Kyoto, August 20-24th 2014

Tracy-Widom distributions in discrete models

Patrik L. Ferrari

http://wt.iam.uni-bonn.de/~ferrari

- Gaussian Unitary Ensemble (GUE) of random matrices
- Consider $N \times N$ hermitian matrices H with
(a) random independent entries,
(b) distribution invariant under unitary transformations
\Rightarrow Probability density:

$$
\text { const } e^{-\frac{1}{2 N} \operatorname{Tr}\left(H^{2}\right)}
$$

- Largest eigenvalue: $\lambda_{\max , N} \simeq 2 N$ for large N

- Distribution of the largest eigenvalue: F_{2} Tracy, Widom '94

$$
\lambda_{N} \simeq 2 N+\xi_{2} N^{1 / 3}, \quad N \rightarrow \infty
$$

where ξ_{2} has the (GUE) Tracy-Widom distribution F_{2}.

Probability densities of the GUE Tracy-Widom and the normal distribution

- Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ be the N eigenvalues of a GUE random matrix. The eigenvalues probability density $p(\lambda)$ is given by:

$$
p(\lambda) d \lambda=\text { const } \Delta(\lambda)^{2} \prod_{i=1}^{N} e^{-\lambda_{i}^{2} / 2 N} d \lambda_{i}
$$

where $\Delta(\lambda):=\operatorname{det}\left(\lambda_{i}^{j-1}\right)_{1 \leq i, j \leq N}$ is the Vandermonde determinant.

- The n-point correlation function $\rho^{(n)}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is the probability density of observing an eigenvalue at each of the $\lambda_{1}, \ldots, \lambda_{n}$.
- For GUE, the correlation functions are determinantal, i.e., it exists a correlation kernel $K: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
\rho^{(n)}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\operatorname{det}\left(K\left(\lambda_{i}, \lambda_{j}\right)\right)_{1 \leq i, j \leq n} .
$$

- The GUE eigenvalues measure is a special case of a measure of the form

$$
\text { const } \operatorname{det}\left(\Phi_{i}\left(\lambda_{j}\right)\right)_{1 \leq i, j \leq N} \operatorname{det}\left(\Psi_{i}\left(\lambda_{j}\right)\right)_{1 \leq i, j \leq N} \prod_{i=1}^{N} \mu\left(d \lambda_{i}\right)
$$

called biorthogonal ensemble.

- The correlation functions of biorthogonal ensembles are determinantal.
- If the families $\left\{\Phi_{i}, 1 \leq i \leq N\right\}$ and $\left\{\Psi_{j}, 1 \leq j \leq N\right\}$ are chosen such that $\int d \mu(\lambda) \Phi_{i}(\lambda) \Psi_{j}(\lambda)=\delta_{i, j}$, then the kernel is given by

$$
K(x, y)=\sum_{k=1}^{N} \Psi_{k}(x) \Phi_{k}(y)
$$

- For GUE, the Ψ_{k} 's and Φ_{k} 's are given in terms of Hermite polynomials

Largest eigenvalue of GUE

- Using the explicit determinantal structure of the n-point correlations functions one obtains

$$
\begin{aligned}
& \mathbb{P}\left(\lambda_{N, \max } \leq a\right)=\mathbb{P}\left(\cap_{i=1}^{N}\left\{\lambda_{i} \leq a\right\}\right) \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{a}^{\infty} d x_{1} \cdots \int_{a}^{\infty} d x_{n} \operatorname{det}\left(K\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq n} \\
& \equiv \operatorname{det}(\mathbb{1}-K)_{L^{2}((a, \infty))} .
\end{aligned}
$$

- Edge scaling: $\lambda_{N, \max } \simeq 2 N+\xi_{2} N^{1 / 3}$.

A change of variable and asymptotic analysis gives a formula for F_{2}
$F_{2}(s):=\lim _{N \rightarrow \infty} \mathbb{P}\left(\lambda_{N, \max } \leq 2 N+s N^{1 / 3}\right)=\operatorname{det}\left(\mathbb{1}-K_{2}\right)_{L^{2}((s, \infty))}$
with the Airy kernel

$$
K_{2}(x, y)=\int_{0}^{\infty} d \lambda \operatorname{Ai}(x+\lambda) \operatorname{Ai}(y+\lambda)
$$

The longest increasing subsequence (LIS)

- Consider a permutation $\sigma \in \mathcal{S}_{N}$

$$
\sigma=\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & N \\
\sigma_{1} & \sigma_{2} & \sigma_{3} & \cdots & \sigma_{N}
\end{array}\right)
$$

and denote by $\ell_{N}(\sigma)$ the longest increasing subsequence in $\sigma=\left(\sigma_{1}, \ldots, \sigma_{N}\right)$.

- Example: $\ell_{6}(\sigma)=3$ for

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 2 & 4 & 3 & 1 & 5
\end{array}\right)
$$

- Graphical representation: $k \mapsto \sigma_{k}$

- Under uniform measure on \mathcal{S}_{N} Baik, Deift, Johansson '99

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\ell_{N} \leq 2 \sqrt{N}+s N^{1 / 6}\right)=F_{2}(s)
$$

- For the proof one first studies a Poissonized version (a sort of "grand-canonical version" of the problem): N is replaced by a random variable: $N \sim \operatorname{Poisson}\left(t^{2}\right)$.

- Let L_{t} be the longest increasing subsequence in this setting, one first show

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(L_{t} \leq 2 t+s t^{1 / 3}\right)=F_{2}(s)
$$

Why do the longest increasing subsequence shows the same fluctuation law as the largest eigenvalue of GUE matrices?

Black dots at positions named ($\left.X_{1}, X_{2}, X_{3}, X_{4}, \ldots\right)$;

$$
X_{1}>X_{2}>\ldots
$$

- For the Poissonized problem, the set of lines has the distribution as non-intersecting one-sided random walks starting and ending from fixed positions $0,-1,-2, \ldots$.
- For M non-intersecting lines, by the Karlin-Mc Gregor formula, the probability of seeing a configuration of black point $\left(X_{1}, X_{2}, \ldots, X_{M}\right)$ at $x=0$ is given by

$$
\operatorname{const}\left[\operatorname{det}\left(p_{t}\left(-i, X_{j}\right)_{1 \leq i, j \leq M}\right]^{2}\right.
$$

where $p_{t}(x, y)=e^{-t} t^{y-x} /(y-x)$!
\Rightarrow The black dots have determinantal correlations.

- The biorthogonal ensemble has a kernel which, after $M \rightarrow \infty$ limit, becomes

$$
K(x, y)=\sum_{\ell \geq 0} J_{\ell+x}(2 t) J_{\ell+y}(2 t)
$$

with J the Bessel functions.

- Convergence to the Airy kernel K_{2} : under edge scaling

$$
x=2 t+\xi t^{1 / 3}, \quad y=2 t+\zeta t^{1 / 3}
$$

one has

$$
t^{1 / 3} K(x, y) \rightarrow K_{2}(\xi, \zeta) \text { as } t \rightarrow \infty
$$

and

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(X_{1} \leq 2 t+s t^{1 / 3}\right)=F_{2}(s)
$$

- The polynuclear growth (PNG) model
- Height configurations: height function $x \mapsto h(x, t) \in \mathbb{Z}$, $x, t \in \mathbb{R}$.
- Dynamics, deterministic part: islands spread with unit speed, merges when touching
- Dynamics, stochastic part: nucleations (a spike of height 1) are added with intensity 2.
- PNG droplet: Nucleations restricted to the region $|x| \leq t$.

- PNG droplet: point-to-point problem

The lines are the space-time trajectories of the boundaries of the spreading islands

- Flat PNG: line-to-point problem

The lines are the space-time trajectories of the boundaries of the spreading islands

- For the PNG droplet, the line ensembles approach one can study also the top layer of the PNG multilayer.

- The process of the fluctuations of the top layer is governed for large times by the Airy 2 process, $\mathcal{A}_{2} \quad$ Prähofer, Spohn '02

$$
\lim _{t \rightarrow \infty} \frac{h\left(u t^{2 / 3}, t\right)-2 t+u^{2} t^{1 / 3}}{t^{1 / 3}}=\mathcal{A}_{2}(u)
$$

in the sense of finite-dimensional distributions.

- TASEP: Totally Asymmetric Simple Exclusion Process
- Configurations: Particles are on \mathbb{Z} and at most one particle for each site
- Dynamics: particles jumps to their right with rate 1 if the site is empty

- We use particle labels: $x_{n}(t)>x_{n+1}(t)$

Tracy-Widom distribution in TASEP

- Step initial condition: at time 0 particles occupy \mathbb{Z}_{-}
- For step IC, a multilayer approach gives Johansson'03

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(x_{t / 4}(t) \geq-s(t / 2)^{1 / 3}\right)=F_{2}(s)
$$

and joint distribution are governed by the Airy ${ }_{2}$ process (this time one has Laguerre orthogonal polynomials).

- An extension of TASEP dynamics on interlaced particles $\left\{x_{k}^{n}, 1 \leq k \leq n \leq N\right\}$:

- Particles tries to jump to their right with rate 1
- Particles with smaller upper index have higher priority, so they block or push higher particles to satisfy interlacing

- For packed initial conditions

the particle system at any time $t \geq 0$ has determinantal correlations!
- The projection to the set

$$
\left\{x_{1}^{N}, x_{2}^{N}, \ldots, x_{N}^{N}\right\}
$$

is still a Markov process (discrete analogue of the Dyson's Brownian Motion of random matrices)

- The measure on

$$
\left\{x_{1}^{N}, x_{2}^{N}, \ldots, x_{N}^{N}\right\}
$$

is a biorthogonal ensemble, similar to the GUE eigenvalues distributions (it arises under diffusion scalings)

- The kernel given in terms of Charlier orthogonal polynomials
- The projection to the set

$$
\left\{x_{1}^{1}, x_{1}^{2}, \ldots, x_{1}^{N}\right\}
$$

is TASEP.

- In particular, the point x_{1}^{N} is common in both projections and when $N, t \rightarrow \infty$ has F_{2} fluctuations.
- The interlacing structure was first obtained by Sasamoto '05: starting from a formula by Schütz ' 97 he extended the picture by adding "summation variables" (the x_{k}^{n} for $k \geq 2$)
- Algebraically one can think of the extended picture to have "determinantal correlations" although the measure is not anymore necessarily positive, i.e., it is not always a probability measure.
- Only the projection to $\left\{x_{1}^{1}, x_{1}^{2}, \ldots, x_{1}^{N}\right\}$ is ensured, a priori, to be a probability measure.
- The interlacing approach allowed to study the "flat" initial condition, where for TASEP particles starts from $2 \mathbb{Z}$.
- The result is that the discovery of the Airy ${ }_{1}$ process, the analogue of the Airy 2_{2} process for flat interfaces in KPZ growth models.

```
Sasamoto'05, Borodin, Ferrari, Prähofer, Sasamoto '06-'08
```

- A new determinantal formula for F_{1} is obtained

Sasamoto'05, Ferrari, Spohn'05

$$
F_{1}(2 s)=\operatorname{det}\left(\mathbb{1}-K_{1}\right)_{L^{2}((s, \infty))}
$$

where $K_{1}(x, y)=\operatorname{Ai}(x+y)$.

- The approach with interlacing particles can be used to obtain the flat PNG height fluctuations / line-to-point problem in the Poisson point picture Borodin, Ferrari, Sasamoto '07
- It allows to study also transition processes from flat to curved interface

Borodin, Ferrari, Sasamoto '08

- Results in a Fredholm determinant formula for the joint distributions of height fluctuations.

VS.

- The approach with interlacing particles can be used to obtain the flat PNG height fluctuations / line-to-point problem in the Poisson point picture Borodin, Ferrari, Sasamoto '07
- It allows to study also transition processes from flat to curved interface Borodin, Ferrari, Sasamoto '08
- Results in a Fredholm determinant formula for the joint distributions of height fluctuations.
vs.
- The multilayer version of the flat PNG leads to a Pfaffian correlation functions at a single position only Ferrari’04
- Its scaling limit for $t \rightarrow \infty$ leads to the analogue of F_{2} for symmetric matrices, namely the GOE Tracy-Widom distribution, F_{1}.
\Rightarrow Recovers Fredholm Pfaffian formula for F_{1} by Tracy, Widom '96

