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Random Matrix Models (RMM)

A RMM is a probability space (Ω,P,F) where the sample space Ω is a set
of matrices.

Three classic models: GOE, GUE and GSE where the N × N matrices are
real symmetric, Hermitian or symplectic Hermitian and have probability
density proportional to

exp
(
−Tr(A2)

)
This measure Pβ,N induces a probability density on the eigenvalues which
has the form

Pβ,N(x1, . . . , xN) = CN,β

∏
i<j

|xi − xj |β
∏
j

e−βx
2
j /2, β = 1, 2, 4.
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Largest Eigenvalue Distributions

Let xmax denote the largest (random) eigenvalue. Then

Fβ,N(x) : = Pβ,N(xmax < x) = Pβ,N(x1 < x , . . . , xN < x)

=

∫ x

−∞
· · ·
∫ x

−∞
Pβ,N(x1, . . . , xN) dx1 · · · dxN

For β = 2 (unitary case) it was M. Gaudin who in 1961 showed that
F2,N is a Fredholm determinant1 whose kernel is

KN(x , y) = (
N

2
)
1
2
φN(x)φN−1(y)− φN−1(x)φN(y)

x − y
,

φn(x) = harmonic oscillator wave fns.

We are interested in a limit theorem as N →∞.

1Actually, Gaudin looked a different statistic—level spacing distribution—but his
proof carries over to the largest eigenvalue distribution.
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Using the known asymptotics of Hermite polynomials in the transition
region (Plancherel-Rotach formulas) it is an easy exercise to show that (at
least formally) that the operator KN converges to the Airy kernel2

KAiry(x , y) =
Ai(x) Ai′(y)− Ai′(x) Ai(y)

x − y
, Ai(x) = Airy function.

Thus in distribution

F2(s) := lim
N→∞

P2,N

[
N2/3

(
xmax√

N
− 2

)
≤ s

]
= det(I − KAiry)

where KAiry acts on L2((s,∞)).

For β = 1, 4 the analysis is more involved.

First of all the resulting kernels are 2× 2 matrix kernels; and secondly, for
the orthogonal case (β = 1) the convergence is no longer trace-class and
regularized determinants are involved.

F. Dyson (1970) was the first to recognize that matrix kernels arise in
the orthogonal and symplectic cases. This was further developed by
M. L. Mehta, TW and others.

2For a proof one must show trace-class convergence of the operator.
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Integrable Structure: Painlevé Representations

The sine kernel (bulk scaling limit) and the Airy kernel are both of the
form

K (x , y) =
ϕ(x)ψ(y)− ψ(x)ϕ(y)

x − y
(1)

where ϕ,ψ satisfy DEs of the form

d

dx

(
ϕ(x)
ψ(x)

)
= Ω(x)

(
ϕ(x)
ψ(x)

)
where Ω(x) is a 2× 2 traceless matrix whose elements are rational
functions of x .

For example, for the Airy kernel

Ω(x) =

(
0 1
x 0

)
Let J be a union of open intervals: J =

⋃m
j=1(a2j−1, a2j), and consider the

Fredholm determinant
τ(a) := det(I − K )

where K has kernel (1) and acts on L2(J).
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It is a theorem (TW) that τ(a) can be expressed in terms of a solution to
a total system of PDEs (independent variables the end-points aj).

For the Airy kernel and J = (s,∞), the PDEs reduce to a single
ODE—the Painlevé II DE:

F2(s) = exp

(
−
∫ ∞
s

(x − s)q2(x) dx

)
:= (F (s))2

d2q

dx2
= x q + 2q3

q(x) ∼ Ai(x), x →∞, Hastings-McLeod solution

Somewhat surprisingly, both F1 and F4 can be expressed in terms of the
same Painlevé II function q, e.g.

F1(s) = exp

(
−1

2

∫ ∞
s

q(x) dx

)
(F2(s))1/2 := E (x)F (x).
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Historical remarks:

I The first connection between Fredholm deteminants/Toeplitz
determinants and Painlevé functions was in the 2D Ising model where
the 2-point massive scaling functions were shown to be expressible in
terms of Painlevé III (Wu, McCoy, CT, Barouch, 1973–76).

I Total systems of PDEs for Ising n-point scaling functions were derived
by Sato, Miwa and Jimbo (1977–79)—isomondromy enters statistical
physics.

I For the Fredholm determinant with sine kernel, Jimbo, Miwa, Môri,
Sato (1980) showed the connection with Painlevé V.

I TW developed the general theory above with parallel developments by
Adler, van Moerbeke and Shiota.

I Riemann-Hilbert methods by Its, Deift and others further developed
this area particularly with regards to the difficult questions of
asymptotics (connection formulas).
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Some numerics
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Figure : Largest eigenvalue densities fβ(x) = dFβ/dx , β = 1, 2, 4.

Table : The mean (µβ), variance (σ2
β), skewness (Sβ) and kurtosis (Kβ) of Fβ .

β µβ σ2β Sβ Kβ

1 -1.206 533 574 1.607 781 034 0.293 464 524 0.165 242 938
2 -1.771 086 807 0.813 194 792 0.224 084 203 0.093 448 087
4 -2.306 884 489 0.517 723 720 0.165 509 494 0.049 195 156
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Tail behavior of Fβ

As x → +∞

F (x)− 1 ∼ −
exp(−4

3x3/2)

32πx3/2
, E (x)− 1 ∼ −

exp(−2
3x3/2)

4
√
πx3/2

As x → −∞

F1(x) ∼ τ1
exp(− 1

24 |x |
3 − 1

3
√
2
|x |3/2)

|x |1/16
, F2(x) ∼ τ2

exp(− 1
12 |x |

3)

|x |1/8

τ1 = 2−11/48 eζ
′(−1), τ2 = 21/24 eζ

′(−1)



Next-largest, next-next-largest, etc. eigenvalue distributions

There are Painlevé II type representations. (TW, β = 2; M. Dieng,
β = 1, 4.)

-10 -8 -6 -4 -2 2 4

0.1

0.2

0.3

0.4

Figure : Histogram of the four largest (centered and normalized) eigenvalues for
104 realizations of 1000× 1000 GOE matrices. Solid curves are F1 and Dieng’s
limiting next-largest, etc. distributions. Figure courtesy of Dieng.



Beyond Determinantal Class

Some historical remarks concerning universality





This is the origin of the famous Wigner-Dyson-Mehta bulk universality
conjecture (sine-kernel).

First proof for Wigner matrices: Tau & Vu (2009) and independently
Erdös, Péché, Raḿırez, Schlein, Yau (2009). Wigner matrices

A =
1√
N

(aij) , algebraically indep. elements aij are i.i.d. random variables
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Universality theorem for largest eigenvalue of Wigner matrices

A. Soshnikov (1999): Properly centered and normalized largest
eigenvalue converges in distribution to the corresponding Gaussian result;
namely, Fβ. Since Soshnikov’s work the moment conditions in his theorem
have been relaxed (Tao, Vu, Erdös, Yau and coworkers)

The importance of universality for Wigner matrices is that these
ensembles of matrices are representative of the “non-integrable”
case; namely, “integrable techniques” such as Fredholm
determinants, Riemann-Hilbert methods, Painlevé theory are not
directly applicable to the Wigner case. Yet the limit theorems
found by these integrable techniques continue to hold in a
broader class of ensembles.



Universality theorem for largest eigenvalue of Wigner matrices

A. Soshnikov (1999): Properly centered and normalized largest
eigenvalue converges in distribution to the corresponding Gaussian result;
namely, Fβ. Since Soshnikov’s work the moment conditions in his theorem
have been relaxed (Tao, Vu, Erdös, Yau and coworkers)

The importance of universality for Wigner matrices is that these
ensembles of matrices are representative of the “non-integrable”
case; namely, “integrable techniques” such as Fredholm
determinants, Riemann-Hilbert methods, Painlevé theory are not
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The Beta Ensembles: Fβ for β > 0

Recall
Pβ,N(x1, . . . , xN) = CN,β

∏
i<j

|xi − xj |β
∏
j

e−βx
2
j /2, (2)

which makes sense for all real, positive β.

I. Dumitriu and A. Edelman discovered a class of tridiagonal random
matrices Hβ

N for which (2) is the induced probability density for the
eigenvalues.

B. Sutton and A. Edelman gave heuristic arguments that the rescaled
operators

H̃β
N = N1/6

(
2
√

N − Hβ
N

)
converges to the differential operator

Hβ = − d2

dx2
+ x +

2√
β

b′x

where b′ is white noise.
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Theorem (Raḿırez, Rider, Virág): With probability one, for each k ≥ 0
the set of eigenvalues of Hβ has a well-defined (k + 1)st lowest element
Λk . Moreover, let λ1 ≥ λ2 ≥ · · · denote the eigenvalues of the Hermite
β-ensemble Hβ

N . Then the vector(
N1/6(2

√
N − λβ,`)

)
`=1,...,k

converges in distribution as N →∞ to (Λ0,Λ1, . . . ,Λk−1). The
distribution of −Λ0(β) defines Fβ for all β > 0.

As a corollary of their theorem

−Λ0(β) = sup
f

{
2√
β

∫ ∞
0

f 2(x) db(x)−
∫ ∞
0

[
f ′(x)2 + xf 2(x)

]
dx

}
where the supremum is taken over the space of functions satisfying
f (0) = 0 and

∫∞
0 [(f ′)2 + (1 + x)f 2 dx <∞ with norm one.

This last expression is a characterization of Fβ independent of RMT.
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ASEP

The Asymmetric Simple Exclusion Process (ASEP) is a stochastic
interacting particle system on the lattice Z where particles hop one site to
the right (left) with probability p (q = 1− p) subject to the exclusion rule.

ASEP is not a determinantal process but nevertheless we have, for step
initial condition,

Theorem (TW) Let m = [σt], γ = q − p > 0 fixed, then

lim
t→∞

PZ+

(
xm(t/γ) ≤ c1(σ)t + c2(σ) s t1/3

)
= F2(s)

uniformly for σ in compact subsets of (0, 1) where c1(σ) = −1 + 2
√
σ,

c2(σ) = σ−1/6(1−
√
σ)2/3.

Here xm(t) is the position of the mth particle from the left.



ASEP

The Asymmetric Simple Exclusion Process (ASEP) is a stochastic
interacting particle system on the lattice Z where particles hop one site to
the right (left) with probability p (q = 1− p) subject to the exclusion rule.

ASEP is not a determinantal process but nevertheless we have, for step
initial condition,

Theorem (TW) Let m = [σt], γ = q − p > 0 fixed, then

lim
t→∞

PZ+

(
xm(t/γ) ≤ c1(σ)t + c2(σ) s t1/3

)
= F2(s)

uniformly for σ in compact subsets of (0, 1) where c1(σ) = −1 + 2
√
σ,

c2(σ) = σ−1/6(1−
√
σ)2/3.

Here xm(t) is the position of the mth particle from the left.



ASEP

The Asymmetric Simple Exclusion Process (ASEP) is a stochastic
interacting particle system on the lattice Z where particles hop one site to
the right (left) with probability p (q = 1− p) subject to the exclusion rule.

ASEP is not a determinantal process but nevertheless we have, for step
initial condition,

Theorem (TW) Let m = [σt], γ = q − p > 0 fixed, then

lim
t→∞

PZ+

(
xm(t/γ) ≤ c1(σ)t + c2(σ) s t1/3

)
= F2(s)

uniformly for σ in compact subsets of (0, 1) where c1(σ) = −1 + 2
√
σ,

c2(σ) = σ−1/6(1−
√
σ)2/3.

Here xm(t) is the position of the mth particle from the left.



Role of Fβ in Data Analysis

The greatest root distribution is found everywhere in classical
multivariate analysis. It describes the null hypothesis distribution
for the union intersection test for any number of classical
problems, including multiple response linear regression,
MANOVA, canonical correlations, equality of covariance matrices
and so on. However, the exact null distribution is difficult to
calculate and work with, and so the use of extensive tables or
special purpose software has always been necessary.

Our main claim is that for many applied purposes, the
Tracy–Widom approximation can often, if not quite always,
substitute for the elaborate tables and computational procedures
that have until now been needed.

Iain Johnstone, 2009
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Review of multivariate statistical analysis

Let x1, x2, . . . , xn be a random sample from Np(µ,Σ). Form n × p data
matrix X

X =


←− x1 −→
←− x2 −→

...
←− xn −→


then the p × p matrix

A = XTX ∼Wp(n,Σ) = Wishart distr.

For p = 1, A is distributed as σ2χ2
(n).



In the univariate case if X and Y are independent and χ2-distributed with
m and n degrees of freedom, respectively, then X/(X + Y ) has the beta
distribution

1

B(m/2, n/2)
tm/2−1(1− t)−(m+n)/2

Multivariate case: if A ∼Wp(m,Σ) and B ∼Wp(n,Σ), independent of A,
then the matrix analogue of the beta distribution is

(A + B)−1B

Definition: Let A and B be as above, m ≥ p. The largest eigenvalue θ1 of
(A + B)−1B is called the greatest root statistic; and we denote a random
variable having this distribution by θ1(p,m, n).

The eigenvalues of (A + B)−1B have density (Jacobi ensemble)

C

min(n,p)∏
i=1

θ
(|n−p|−1)/2
i (1− θi )(m−p−1)/2

∏
i 6=j

|θi − θj |.
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Let

W (p,m, n) := log

(
θ(p,m, n)

1− θ(p,m, n)

)
Theorem (Johnstone): Assume

lim
p→∞

min(p, n)

m + n
> 0, lim

p→∞

p

m
< 1

then
W (p,m, n)− µ(p,m, n)

σ(p,m, n)
D⇒ F1

where

µ(p,m, n) = 2 log tan(
ϕ+ γ

2
)

σ3(p,m, n) =
16

(m + n − 1)2
1

sin2(ϕ+ γ) sinϕ sin γ

sin2(γ/2) =
min(p, n)− 1/2

m + n − 1

sin2(ϕ/2) =
max(p, n)− 1/2

m + n − 1

Note: “-1/2” and “-1” make convergence O(p−2/3).



Let fα denote the α-percentile for X ∼ F1,

F1(fα) = α

and similarly θα the α-percentile of θ(p,m, n), then corollary of above is

θα ≈
exp(µ+ fασ)

1 + exp(µ + fασ)

Tables use variables

s = min(n, p), m = (|n − p| − 1)/2, n = (m − p − 1)
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