d2

=5(r) = A(r)i(r) (B.1)

from 7, tO rypar With the boundary conditions that there are only incoming waves at
Tmin, and there are only outgoing waves at 7, for all channels except the entrance
channel, which has an incoming wave with amplitude 1 as well. If the bare potential
rapidly decreases to zero as r — Tyin and Tz, these boundary conditions are expressed
as

up(r) — e T8 o+ Rethnr T = Twmaz, (B.2)
- Tne T T = Trmins (B.3)

where k, = \/ 2u(E — €,)/h? is the wave number of the n-th channel. The n-th component
of the rhs of Eq. (B.1) is defined by ¥, Anm(7)un(r) where the (nm)-th component of
the matrix A(r) is defined by

2
Au(r) = 27 (Vo(r) = E + Vam(r)) (B.4)
Vom being the (nm)-th component of the coupling matrix defined by Eq. (2.45). If the

potential V4(r) does not decreases to zero at 7pi,, as in the incoming wave boundary
condition for heavy-ion fusion reactions (see Eq. (3.58)), k, should be replaced by local
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wave numbers. Also, if the Coulomb field exists in the bare potential Vp(r), the plane
waves in Eq. (B.2) should be replaced by the corresponding Coulomb wave functions.

In order to ensure that there are only incoming waves at r — Ty, We solve the
coupled-channels equations outerwards from 7,,, first by setting

un(rmin) = e_iknrmin: um(rmin) =0 (m ?é n) (B5)

Since the derivative of the wave functions at 7, can be explicitly written down from
Eq. (B.5), the wave functions at 7 = 7y + h, h being the radial mesh to integrate the
equations, can be determined, for example, in the Runge-Kutta method. The Runge-
Kutta method may not be, however, so efficient to solve the second order differential
equations. We therefore solve the coupled-channels equations, after determining the wave
functions at 7 = T'min + b, from r = Tmin + b t0 7 = Tge in either the Numerov [230] or
the modified Numerov methods [231]. The Numerov method relates the wave functions
at Tiy1 = Tmin + (i + 1), @11, to those at r; and r;_; as

: R .\ 5h2 . 2\ L B2 . ,
2+l _ i1 i _ i) 2 _ i—1 ] -1
@t = (1 12A ) [2 (1 + 13 .A) (1 —12A) i (1 12A ) U ] , (B.6)

while the relation in the modified Numerov method is given by

Tt = (1 - gA‘“)—l '{ (—%A‘ + \/5)2 - 1} (1 - ’1’—;,4‘) T (1 - ?—;A"‘l) ﬁ’i"l} :
(B.7)

Let xnm(r) be the wave function of the m-th channel thus obtained, i.e. it is up(r)
which satisfies the boundary conditions Eq. (B.5) at r = 7in. At © = T'maz, Xnm Can be
expressed by a superposition of the incoming and outgoing waves as

Xrm(T) = Coame " + D e T — Tmaz- (B.8)

The coefficients C,,,, and D,,, are determined either by matching the logarithmic deriva-
tives at rpee Or by matching the ratio of the wave functions at 7., — h to those at
Tmaz + h. Since both the Numerov and the modified Numerov methods do not automati-
cally generate the derivative of the wave functions, the latter procedure is more suitable
here. The coefficients are then obtained as

eikm(rmaw-i-h)xnm (,,.mam _ h) _ eikm (Tmaa:—h)xnm(‘rmu + h)
ezikmh - e—2ikmh !

Cnm =

(B.9)

and
e_lk'"(rm“-'-h))(nm(rmaz —h) — e_tkm(rm“_h)Xnm("'maz +h)
o—2ikmh _ g2ikmh ’

Do = (B.10)

respectively. This procedure is repeated for all n and m to determin the matrices C and
D.

The solution of the coupled-channels equations (B.1) with the proper boundary con-
ditions (B.2) and (B.3) is given by a linear combination of Xy, as

um('r) = Z'Tr’anm(T) (Bll)

n
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This equation satisfies the boundary condition (B.3) at 7 = r5. At 7 = g, it leads to

’u,rn('f‘maz) 3 Z ﬁanm("'ma:c) = z 7;1 (Cnme—ikmrmaz + Dnmeik‘l‘m‘l‘rma:) . (B.12)

n n

By comparing between Egs. (B.2) and (B.12), one finds
Z%Cnm = On,0- (B13)

The transmission coefficients are then finally obtained by
_ (-1
T.=(C™) - (B.14)

This method is used in the computer code for coupled-chnnels calculations for heavy-
ion fusion reactions which takes into account couplings to all orders[232].
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Appendix C

RELATION BETWEEN SURFACE
DIFFUSENESS AND BARRIER
PARAMETERS

In this Appendix, we discuss the relation between the surface diffuseness parameter of
nuclear potential and the parameters which characterise the Coulomb barrer, i.e. the
curvature, the barrier height, and the barrier position. For a given nuclear potential
Vn(r), the barrier position rp is obtained according to

d _ [dVN(T’) _ ZPZT82
r=rpg

%VO(T)

=0. (C.1)

r=rp

dr r2

The barrier height Vg and the curvature §) are then evaluated as

ZpZre?
VB = VN(T'B)+ poTe , (02)
B
Q = \J_Vfl‘;("B)”#ZPZTez/ 8 (C.3)

where Vy(r) is the second derivative of the nuclear potential.

C.1 Exponential potential
We fist consider an exponential potential given by

Vn(r) = Voe™™/e, (C.4)
From Eq. (C.1), the strength of the nuclear potential V; is related to the charge product

ZpZT as
— Ee_rB/a — M —_

=0. (C.5)

a %
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This equation leads to the following two relations which relates the surface diffuseness
parameter a to the barrier height and the curvature.

ZpZre?
v, = Zpére (1—1), (C.6)
TB B
ZpZye? (1 2
@ = (L2 (C.7)
#TB a TB
C.2 Woods-Saxon potential
We next consider a Woods-Saxon potential given by
_ Ve
Vn(r) = — 1 oe—Fay/a- (C.8)

Combining Egs. (C.1) - (C.3), we find that the surface diffuseness parameter a is expressed
in terms of g, Vg and 2 as

u22rd 2ZpZre*
- - —2 . .
“Te /( ZpZre? M ZpZrer —rpVp (€9

Once the surface diffuseness parameter is evaluated, the other two parameters in the
nuclear potential are obtained as

—z 1 TZB ZpZT62
1+e = E A ( - - Vg, (ClO)
ZpZre®
Vo = ae™®(1+ ez)z—frzLe, (C.11)
B

where z is defined by (rg — Rg)/a.

135



References

[1] F. Hund, Z. Phys. 43, 805(1927).

[2] G. Gamow, Z.Phys. 51, 204(1928).

(3] R.W. Gurney and E.U. Condon, Nature 122, 439(1928); Phys. Rev. 33, 127(1929).
[4] J.R. Oppenheimer, Phys. Rev. 31, 80(1928).

[5] R.H. Fowler and L. Nordheim, Proc. Roy. Soc., A119, 173(1928).

[6] A. Barone and G. Paterno, Physics and applications of the Josephson effect (John
Wiley & Sons, New York, 1982).

(7] P.L. Kapur and R. Peierls, Proc. Roy. Soc., A163, 606(1937).
(8] T. Banks, C.M. Bender and T.T. Wu, Phys. Rev. D8, 3346(1973); D8, 3366(1973).
[9] J.L. Gervais and B. Sakita, Phys. Rev. D16, 3507(1977).
[10] D.M. Brink, M.C. Nemes and D. Vautherin, Ann. Phys. (N.Y.) 147, 171(1983).
[11] A. Schmid, Ann. Phys. (N.Y.) 170, 333(1986).
(12] S. Takada and H. Nakamura, J. Chem. Phys. 100, 98(1994).

[13] D.B. Schwartz, B. Sen, C.N. Archie, and J.E. Lukens, Phys. Rev. Lett. 55,
1547(1985).

[14] T. Satoh, M. Morishita, S. Katoh, K. Hatakeyama, and M. Takashima, Physica
B197, 397(1994).

[15] E. Karlsson, R. Wappling, S.W. Lidstrom, O. Hartmann, R. Kadono, R.F. Kiefl, R.
Hempelmann, and D. Richter, Phys. Rev. B52, 6417(1995).

[16] M. Ueda and T. Ando, Phys. Rev. B50, 7820(1994).
[17] P.C.E. Stamp, Phys. Rev. Lett. 66, 2802(1991).
[18] A. Vilenkin, Phys. Rev. D37, 888(1988).

136



[19] Chem. Phys., special issue on Tunneling in Chemical Reactions, edited by V.A. Ben-
derskii, V.I. Goldanskii and J. Jortner, 170, 265(1993).

[20] A.O. Caldeira and A.J. Leggett, Phys. Rev. Lett. 46, 211(1981); Ann. of Phys.
(N.Y.), 149, 374(1983).

[21) Proceedings of the Fourth International Symposium on Foundations of Quantum Me-
chanics, edited by M. Tsukada et al., Japanese Journal of Applied Physics Series
Vol. 9 ( Publication Office of Japanese Journal of Applied Physics, Tokyo, 1993).

[22] N. Rowley, contribution in Ref. [21], p. 218.

[23] H. Holm, W. Scheid, and W. Greiner, Phys. Lett. 29B, 473 (1969).

[24] P.W. Riesenfeldt and T.D. Thomas, Phys. Rev. C2, 711(1970).

[25] C.Y. Wong, Phys. Rev. Lett., 31, 766(1973).

[26] J.O. Rasmussen and K. Sugawara-Tanabe, Nucl. Phys. A171, 497 (1971).
[27] L.C. Vaz and J.M. Alexander, Phys. Rev. C10, 464(1974).

[28] R.G. Stokstad, Y. Eisen, S. Kaplanis, D. Plete, U. Smilansky, and I. Tserruya, Phys.
Rev. Lett., 41, 465 (1978); Phys. Rev. C21, 2427 (1980).

[29] M. Beckerman, M. Salomaa, A. Sperduto, H. Enge, J. Ball, A. DiRenzo, S. Gazes,
Yan Chen, J.D. Molitoris, and Mao Nai-feng, Phys. Rev. Lett. 45, 1472(1980).

[30] W. Reisdorf, F.P. Hessberger, K.D. Hildenbrand, S. Hofmann, G. Miinzenberg, K.
-H. Schimidt, J.H.R. Schneider, W.F.W. Schneider, K. Siimmerer, G. Wirth, J.V.
Kratz, and K. Schlitt, Phys. Rev. Lett. 49, 1811 (1982).

[31] U. Jahnke, H.H. Rossner, D. Hilscher, and Houlb, Phys. Rev. Lett. 48, 17(1982).
[32] L.C. Vaz, J.M. Alexander, and G.R. Satchler, Phys. Rep. 69, 373 (1981).

[33] A.B. Balantekin, S.E. Koonin, and J.W. Negele, Phys. Rev. C28, 1565 (1983).

[34) M. Beckerman, Rep. Prog. Phys.51, 1047(1988); Phys. Rep. 129, 145(1985).

[35] S.G. Steadman and M.J. Rhoades-Brown, Ann. Rev. Nucl. Part. Sci. 36, 649(1986).
[36] W. Reisdorf, J. of Phys. G20, 1297 (1994).

[37] A.B. Balantekin and N. Takigawa, Rev. Mod. Phys., in press.

[38] R. Vandenbosch, T. Murakami, C.C. Sahm, D.D. Leach, A. Ray, and M.J. Murphy,
Phys. Rev. Lett. 56, 1234(1986).

[39) R. Vandenbosch, B.B. Back, S. Gil, A. Lazzarini, and A. Ray, Phys. Rev. C28, 1161
(1983).

137



[40] R. Vandenbosch, Annu. Rev. Nucl. Sci. 42, 447(1992), and references therein.

[41] S. Gil, D. Abriola, D.E. DiGregorio, M. di Tada, M. Elgue, A. Etchegoyen, M.C.
Etchegoyen, J. Fernindez Niello, A.M.J. Ferrero, A.O. Macchiavelli, A.J. Pacheco,
J.E. Testoni, P. Silveira Gomes, V.R. Vanin, A. Charlop, A. Garcia, S. Kailas, S.J.
Luke, E. Renshaw, and R. Vandenbosch, Phys. Rev. Lett. 65, 3100 (1990).

[42] M. Dasgupta, A. Navin, Y.K. Agarwal, C.V.K. Baba, H.C. Jain, M.L. Jhingan, and
A. Roy, Nucl. Phys. A539, 351(1992).

[43] A.M. Stefanini, L. Corradi, D. Ackermann, A. Facco, F. Gramegna, H. Moreno, L.
Mueller, D.R. Napoli, G.F. Prete, P. Spolaore, S. Beghini, D. Fabris, G. Montagnoli,
G. Nebbia, J.A. Ruiz, G.F. Segato, C. Signorini, and G. Viesti, Nucl. Phys. A548,
453(1992).

[44] N. Rowley, J.R. Leigh, J.X. Wei, and R. Lindsay, Phys. Lett. B314, 179(1993).

[45] K.E. Rehm, H. Esbensen, J. Gehring, B. Glagola, D. Henderson, W. Kutschera, M.
Paul, F. Soramel, and A.H. Wuosmaa, Phys. Lett. B317, 31(1993).

[46] A. Charlop, J. Bierman, Z. Drebi, A. Garcia, D. Prindle, A.A. Sonzogni, R. Van-
denbosch, D. Ye, S. Gil, F. Hasenbalg, J.E. Testoni, D. Abriola, M. di Tada, A.
Etchegoyen, M.C. Berisso, J.O. Fernandez-Niello, and A.J. Pacheco, Phys. Rev. C49,
R1235(1994).

[47] A.B. Balantekin, J.R. Bennett, and S. Kuyucak, Phys. Lett. B335, 295(1994).

[48] D. Ackermann, L. Corradi, D.R. Napoli, C.M. Petrache, P. Spolaore, A.M. Stefanini,
F. Scarlassara, S. Beghini, G. Montagnoli, G.F. Segato, and C. Signorini, Nucl. Phys.
ABT75, 374(1994).

[49] A. Charlop, J. Bierman, Z. Drebi, A. Garcia, S. Gil, D. Prindle, A. Sonzogni, R.
Vandenbosch, and D. Ye, Phys. Rev. C51, 628(1995).

[50] D. Ackermann, P. Bednarczyk, L. Corradi, D.R. Napoli, C.M. Petrache, P. Spolaore,
A M. Stefanini, K.M. Varier, H. Zhang, F. Scarlassara, S. Beghini, G. Montagnoli,
L. Miiller, G.F. Segato, F. Soramel, and C. Signorini, Nucl. Phys. A609, 91 (1996).

[61] J.R. Leigh, M. Dasgupta, D.J. Hinde, J.C. Mein, C.R. Morton, R.C. Lemmon, J.P.
Lestone, J.O. Newton, H. Timmers, J.X. Wei, and N. Rowley, Phys. Rev. C52,
3151(1995).

[52] H. Esbensen, Nucl. Phys. A352, 147 (1981).

[63] M.A. Nagarajan, A.B. Balantekin, and N. Takigawa, Phys. Rev. C34, 894(1986).
[64) K. Hagino, N. Takigawa, J.R. Bennett, and D.M. Brink, Phys. Rev. C51, 3190 (1995).
[65) R.G. Stokstad and E.E. Gross, Phys. Rev. C23, 281 (1981).

138



[56] N. Rowley, G.R. Satchler, and P.H. Stelson, Phys. Lett. B254, 25 (1991).

[57] J.G. Keller, K.-H. Schmidt, F.P. Hesseberger, G. Miinzenberg, and R. Reisdorf, Nucl.
Phys. A452, 173 (1986).

(58] K.-H. Schmidt and W. Morawek, Rep. Prog. Phys. 54, 949(1991).

[59] J.X. Wei, J.R. Leigh, D.J. Hinde, J.O. Newton, R.C. Lemmon, S. Elfstrom, J.X.
Chen, and N. Rowley, Phys. Rev. Lett. 67, 3368 (1991).

[60] J.X. Wei, J.R. Leigh, D.C. Weisser, J.O. Newton, S. Elfstrém, J.P. Lestone, J.X.
Chen, D.G. Popescu, and D.J. Hinde, Nucl. Instrum. Methods Phys. Res. A 306
557 (1991).

3

[61] J.R. Leigh, N. Rowley, R.C. Lemmon, D.J. Hinde, J.O. Newton, J.X. Wei, J.C. Mein,
C.R. Morton, S. Kuyucak, and A.T. Kruppa, Phys. Rev. C47, R437(1993).

[62] R.C. Lemmon, J.R. Leigh, J.X. Wei, C.R. Morton, D.J. Hinde, J.O. Newton, J.C.
Mein, M. Dasgupta, and N. Rowley, Phys. Lett. B316, 32(1993).

[63] K. Hagino, N. Takigawa, and A.B. Balantekin, Phys. Rev. C 56, 2104 (1997).

[64] C.R. Morton, M. Dasgupta, D.J. Hinde, J.R. Leigh, R.C. Lemmon, J.P. Lestone, J.C.
Mein, J.O. Newton, H. Timmers, N. Rowley, and A.T. Kruppa, Phys. Rev. Lett. 72,
4074(1994).

[65] A.M. Stefanini, D. Ackermann, L. Corradi, D.R. Napoli, C. Petrache, P. Spolaore,
P. Bednarczyk, H.Q. Zhang, S. Beghini, G. Montagnoli, L. Mueller, F. Scarlassara,
G.F. Segato, F. Sorame, and N. Rowley, Phys. Rev. Lett. 74, 864(1995).

[66] A.M. Stefanini, D. Ackermann, L. Corradi, J.H. He, G. Montagnoli, S. Beghini, F.
Scalassara, and G.F. Segato, Phys. Rev. C52, R1727(1995).

[67] H. Timmers, L. Corradi, A.M. Stefanini, D. Ackermann, J.H. He, S. Beghini, G.
Montagnoli, F. Scarlassara, G.F. Segato, and N. Rowley, Phys. Lett. B399, 35 (1997).

[68] J.D. Bierman, P. Chan, J.F. Liang, M.P. Kelly, A.A. Sonzogni, and R. Vandenbosch,
Phys. Rev. Lett. 76, 1587(1996); Phys. Rev. C54, 3068 (1996).

[69] H. Timmers, M. Dasgupta, D.J. Hinde, J.R. Leigh, R.C. Lemmon, J.C. Mein, C.R.
Morton, J.O. Newton, and N. Rowley, Nucl. Phys. A584, 190(1994).

[70] N. Rowley, H. Timmers, J.R. Leigh, M. Dasgupta, D.J. Hinde, J.C. Mein, C.R.
Morton, and J.O. Newton, Phys. Lett. B373, 23(1996).

[71] C.R. Morton, D.J. Hinde, J.R. Leigh, J.P. Lestone, M. Dasgupta, J.C. Mein, J.O.
Newton, and H. Timmers, Phys. Rev. C52, 243(1995).

[72] D.J. Hinde, C.R. Morton, M. Dasgupta, J.R. Leigh, J.C. Mein, and H. Timmers,
Nucl. Phys. A592, 271 (1995).

139



[73] D.J. Hinde, M. Dasgupta, J.R. Leigh, J.C. Mein, C.R. Morton, J.O. Newton, and H.
Timmers, Phys. Rev. Lett. 74, 1295 (1995); Phys. Rev. C53, 1290(1996).

[74] J.C. Mein, D.J. Hinde, M. Dasgupta, J.R. Leigh, J.O. Newton, and H. Timmers,
Phys. Rev. C55, R995(1997).

[75] A.B. Balantekin and N. Takigawa, Ann. Phys. (N.Y.) 160, 441(1985).
[76] N. Takigawa, K. Hagino, M. Abe, and A.B. Balantekin, Phys. Rev. C49, 2630(1994).
[77] N. Takigawa, K. Hagino, and M. Abe, Phys. Rev. C51, 187(1995).

[78] K. Hagino, N. Takigawa, A.B. Balantekin, and J.R. Bennett, Phys. Rev. C52, 286
(1995).

[79] C.H. Dasso, S. Landowne, and A. Winther, Nucl. Phys. A405, 381(1983); ibid A407,
221(1983).

[80] K. Hagino, N. Takigawa, M. Dasgupta, D.J. Hinde, and J.R. Leigh, Phys. Rev. C55,
276 (1997).

[81] K. Hagino, N. Takigawa, M. Dasgupta, D.J. Hinde, and J.R. Leigh, Phys. Rev. Lett.
79, 2014 (1997).

[82] K. Hagino, N. Takigawa, and S. Kuyucak, Phys. Rev. Lett. 79, 2943 (1997).
[83] K. Hagino, S. Kuyucak, and N. Takigawa, Phys. Rev. C, in press.
[84] K. Hagino, N. Takigawa, and M.Abe, Phys. Rev. C53, 1840(1996).

(85] L.D. Landau and E.M. Lifschitz, Quantum Mechanics, 3rd ed., (Pregamon, Oxford,
1975).

[86] E. Kemble, Phys. Rev. 48, 549 (1935).
[87] D.L. Hill and J.A. Wheeler, Phys. Rev. 89, 1102 (1953).

[88] P. Frobrich and R. Lipperheide, Theory of Nuclear Reactions, (Clarendon, Oxford,
1996).

(89] R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw-
Hill, New York, 1965).

[90] D.M. Brink, Semi-Classical Methods for Nucleus-Nucleus Scattering, (University
Press, Cambridge, 1985).

[91] D.M. Brink and U. Smilansky, Nucl. Phys. A405, 301 (1983).
[92] D.M. Brink and N. Takigawa, Nucl. Phys. A279, 159 (1977).
[93] S.Y. Lee, N. Takigawa, and C. Marty, Nucl. Phys. A308, 161 (1978).

140



[94] S.Y. Lee and N. Takigawa, Nucl. Phys. A308, 189 (1978).

[95] E. Vigezzi and A. Winther, Ann. Phys. (N.Y.) 192, 432 (1989).
[96] M.W. Cole and R.H. Good, Phys. Rev. A18, 1085 (1978).

[97] C.H. Dasso and S. Landowne, Phys. Lett. B183, 141(1987).

[98] K. Langanke, Advances in Nuclear Physics vol. 21, edited by J.W. Negele and E.
Vogt (Plenum, New York, 1993), p. 85.

[99] S. Bjgnholm and W.J. Swiatecki, Nuc. Phys. A391, 471(1982).

[100] S. Hofmann, V. Niniv, F.P. Hessberger, P. Arbruster, H. Folger, G. Muenzenberg,
H.J. Schoett, A.G. Popeko, A.V. Yeremin, S. Saro, R. Janik, and M. Leino, Z. Phys.
A354, 229(1996).

[101] J.R. Leigh, D.J. Hinde, J.O. Newton, W. Galster, and S.H. Sie, Phys. Rev. Lett.
48, 527 (1982).

[102] D.J. Hinde, J.R. Leigh, J.O. Newton, W. Galster, and S.H. Sie, Nucl. Phys. A385,
109 (1982).

[103] R.J. Charity, J.R. Leigh, J.J.M. Bokhorst, A. Chatterjee, G.S. Foote, D.J. Hinde,
J.O. Newton, S. Ogaza, and D. Ward, Nucl. Phys. A457, 441 (1986).

[104] P.H. Stelson, H.J. Kim, M. Beckerman, J. Shapiro, and R.L. Robinson, Phys. Rev.
C41, 1584(1990).

[105] W.S. Freeman, H. Ernst, D.F. Geesaman, W. Henning, T.J. Humanic, W. Kiihn,
G. Rosner, J.P. Schiffer, B. Zeidman, and F.W. Prosser, Phys. Rev. Lett. 50, 1563
(1983); Phys. Rev. C28, 919 (1983).

[106] C. Morton, Ph.D. thesis, the Australian National University, 1995.
[107] L.C. Northcliffe, Ann. Rev. Nucl. Sci. 13, 67 (1963).

[108] R.A. Broglia and A. Winther, Heavy-Ion Reactions, (Addison-Wesley, New York,
1991).

[109] O. Akyiiz and A. Winther, in Nuclear Structure and Heavy-Ion Collisions, Proceed-
ings of the International School of Physics “Enrico Fermi, ” Course LXXVII, Varenna,
1979, edited by R.A. Broglia et al. (North- Holland, Oxford, 1981).

[110] P.R. Christensen and A. Winther, Phys. Lett. B65, 19 (1976).
[111] H. Esbensen and B.B. Back, Phys. Rev. C54, 3109 (1996).
[112] S. Landowne and S.C. Pieper, Phys. Rev. C29, 1352 (1984).

141



[113] N. Rowley, A. Kabir, and R. Lindsay, J. of Phys. G15, 1.269(1989).

[114] A.B. Balantekin, A.J. DeWeerd, and S. Kuyucak, Phys. Rev. C54, 1853 (1996).
[115] H.J. Krappe, J.R. Nix, and A.J. Sierk, Phys. Rev. C20, 992 (1979).

[116] M. Inui and S.E. Koonin, Phys. Rev. C30, 175 (1984).

[117] A. Bohr and B. Mottelson, Nuclear Siructure (Benjamin, New York, 1975), vol. 2.

[118] N. Takigawa and K. Ikeda, in Proceedings of the Symposium on Many Facels of
Heavy Ion Fusion Reactions, edited by W. Henning et al.(Argonne National Labora-
tory Report No. ANL-PHY-87-1), 1986, p.613.

[119] O. Tanimura, Phys. Rev. C35, 1600(1987).

[120] H. Esbensen, S. Landowne, and C. Price, Phys. Rev. C36, 1216(1987); Phys. Rev.
36, 2359(1987).

[121] N. Takigawa, Y. Alhassid, and A.B. Balantekin, Phys. Rev. C45, 1850(1992).

[122] J. Gomez-Camacho and R.C. Johnson, J. Phys. G12, L235(1986); J. Phys. G14,
609(1988).

[123] K. Mclenithan and D. Secrest, J. Chem. Phys. 80, 2480(1984).
[124] P. McGuire and D.J. Kouri, J. Chem. Phys. 60, 2488(1974).
[125] K. Moribayashi, S. Takada, and H. Nakamura, J. Chem. Phys. 100, 4284(1994).

[126] Y. Alhassid, V. Liu, and B. Shao, Phys. Rev. A48, 2832(1993); Phys. Rev. A46,
3865(1992).

[127] A.T. Kruppa, P. Romain, M.A. Nagarajan, and N. Rowley, Nucl. Phys. A560, 845
(1993).

[128] O. Tanimura, Z. Phys. A327, 413 (1987).
[129] A.B. Balantekin, J.R. Bennett and N. Takigawa, Phys. Rev. C44, 145 (1991).

[130] J. de Boer and J. Eichler, Advances in Nuclear Physics, (Plenum, New York, 1968),
vol. 1, p. 1.

[131] C.H. Dasso, J. Fernindez-Niello, and A. Vitturi, Phys. Rev. C55, 2112 (1997).

[132] F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University
Press, Cambridge, England, 1987).

[133] A.B. Balantekin, J.R. Bennett, A.J. DeWeerd, and S. Kuyucak, Phys. Rev. C46,
2019 (1994).

142



[134] A.B. Balantekin, J.R. Bennett, and S. Kuyucak, Phys. Rev. C 48, 1269 (1993).
[135] A.B. Balantekin, J.R. Bennett, and S. Kuyucak, Phys. Rev. C49, 1079 (1994).
[136] A.B. Balantekin, J.R. Bennett, and S. Kuyucak, Phys. Rev. C49, 1294 (1994).
[137] T. Izumoto, T. Udagawa, and B.T. Kim, Phys. Rev. C51, 761 (1995).

[138] K. Hagino, T. Rumin, and N. Takigawa, to be published.

[139] D.E. Di Gregorio, J.O.F. Niello, A.J. Pacheco, D. Abriola, S. Gil, A.O. Macchiavelli,
J.E. Testoni, P.R. Pascholati, V.R. Vanin, R.L. Neto, N. Carlin Filho, M.M. Coimbra,
P.R.S. Gomes, and R.G. Stokstad, Phys. Lett. B176, 322 (1986).

[140] N. Rowley and M. Dasgupta, in Proceedings of the International Workshop on
Heavy-Ion Reactions with Neutron-rich Beams, RIKEN, Saitama, Japan 1993, edited
by M. Ishihara, N. Takigawa, and S. Yamaji (World Scientific, Singapore, 1993), p.
232.

[141] H. Esbensen and S. Landowne, Phys. Rev. C35, 2090(1987).

[142] N. Rowley, in Proceedings of the International Workshop on Heavy-Ion Fusion:
Exploring the Variety of Nuclear Properties, edited by A.M. Stefanini et al. (World
Scientific, Singapore, 1994), p.66.

[143] V. Yu. Denisov and G. Royer, Phys. At. Nucl. 58, 397(1995); J. Phys. G20,
143(1994).

[144] P. Ring and P. Schuck, The Nuclear Many Body Problem (Springer-Verlag, New
York, 1980).

[145] E.M. Takagui, G.R. Satchler, H. Takai, K. Koide, and O. Dietzsch, Nucl. Phys.
A514, 120(1990).

[146] D.J. Horen, R.L. Auble, G.R. Satchler, J.R. Beene, 1.Y. Lee, C.Y. Wu, D. Cline,
M. Devlin, R. Ibbotson, and M.W. Simon, Phys. Rev. C48, R2131(1993).

(147) H. Esbensen and S. Landowne, Nucl. Phys. A492, 473(1989).

[148] P.R.S. Gomes, I.C. Charret, R. Wanis, G.M. Sigaud, V.R. Vanin, R. Liguori Neto,
D. Abriola, O.A. Capurro, D.E. DiGregorio, M. di Tada, G. Duchene, M. Elgue, A.
Etchegoyen, J.O. Fernandez Niello, A.M.J. Ferrero, S. Gil, A.O. Macchiavelli, A.J.
Pacheco, and J.E. Testoni, Phys. Rev. C49, 245(1994).

[149] E.F. Aguilera, J.J. Kolata, and R.J. Tighe, Phys. Rev. C52, 3103(1995).
[150] V.-S. Lac and S. Kuyucak, Nucl. Phys. A539, 418 (1992).

[151] E. Cereda, M. Pignanelli, S. Micheletti, H.V. von Geramb, M.N. Harakeh, R. De
Leo, G. D’Erasmo, and A. Pantaleo, Phys. Rev. C26, 1941 (1982).

143



[152] M.J. Smithson, J.S. Lilley, M.A. Nagarajan, P.V. Drumm, R.A. Cunningham, B.R.
Fulton, and I.J. Thompson, Nucl. Phys. A517, 193 (1990).

[153] D.M. Brink, A.F.R. de Toledo Piza, and A.K. Kerman, Phys. Lett. B19, 413 (1965).
[154] T. Tamura and T. Udagawa, Phys. Rev. 150, 783 (1966).

[155] A. Aprahamian, D.S. Brenner, R.F. Casten, R.L. Gill, and A. Piotrowski, Phys.
Rev. Lett. 59, 535 (1987).

[156] R.F. Casten, N.V. Zamfir, and D.S. Brenner, Phys. Rev. Lett. 71, 227 (1993).
[157) N.V. Zamfir and R.F. Casten, Phys. Lett. B341, 1 (1994).

[158] J. Kern, P.E. Garrett, J. Jolie, and H. Lehmann, Nucl. Phys. A593, 21 (1995).
[159] J. Kern and J. Jolie, Phys. Lett. B364, 207 (1995).

[160] K.-H. Kim, T. Otsuka, A. Gelberg, P. von Brentano, and P. Van Isacker, Phys. Rev.
Lett. 76, 3514 (1996).

[161] C. Volpe, F. Catara, Ph. Chomaz, M.V. Andrés, and E.G. Lanza, Nucl. Phys. A589,
521 (1995).

[162] E.G. Lanza, M.V. Andrés, F. Catara, Ph. Chomaz, and C. Volpe, Nucl. Phys. A613,
445 (1997).

[163] G.F. Bertsch and H. Feldmeier, Phys. Rev. C56, 839 (1997).

[164] M.P. Metlay, J.L. Johnson, J.D. Canterbury, P.D. Cottle, C.W. Nestor Jr., S. Ra-
man, and V.G. Zelevinsky, Phys. Rev. C52, 1801 (1995).

[165] P.D. Cottle and D.A. Bromley, Phys. Rev. C35, 1891 (1987).

[166] I. Hamamoto, Nucl. Phys. A155, 362 (1970).

[167) B. Sorensen, Phys. Lett. 35B, 10 (1971).

[168] M. Guidetti, D.J. Rowe, and H. Chow, Nucl. Phys. A238, 225 (1975).

[169] A.M.R. Joye, A.M. Baxter, M.P. Fewell, D.C. Kean, and R.H. Spear, Phys. Rev.
Lett. 38, 807 (1977).

[170] M. Yeh, P.E. Garrett, C.A. McGrath, S.W. Yates, and T. Belgya, Phys. Rev. Lett.
76, 1208 (1996).

[171] R.A. Gatenby, J.R. Vanhoy, E.M. Baum, E.L. Johnson, S.W. Yates, T. Belgya, B.
Fazekas, A. Veres, and G. Molnar, Phys. Rev. C41, R414 (1990).

[172] R.A. Gatenby, E.L. Johnson, E.M. Baum, S.W. Yates, D. Wang, J.R. Vanhoy, M.T.
McEllistrem, T. Belgya, B. Fazekas, and G. Molnar, Nucl. Phys. A560, 633 (1993).

144



[173] M. Wilhelm, E. Radermacher, A. Zilges, and P. von Brentano, Phys. Rev. C 54,
R449 (1996).

[174] E. Miiller-Zanotti, R. Hertenberger, H. Kader, D. Hofer, G. Graw, Gh. Cata-Danil,
G. Lazzari, and P.F. Bortingnon, Phys. Rev. C47, 2524 (1993).

[175] W. Urban, J.C. Bacelar, J. Jongman, W. Gast, G. Hebbinghaus, A. Krimer-Flecken,
R.M. Lieder, M. Thoms, and O. Zell, Phys. Rev. C53, 2516 (1996).

[176] L. Bargioni, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, P. Pavan, C.
Rossi-Alvarez, G. de Angelis, G. Maron, and J. Rico, Phys. Rev. C51, R1057 (1995).

[177) M. Piiparinen, P. Kleinheinz, J. Blomqvist, A. Virtanen, A. Atac, D. Miiller, J.
Nyberg, T. Ramsoy, and G. Sletten, Phys. Rev. Lett. 70, 150 (1993).

[178] P. Kleinheinz, Prog. Part. Nucl. Phys. 28, 369 (1992).
[179] R.F. Casten and D.D. Warner, Rev. Mod. Phys. 60, 389 (1988).
[180] J.N. Ginocchio, Nucl. Phys. A376, 438 (1982).

[181] A.F. Barfield, B.R. Barrett, J.L. Wood, and O. Scholten, Ann. Phys. (N.Y.) 182,
344 (1988).

[182] A.F. Barfield, P. von Brentano, A. Dewald, K.O. Zell, N.V. Zamfir, D. Bucurescu,
M. Ivascu, and O. Scholten, Z. Phys. A332, 29 (1989).

[183] M. Pignanelli, N. Blasi, S. Micheletti, R. de Leo, M.A. Hofstee, J.M. Schippers, S.Y.
van der Werf, and M.N. Harakeh, Nucl. Phys. A519, 567 (1990).

[184] A. Jungclaus, H.G. Borner, J. Jolie, S. Ulbig, R.F. Casten, N.V. Zamfir, P. von
Brentano, and K.P. Lieb, Phys. Rev. C47, 1020 (1993).

[185] M. Grinberg and Ch. Stoyanov, Nucl. Phys. A573, 231 (1994).
[186] A. Wolf and R.F. Casten, Phys. Rev. C36, 851 (1987).
[187] O. Scholten, Phys. Lett. B127, 144 (1983).

[188] H. Kader, G. Graw, F.J. Eckle, G. Eckle, P. Schiemenz, P. Kleinheinz, B. Rubio,
G. De Angelis, T.N. Massey, L.G. Mann, and J. Blomgvist, Phys. Lett. B227, 325
(1989).

[189] L.K. Peker, Nucl. Data Sheets 59, 393 (1990).

[190] D. Hilscher and H. Rossner, Ann. Phys. Fr. 17, 471(1992).

[191] T. Wada, Y. Abe, and N. Carjan, Phys. Rev. Lett. 70, 3538(1993).

[192] D.J. Hinde, D. Hilscher, and H. Rossner, Nucl. Phys. A502, 497c(1989).

145



[193] N. Bohr and J.A. Wheeler, Phys. Rev. 56, 426 (1939).
[194] M. Thoennessen and G.F. Bertsch, Phys. Rev. Lett. 71, 4303(1993).
[195] R. Vandenbosch, Phys. Rev. C50, 2618(1994).

(196] H. van der Plog, J.C.S. Bacelar, 1. Dioszegi, G. van’t Hof and A. van der Woude,
Phys. Rev. Lett. 75, 970(1995).

[197] D. Fabris, G. Viesti, E. Fioretto, M. Cinausero, N. Gelli, K. Hagel, F. Lucarelli,
J.B. Natowitz, G. Nebbia, G. Prete, and R. Wada, Phys. Rev. Lett. 73, 2676 (1994).

[198] P. Frébrich, I.I. Gontchar, and N.D. Mavlitov, Nucl. Phys. A556, 281(1993).

[199] P. Grangé, S. Hassani, H.A. Weidenmiiller, A. Gavron, J.R. Nix, amd A.J. Sierk,
Phys. Rev. C34, 209(1986).

[200] N.R. Dagdeviren and H.A. Weidenmiiller, Phys. Lett. B186, 267(1987).

[201] F. Barranco, G.F. Bertsch, R.A. Broglia, and E. Vigezzi, Nucl. Phys. A512,
253(1990).

[202] P. Lotti, F. Cazzola, P.F. Bortignon, R.A. Broglia, and A. Vitturi, Phys. Rev. C40,
1791(1989).

[203] F. Alassia, O. Civitarese, amd M. Reboiro, Phys. Rev. C35, 812(1987).
[204] O. Civitarese, G.G. Dussel, and R.P.J. Perazzo, Nucl. Phys. A404, 15(1983).
[205] A. Iwamoto and W. Greiner, Z. Phys. A292, 301(1979).

[206] N. Takigawa, S. Yoshida, K. Hagino, S.K. Patra, and C.R. Praharaj, Phys. Rev.
C53, 1038 (1996).

[207] S. Yoshida and N. Takigawa, Phys. Rev. C55, 1255 (1997).

[208] J.S. Langer, Ann. Phys. (N.Y.) 41, 108(1967); G. Callan and S. Coleman, Phys.
Rev. D16, 1762(1977); 1.K. Affleck, Phys. Rev. Lett. 46, 388(1981).

[209] H. Grabert, P. Olschowski and U. Weiss, Phys. Rev. B36, 1931(1987).
[210] N. Takigawa and M. Abe, Phys. Rev. C41, 2451(1990).
[211] P. Frobrich and G.-R. Tillack, Nucl. Phys. A540, 353(1992).

[212] J.-D. Bao, Y.-Z. Zhuo and X.-Z. Wu, Phys. Lett. B327, 1(1994); Z. Phys. A347,
217(1994).

[213] P. Hanggi, P. Talkner,and M. Borkovec, Rev. Mod. Phys. 62, 251(1990).

[214] R.P. Feynman, Statistical Mechanics, (Benjamin, Reading, Massachussets, 1972).

146



[215] A. Gavron, in Computational Nuclear Physics 2 Nuclear Reactions, edited by K.
Langanke, J.A. Maruhn, and S.E. Koonin, (Springer-Verlag, New York, 1993), p.
108.

[216] H. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep. 168, 115(1988).
[217] H. Kramers, Physica (Utrecht) 7, 284 (1940).
[218] P. Grangé, L. Jun-Qing, and H.A. Weidenmiiller, Phys. Rev. C27, 2063(1983).

[219] M. Matsumoto and Y. Ohashi, J. Phys. Soc. Jpn. 62, 2088(1993); Y. Ohashi and
M. Matsumoto, J. Phys. Soc. Jpn. 62, 3532(1993).

[220] A. Staszczak, S. Pilat, and K. Pomorski, Nucl. Phys. A504, 589(1989).

[221] J.W. Negele, S.E. Koonin, P. Moéller, J.R. Nix, and A.J. Sierk, Phys. Rev. C17,
1098(1978).

[222] H. Hofmann, F.A. Ivanyuk, and S. Yamaji, Nucl. Phys. A598, 187(1996).
[223] P. Paul and M. Thoennessen, Ann. Rev. Part. Nucl. Sci. 44, 65(1994).
[224] D.J. Hofman, B.B. Back, and P. Paul, Phys. Rev. C51, 2597(1995).

[225] J.R. Nix, Nucl. Phys. A502, 609c(1989).

[226] Y.R. Shimizu, E. Vigezzi, T. Dgssing, amd R.A. Broglia, Nucl. Phys. A557,
99¢(1993).

[227] P. Ring, H. Massmann, and J.O. Rasmussen, Nucl. Phys. A296, 50 (1978).
[228] J. Raynal, Phys. Rev. C23, 2571(1981).
[229] I1.J. Thompson, Comput. Phys. Rep. 7, 167 (1988).

[230] S.E. Koonin and D.C. Meredith, Computational Physics Fortran Version, (Addison-
Wesley, 1990).

[231] M.A. Melkanoff, T. Sawada, and J. Raynal, Methods in Computational Physics, vol.
6, 1 (1966).

[232] K. Hagino, N. Rowley, and A.T. Kruppa, (to be published).

147



	thesis1.pdf
	thesis2.pdf

