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Growing interfaces

Important in both industry (e.g. solid-state device) and basic science
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Growing interfaces

Important in both industry (e.g. solid-state device) and basic science

KPZ universality class
 KPZ equation: 

 In 1d,  many properties are exactly solvable, despite being out of equilibrium.
KPZ is central in the studies of universality out of equilibrium.

 Deep connection to random matrix theory / combinatorics / integrable systems.
Interests are far beyond understanding interfaces!
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3 Important “Sub-classes”

• Init. cond. :  point or curved line
• Asymptotics :  GUE Tracy-Widom distribution,  Airy2 process
• Shown for :  TASEP [Johansson CMP 2000],  PNG,  PASEP [Tracy & Widom CMP 2009],  

KPZ eq. [Sasamoto & Spohn 2010,  Amir et al. 2011, etc.] …  (list is not complete)

Circular (curved) interfaces

• Init. cond. :  straight line
• Asymptotics :  GOE Tracy-Widom distribution,  Airy1 process
• Shown for :  PNG [Prähofer-Spohn PRL 2000], TASEP, KPZ eq. [Calabrese-Le Doussal PRL 2011] ..

Flat interfaces

• Init. cond. :  stationary interface (1d-Brownian motion)
• Asymptotics :  Baik-Rains distribution,  Airystat process
• Shown for :  PNG [Baik-Rains JSP 2000],  TASEP,  KPZ eq. [Imamura-Sasamoto 2012, Borodin et al. 2014] ..

Stationary interfaces

(recall yesterday’s review talks)

NB1) Scaling exponents are the same. NB2) Other subclasses exist.



Situation in Experiments

Rough interfaces are ubiquitous, but not so universal ?

Small, but growing # of experiments showing 1d-KPZ exponents

• flow in porous media
[Horváth et al., 1991]

• paper wetting
[Kobayashi et al., 2005]

• bacteria colony
[Wakita et al., 1997]

• growth of plant callus
[Galeano et al., 2003]

• Slow combustion of paper [Myllys’s talk; 1997-]

• Colony of mutant bacteria  [Wakita et al., 1997]

• Turbulent liquid crystal [Takeuchi & Sano, 2010-]

• Tumor-like & tumor cells [Albano’s talk; 2010-]

• Particle deposition on coffee ring  [Yunker’s talk; 2013]

• Chemical waves in disordered media  [Atis’ talk; 2014]

cf.

Advantages
• simple growth mechanism
• precise control
• many experimental runs

high statistical accuracy



Electroconvection

Nematic liquid crystal
 Rod-like molecule (e.g., MBBA )
 Anisotropic material properties

 Interesting case: (true of MBBA)

Convection driven by electric field
(Carr-Helfrich instability)

recall Ohm’s law

formation of
static convection rolls

(Williams domain)

observed by 
transmitted light

: along long axis
: along short axis



Phase Diagram

As applied voltage is increased,
convection undergoes a series of transitions
toward turbulent (chaotic) states

Williams domain

Fluctuating
Williams domain

grid pattern
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Two Turbulent States : DSM1 & DSM2

DSM2 = topological-defect turbulence
(analogy with “quantum turbulence”?)

nucleation if

0V → 72V → 0V  ( , speed x3)

Under applied voltage, 
defects are driven by local chaotic flow

• effectively short-range interactions
• no effect of quenched disorder
• (by switching voltage on & off)

many runs with a single sample

We focus on growing DSM2 interfaces and study their fluctuations



Experimental Setup

◦ Quasi-2d cell:
◦ Nematic liquid crystal: MBBA
◦ Homeotropic alignment (to work with isotropic growth)

◦ Temperature control:
◦ Nucleation of DSM2 by UV pulse laser

355nm, 4-6ns, 6nJ

(schematic)

Rough interface appearsSpeed x2,



Scaling Exponents
interfaces at

Family-Vicsek scaling

Both exponents     and     agree with the KPZ class

interface width    
= std. of local height

over length scale

slope slope

data collapse

slope

vs length vs time

(µm)



Toward Distribution

Key quantity: nth-order cumulant

This suggests (    :  GUE Tracy-Widom distribution)

skewness
kurtosis

GUE

GUE

GOE

GOE

Gaussian

Tracy-Widom
distribution for...cumulant

with some constant parameters



Parameter Estimation

 Linear growth rate … measured from

 Amplitude     of       -fluctuations … from 2nd-order cumulant

Parameter values determined



rescaled height

One-Point Distribution

With the rescaled height

Histogram

1st order

2nd-4th order

Difference from
GUE-TW distribution

Interface fluctuations precisely agree with the GUE-TW distribution
up to the 4th order cumulant.  Finite-time effect              for the mean.

GUE-TW statistics for the circular interfaces is confirmed experimentally

slope -1/3
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Geometry Dependence

Flat interfaces can also be created by shooting line-shaped laser pulses

Same exponents, 
but different distributions!!

circular : 
flat :

circular flat

GUE & GOE Tracy-Widom distributions are directly seen.
“Curved KPZ subclass” & “flat KPZ subclass” are confirmed.

Speed x5,
Same KPZ exponents are found.

measuring
the distribution,

NB)



Finite-Time Corrections

circular flat

Differences in nth-order cumulants
circular (n = 1, 3) flat (n = 1, 2, 3, 4)

Independent?

KPZ eq.: for , but for .  [Sasamoto-Spohn PRL 2010]

PNG,  TASEP,  PASEP: for n = 1, in moments for . [Ferrari-Frings JSP 2011;

n = 1

n = 3

n = 1 n = 2

n = 3 n = 4

Baik-Jenkins Ann. Probab. 2013 (PNG)]

Finite-t corrections in nth-order cumulants 



Flat-Stationary Crossover

Stationary subclass is theoretically established, but it is never reached in practice.
However, approach, or crossover to the stationary subclass can be studied.

rescaled height difference

PNG model (simulation)

F0

GOE-TW

t0

F0 dist. (stationary)

GOE-TW dist. (flat)
F0

GOE-TW

experiment

• Scaling functions describing flat-stationary crossover are found.
• Experiment seems to indicate the same scaling functions, so universal!

[Takeuchi, PRL 110, 210604 (2013)]



Spatial Correlation Function

Predictions for solvable models:

: Airyi process  (cf.  Airy2 = largest-eigenvalue dynamics
in Dyson’s Brownian motion of GUE matrices)

with  i = 1 (flat),  i = 2 (circular),

Correlation of flat / circular interfaces
is governed by the Airy1 / Airy2 process

Qualitatively different decay

rescaled length

Two-point correlation function

circular = Airy2

flat = Airy1

: faster than exponential  (flat)

(circular)



Spatial Persistence

Spatial Persistence probability
= probability that keeps the same sign

over length in space at fixed time t

• Exponential decay with symmetric coefficients

• This should indicate the persistence property of the Airy1/Airy2 processes.

• expected to be universal (flat) (circular)

flat interfaces circular interfaces

rescaled length rescaled length



Spatial Persistence

Ferrari and Frings [J. Stat. Mech. 2013, P02001] derived determinantal expressions
for the persistence probability of the Airy1/Airy2 processes
(probability that is negative/positive for )
for negative fluctuations.  

 Numerical evaluation (Airy1)

 New open problems
 Can one solve the persistence probability for positive fluctuations?

 Experiment showed at , while depends on c.
Can this equality be shown, or it’s just a coincidence?

depends
continuously on c

here:
exp.:

agreement

exponential!



Temporal Correlation Function

• Natural scaling ansatz works

• Long-time asymptotics

• Stronger finite-time correction
to the scaling ansatz.

• Singha’s approximative theory [JSM 2005] 

works after modification.  In particular,

(!)with

analytically unsolved yet

circularflat

cf. Kallabis-Krug conjecture local ergodicity breaking?



Temporal Persistence

circularflat

positive fluctuations

negative fluctuations

typically,
Persistence probability

= joint probability that at a fixed position x
is positive (negative) at time t0 and keeps the same sign until time t

• due to the KPZ nonlinearity • Asymmetry cancelled!

• consistent with 
local ergodicity breaking ( )



θ = 0.8θ = 0.3

Ergodicity Breaking?

 “Weak ergodicity breaking”  [J.-P. Bouchaud 1992]

time average ensemble average, because of long & random trapping of trajectory

 “Dichotomous process” : simplest model

1
state

z

0

duration of each state

: weak ergodicity breaking

e.g.) time-avg. of z :

ergodic case non-ergodic case (0 < θ < 1)

pdf converges to an asymptotic distribution
(   remains stochastic).



KPZ Interfaces  vs  Dichotomous Process

 Dichotomous process is far too simple to describe KPZ.
two-state model, no space, uncorrelated waiting times…

 But, let’s naively compare... one can regard     ’s sign as the state z.
Waiting-time dist. is related to persistence prob.
For dichotomous process, θ is the persistence exponent θ(p). (for 0<θ<1)

 First, measure the waiting-time distribution.

experiment

flat
PNG

• Power-law waiting-time dist.
with θ = 0.8,  regardless of
time, +/-, circular/flat.

• Maybe not too stupid to
compare with dich. process?

• Dich. :
Circ : 
Flat   :



Recurrence Time Statistics

Forward recurrence time
Backward recurrence time

+

–NB:  persistence prob. 

forward backward

fla
t
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• All pdfs converge to 
different universal
functions. (shown are data for
positive fluctuations)

• Flat/circ. interfaces have
same waiting-time dist.,
but different recur. time dist.

• Data for circ. interfaces 
nicely agree with exact
results for dich. process!

Some set of time corr. 
props of circ. interfaces is
reproduced by dich. process!

w/ a few other results



Summary

Experimentally confirmed predictions (those based on exact solutions)

 Primary features of the flat/curved subclasses are evidenced.
(KPZ exponents,  GOE/GUE-TW dist.,  Airy1,2 processes)

 There are other confirmed predictions (e.g., max. height distribution).

 Universal crossover to the stationary subclass (Baik-Rains F0 dist.) is detected.

Beyond a “mere” confirmation…
 What should be measured now is unsolved properties!

(time correlation, spatial persistence, finite-time effects, ...)

 Time correlation looks particularly fascinating.
(for circ. interfaces, “weak ergodicity breaking” may be a key concept)

 Physical understanding for universality? (subclass structure, bridging micro & macro)

Turbulent liquid crystal shows us 
the beautiful physics (and even math!) of the (1+1)d KPZ class

KaT & Sano,  J. Stat. Phys. 147, 853;  KaT, PRL 110, 210604;  KaT & Akimoto, in preparationRefs:
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