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The Gaussian Unitary Ensemble 1

Gaussian Unitary Ensemble (GUE) of random matrices

Consider N ×N hermitian matrices H with
(a) random independent entries,
(b) distribution invariant under unitary transformations

⇒ Probability density:

const e−
1

2N
Tr(H2)

Largest eigenvalue: λmax,N ' 2N for large N
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The GUE Tracy-Widom distribution F2 2

Distribution of the largest eigenvalue: F2 Tracy, Widom ’94

λN ' 2N + ξ2N
1/3, N →∞

where ξ2 has the (GUE) Tracy-Widom distribution F2.

Probability densities of the GUE Tracy-Widom and the normal distribution
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GUE correlation functions 3

Let λ = (λ1, . . . , λN ) be the N eigenvalues of a GUE random
matrix. The eigenvalues probability density p(λ) is given by:

p(λ)dλ = const ∆(λ)2
N∏
i=1

e−λ
2
i /2Ndλi

where ∆(λ) := det(λj−1i )1≤i,j≤N is the Vandermonde
determinant.

The n-point correlation function ρ(n)(λ1, . . . , λn) is the
probability density of observing an eigenvalue at each of the
λ1, . . . , λn.

For GUE, the correlation functions are determinantal, i.e., it
exists a correlation kernel K : R2 → R such that

ρ(n)(λ1, . . . , λn) = det(K(λi, λj))1≤i,j≤n.
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Biorthogonal ensembles 4

The GUE eigenvalues measure is a special case of a measure
of the form

const det(Φi(λj))1≤i,j≤N det(Ψi(λj))1≤i,j≤N

N∏
i=1

µ(dλi)

called biorthogonal ensemble.

The correlation functions of biorthogonal ensembles are
determinantal. Borodin ’98

If the families {Φi, 1 ≤ i ≤ N} and {Ψj , 1 ≤ j ≤ N} are
chosen such that

∫
dµ(λ)Φi(λ)Ψj(λ) = δi,j , then the kernel is

given by

K(x, y) =

N∑
k=1

Ψk(x)Φk(y)

For GUE, the Ψk’s and Φk’s are given in terms of Hermite
polynomials
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Largest eigenvalue of GUE 5

Using the explicit determinantal structure of the n-point
correlations functions one obtains

P(λN,max ≤ a) = P(∩Ni=1{λi ≤ a})

=

∞∑
n=0

(−1)n

n!

∫ ∞
a

dx1 · · ·
∫ ∞
a

dxn det(K(xi, xj))1≤i,j≤n

≡ det(1−K)L2((a,∞)).

Edge scaling: λN,max ' 2N + ξ2N
1/3.

A change of variable and asymptotic analysis gives a formula
for F2 Tracy, Widom ’94

F2(s) := lim
N→∞

P(λN,max ≤ 2N + sN1/3) = det(1−K2)L2((s,∞))

with the Airy kernel

K2(x, y) =

∫ ∞
0

dλAi(x+ λ)Ai(y + λ).
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The longest increasing subsequence (LIS) 6

Consider a permutation σ ∈ SN

σ =

(
1 2 3 · · · N
σ1 σ2 σ3 · · · σN

)
and denote by `N (σ) the longest increasing subsequence in
σ = (σ1, . . . , σN ).
Example: `6(σ) = 3 for

σ =

(
1 2 3 4 5 6
6 2 4 3 1 5

)
Graphical representation: k 7→ σk
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Tracy-Widom distribution in LIS 7

Under uniform measure on SN Baik, Deift, Johansson ’99

lim
N→∞

P(`N ≤ 2
√
N + sN1/6) = F2(s).

For the proof one first studies a Poissonized version (a sort of
“grand-canonical version” of the problem):

N is replaced by a random variable: N ∼ Poisson(t2).

(0,0)

(t,t)

Let Lt be the longest increasing subsequence in this setting,
one first show

lim
t→∞

P(Lt ≤ 2t+ st1/3) = F2(s).
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Line ensemble for LIS 8

Why do the longest increasing subsequence shows the same
fluctuation law as the largest eigenvalue of GUE matrices?
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Line ensemble for LIS 8
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Line ensemble for LIS 8
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Line ensemble for LIS 8

x=tx=−t x=0

Black dots at positions named (X1, X2, X3, X4, . . .);
X1 > X2 > . . .
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Line ensemble for LIS 9

For the Poissonized problem, the set of lines has the
distribution as non-intersecting one-sided random walks
starting and ending from fixed positions 0,−1,−2, . . ..

For M non-intersecting lines, by the Karlin-Mc Gregor
formula, the probability of seeing a configuration of black
point (X1, X2, . . . , XM ) at x = 0 is given by

const [det(pt(−i,Xj)1≤i,j≤M ]2

where pt(x, y) = e−tty−x/(y − x)!

⇒ The black dots have determinantal correlations.
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Line ensemble for LIS 10

The biorthogonal ensemble has a kernel which, after M →∞
limit, becomes

K(x, y) =
∑
`≥0

J`+x(2t)J`+y(2t)

with J the Bessel functions.

Convergence to the Airy kernel K2: under edge scaling

x = 2t+ ξt1/3, y = 2t+ ζt1/3,

one has
t1/3K(x, y)→ K2(ξ, ζ) as t→∞

and
lim
t→∞

P(X1 ≤ 2t+ st1/3) = F2(s).
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The polynuclear growth (PNG) model 11

The polynuclear growth (PNG) model
Height configurations: height function x 7→ h(x, t) ∈ Z,
x, t ∈ R.
Dynamics, deterministic part: islands spread with unit speed,
merges when touching
Dynamics, stochastic part: nucleations (a spike of height 1)
are added with intensity 2.
PNG droplet: Nucleations restricted to the region |x| ≤ t.
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The polynuclear growth (PNG) model 12

PNG droplet: point-to-point problem

The lines are the space-time trajectories of the boundaries of
the spreading islands
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The polynuclear growth (PNG) model 12

Flat PNG: line-to-point problem

The lines are the space-time trajectories of the boundaries of
the spreading islands

RMT Line ensembles Interlacings LIS PNG TASEP



The Airy2 process 13

For the PNG droplet, the line ensembles approach one can
study also the top layer of the PNG multilayer.

The process of the fluctuations of the top layer is governed for
large times by the Airy2 process, A2 Prähofer, Spohn ’02

lim
t→∞

h(ut2/3, t)− 2t+ u2t1/3

t1/3
= A2(u)

in the sense of finite-dimensional distributions.
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Tracy-Widom distribution in TASEP 14

TASEP: Totally Asymmetric Simple Exclusion Process

Configurations: Particles are on Z and at most one particle for
each site

Dynamics: particles jumps to their right with rate 1 if the site
is empty

We use particle labels: xn(t) > xn+1(t)

RMT Line ensembles Interlacings LIS PNG TASEP



Tracy-Widom distribution in TASEP 15
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Tracy-Widom distribution in TASEP 16

Step initial condition: at time 0 particles occupy Z−
For step IC, a multilayer approach gives Johansson’03

lim
t→∞

P(xt/4(t) ≥ −s(t/2)1/3) = F2(s)

and joint distribution are governed by the Airy2 process (this
time one has Laguerre orthogonal polynomials).
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Interlacing particle system: a different approach 17

An extension of TASEP dynamics on interlaced particles
{xnk , 1 ≤ k ≤ n ≤ N}: Borodin, Ferrari ’08

Particles tries to jump to their right with rate 1
Particles with smaller upper index have higher priority, so they
block or push higher particles to satisfy interlacing

t = 0 t > 0
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Interlacing particle system: packed IC 18

For packed initial conditions

the particle system at any time t ≥ 0 has determinantal
correlations!
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Interlacing particle system: RMT-type projection 19

The projection to the set

{xN1 , xN2 , . . . , xNN}

is still a Markov process (discrete analogue of the Dyson’s
Brownian Motion of random matrices)

The measure on
{xN1 , xN2 , . . . , xNN}

is a biorthogonal ensemble, similar to the GUE eigenvalues
distributions (it arises under diffusion scalings)

The kernel given in terms of Charlier orthogonal polynomials
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Interlacing particle system: TASEP projection 20

The projection to the set

{x11, x21, . . . , xN1 }

is TASEP.

In particular, the point xN1 is common in both projections and
when N, t→∞ has F2 fluctuations.
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Beyond F2 21

The interlacing structure was first obtained by Sasamoto ’05:
starting from a formula by Schütz ’97 he extended the picture
by adding “summation variables” (the xnk for k ≥ 2)

Algebraically one can think of the extended picture to have
“determinantal correlations” although the measure is not
anymore necessarily positive, i.e., it is not always a probability
measure.

Only the projection to {x11, x21, . . . , xN1 } is ensured, a priori, to
be a probability measure.
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Beyond F2 22

The interlacing approach allowed to study the “flat” initial
condition, where for TASEP particles starts from 2Z.

The result is that the discovery of the Airy1 process, the
analogue of the Airy2 process for flat interfaces in KPZ
growth models.

Sasamoto’05, Borodin, Ferrari, Prähofer, Sasamoto ’06-’08

A new determinantal formula for F1 is obtained
Sasamoto’05, Ferrari, Spohn’05

F1(2s) = det(1−K1)L2((s,∞))

where K1(x, y) = Ai(x+ y).
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Beyond F2: interlacings vs. line ensembles 23

The approach with interlacing particles can be used to obtain
the flat PNG height fluctuations / line-to-point problem in the
Poisson point picture Borodin, Ferrari, Sasamoto ’07

It allows to study also transition processes from flat to curved
interface Borodin, Ferrari, Sasamoto ’08

Results in a Fredholm determinant formula for the joint
distributions of height fluctuations.

vs.

The multilayer version of the flat PNG leads to a Pfaffian
correlation functions at a single position only Ferrari’04

Its scaling limit for t→∞ leads to the analogue of F2 for
symmetric matrices, namely the GOE Tracy-Widom
distribution, F1.

⇒ Recovers Fredholm Pfaffian formula for F1 by Tracy, Widom ’96
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