KPZ-class interfaces in turbulent liquid crystal beyond a "mere" confirmation

Kazumasa A. Takeuchi (Univ. of Tokyo)

Acknowledgment

Masaki Sano, Tomohiro Sasamoto, Herbert Spohn, Michael Prähofer, Takuma Akimoto, ...

Growing interfaces

Important in both industry (e.g. solid-state device) and basic science

Growing interfaces

Important in both industry (e.g. solid-state device) and basic science

KPZ universality class

- KPZ equation: $\frac{\partial}{\partial t}h(x,t) = v\nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \sqrt{D}\eta(x,t)$
- $\delta h \sim t^{\beta} \text{ or } L^{\alpha}, \ \xi \sim t^{1/z}$ $\alpha = \frac{1}{2}, \beta = \frac{1}{3}, z = \frac{3}{2} \text{ in Id}$
- In Id, many properties are exactly solvable, despite being out of equilibrium. KPZ is central in the studies of universality out of equilibrium.
- Deep connection to random matrix theory / combinatorics / integrable systems. Interests are far beyond understanding interfaces!

Situation in Experiments

Rough interfaces are ubiquitous, but not so universal ?

Small, but growing # of experiments showing Id-KPZ exponents

- Slow combustion of paper [Myllys's talk; 1997-]
- Colony of mutant bacteria [Wakita et al., 1997]
- Turbulent liquid crystal [Takeuchi & Sano, 2010-]
- Tumor-like & tumor cells [Albano's talk; 2010-]
- Particle deposition on coffee ring [Yunker's talk; 2013]
- Chemical waves in disordered media [Atis' talk; 2014]

Advantages

- simple growth mechanism
- precise control
- many experimental runs
- ➡ high statistical accuracy

Electroconvection

Nematic liquid crystal

- Rod-like molecule (e.g., MBBA CH₃O-O-CH=N -O-CH₂CH₂CH₂CH₂CH₃)
- Anisotropic material properties ε_{||} ≠ ε_⊥, σ_{||} ≠ σ_⊥, ··· (||:along long axis ⊥:along short axis)
 Convection driven by electric field (Carr-Helfrich instability)
- Interesting case: $\varepsilon_{\parallel} < \varepsilon_{\perp}$, $\sigma_{\parallel} > \sigma_{\perp}$ (true of MBBA)

Phase Diagram

As applied voltage is increased, convection undergoes a series of transitions toward turbulent (chaotic) states

Mode 2 (DSM2)

Dynamic Scattering Mode I (DSMI)

DSM2 nucleation $(V \gg V_{\rm c})$

grid pattern

Williams domain

Two Turbulent States : DSMI & DSM2

nucleation if $V \gg V_c$

DSM2 = topological-defect turbulence (analogy with "quantum turbulence"?)

Under applied voltage, defects are driven by local chaotic flow

- effectively short-range interactions
- no effect of quenched disorder
- (by switching voltage on & off) many runs with a single sample

We focus on growing DSM2 interfaces and study their fluctuations

Experimental Setup

- Quasi-2d cell: $16 \text{ mm} \times 16 \text{ mm} \times 12 \mu \text{m}$
- Nematic liquid crystal: MBBA
- Homeotropic alignment (to work with isotropic growth)
- Temperature control: $T = 25 \,^{\circ}\mathrm{C}$
- Nucleation of DSM2 by UV pulse laser

26V, 250Hz Speed x2, $-200\mu m$ Rough interface appears

Scaling Exponents

interface width w(l, t)= std. of local height h(x, t)over length scale l= $\langle \sqrt{\langle [h(x, t) - \langle h \rangle_l]^2 \rangle_l} \rangle$

Family-Vicsek scaling

$$w(l,t) \sim t^{\beta} F(lt^{-1/z}) \sim \begin{cases} l^{\alpha} & (l \ll l_{*}) \\ t^{\beta} & (l \gg l_{*}) \end{cases}$$

 $l_* \sim t^{1/z}, z = \alpha/\beta$

Both exponents α and β agree with the KPZ class

Toward Distribution

Key quantity: nth-order cumulant $\langle h^n \rangle_c$ $\langle h^2 \rangle_c \equiv \langle \delta h^2 \rangle$ $(\delta h \equiv h(x, t) - \langle h \rangle)$ $\langle h^3 \rangle_c \equiv \langle \delta h^3 \rangle$ $\langle h^4 \rangle_c \equiv \langle \delta h^4 \rangle - 3 \langle \delta h^2 \rangle^2$

This suggests

 $h(t) \simeq v_{\infty}t + (\Gamma t)^{1/3}\chi$ (χ : GUE Tracy-Widom distribution)

with some constant parameters v_{∞} , Γ

One-Point Distribution

Interface fluctuations precisely agree with the GUE-TW distribution up to the 4th order cumulant. Finite-time effect ~ $t^{-1/3}$ for the mean.

GUE-TW statistics for the circular interfaces is confirmed experimentally

Geometry Dependence

Flat interfaces can also be created by shooting line-shaped laser pulses

Finite-Time Corrections

Baik-Jenkins Ann. Probab. 2013 (PNG)]

Flat-Stationary Crossover

[Takeuchi, PRL 110, 210604 (2013)]

Stationary subclass is theoretically established, but it is never reached in practice. However, approach, or crossover to the stationary subclass can be studied.

• Scaling functions $\langle \Delta q^n \rangle_c \simeq G_n(\Delta t/t_0)$ describing flat-stationary crossover are found.

Experiment seems to indicate the same scaling functions, so universal!

Spatial Correlation Function

Predictions for solvable models:

$$\begin{split} C_{\rm s}(l,t) &\equiv \langle h(x+l,t)h(x,t)\rangle - \langle h\rangle^2 \\ &\simeq (\Gamma t)^{2/3}g_i(\zeta) \end{split}$$

with i = I (flat), i = 2 (circular), $\zeta \equiv l \sqrt{\Gamma/2v_{\infty}} (\Gamma t)^{-2/3}$ $g_i(\zeta) \equiv \langle \mathcal{A}_i(t' + \zeta) \mathcal{A}_i(t') \rangle - \langle \mathcal{A}_i(t') \rangle^2$ $\mathcal{A}_i(t')$: Airy_i process (cf. Airy₂ = largest-eigenvalue dynamics in Dyson's Brownian motion of GUE matrices)

Correlation of flat / circular interfaces is governed by the Airy₁ / Airy₂ process

Spatial Persistence

Spatial Persistence

Ferrari and Frings [J. Stat. Mech. 2013, P02001] derived determinantal expressions for the persistence probability of the Airy₁/Airy₂ processes (probability that $(\mathcal{A}_i(t') - c)$ is negative/positive for $0 \le t' \le L$) for negative fluctuations.

- New open problems
 - > Can one solve the persistence probability for positive fluctuations?
 - > Experiment showed $\kappa_{+}^{(s)} \approx \kappa_{-}^{(s)}$ at $c = \langle \mathcal{A}_i \rangle$, while $\kappa_{\pm}^{(s)}(c)$ depends on c. Can this equality be shown, or it's just a coincidence?

Temporal Correlation Function

$$C_{t}(t, t_{0}) \equiv \langle h(x, t)h(x, t_{0}) \rangle - \langle h(x, t) \rangle \langle h(x, t_{0}) \rangle$$
 analytically unsolved yet

- Natural scaling ansatz works $C_{\rm t}(t,t_0) \simeq (\Gamma^2 t_0 t)^{1/3} F_{\rm t}(t/t_0)$
- Long-time asymptotics

 $F_{\rm t}(t/t_0) \sim (t/t_0)^{-\bar{\lambda}}$ with $\bar{\lambda} = 1$

cf. Kallabis-Krug conjecture
$$\bar{\lambda} = \beta + d/z = 1$$

- Stronger finite-time correction to the scaling ansatz.
- Singha's approximative theory [JSM 2005] works after modification. In particular,

$$C_{\rm t}(t,t_0) > 0 \ (t \to \infty)$$
 (!)

local ergodicity breaking?

Temporal Persistence

Ergodicity Breaking?

- "Weak ergodicity breaking" [J.-P. Bouchaud 1992]
 time average ≠ ensemble average, because of long & random trapping of trajectory
- "Dichotomous process" : simplest model

KPZ Interfaces vs Dichotomous Process

- Dichotomous process is far too simple to describe KPZ. two-state model, no space, uncorrelated waiting times...
- But, let's naively compare... one can regard δh's sign as the state z.
 Waiting-time dist. is related to persistence prob.
 For dichotomous process, θ is the persistence exponent θ^(p). (for 0<θ<1)
- First, measure the waiting-time distribution.

Recurrence Time Statistics

Forward recurrence time $\tau_f(t)$ Backward recurrence time $\tau_b(t)$

NB: persistence prob. = $\int_{\tau}^{\infty} pdf(\tau_f) d\tau_f$

- All pdfs converge to different universal functions. (shown are data for positive fluctuations)
- Flat/circ. interfaces have same waiting-time dist., but different recur. time dist.
- Data for circ. interfaces nicely agree with exact results for dich. process!
 w/ a few other results
 Some set of time corr.
 props of circ. interfaces is reproduced by dich. process!

Summary

Turbulent liquid crystal shows us the beautiful physics (and even math!) of the (I+I)d KPZ class

- Experimentally confirmed predictions (those based on exact solutions)
- Primary features of the flat/curved subclasses are evidenced. (KPZ exponents, GOE/GUE-TW dist., Airy_{1.2} processes)
- There are other confirmed predictions (e.g., max. height distribution).
- Universal crossover to the stationary subclass (Baik-Rains F_0 dist.) is detected.

Beyond a "mere" confirmation...

- What should be measured now is unsolved properties! (time correlation, spatial persistence, finite-time effects, ...)
- Time correlation looks particularly fascinating. (for circ. interfaces, "weak ergodicity breaking" may be a key concept)
- Physical understanding for universality? (subclass structure, bridging micro & macro)

Refs: KaT & Sano, J. Stat. Phys. <u>147</u>, 853; KaT, PRL <u>110</u>, 210604; KaT & Akimoto, in preparation