Growth Processes in Evaporating Drops

Peter Yunker (Harvard, UPenn, GT) Tim Still, Matt Lohr, Arjun Yodh, Doug Durian (UPenn) Alexei Borodin (MIT)

P.J. Yunker, T. Still, M.A. Lohr, and A.G. Yodh, *Nature* 476, 308 (2011).
P.J. Yunker, *et al.*, PRL (2012).
P.J. Yunker, *et al.*, PRL (2013).
P.J. Yunker, *et al.*, PRL (2013).

Growth process depends on particle shape

Coffee-ring effect

Poisson Process

KPZ Process

1

Colloidal Matthew Effect

Which growth processes?

Why particle shape?

Colloidal particles: a convenient experimental tool

Colloidal Fluid

Colloidal particles: a convenient experimental tool

Colloidal particles: a convenient experimental tool

Growth process depends on particle shape

Coffee-ring effect

Poisson Process

KPZ Process

Colloidal Matthew Effect

Which growth processes?

Why particle shape?

The Coffee Ring Effect

The Coffee Ring Effect

Robert D. Deegan, Olgica Bakajin, T.F. Dupont, G.Huber, Sidney R. Nagel, Thomas A. Witten, *Nature* (1997). Georgia Institute of Technology

Drop Edges Pinned During Evaporation

Edges Unpinned – Diameter Decreases

Edges Pinned – Contact Angle Decreases

Convective Fluid Flow from Middle of Drop to Edges

Figure from R. D. Deegan et al., Nature 389, 827 (1997).

Basic Experiment

Drying Drops Containing Polystyrene Spheres

Drying Drops Containing Polystyrene Spheres

Growth process depends on particle shape

Coffee-ring effect

Poisson Process

KPZ Process

Colloidal Matthew Effect

Which growth processes?

Why particle shape?

Why Does Particle Shape Matter?

Han, Y., Alsayed, A.M., Nobili, M., Zhang, J., Lubensky, T.C., & Yodh, A.G., Brownian motion of an ellipsoid. *Science* (2006).

"Spheres" and "Ellipsoids" at low volume fraction will have fairly similar bulk behaviors. GeorgiaInstitute of Technology

Shape Anisotropy Deforms Interface

Interfacial Forces Depend on Particle Shape

Georgia Institute of Technology Loudet, J.C., Alsayed, A.M., Zhang, J., and Yodh, A.G., *Phys Rev Lett* (2005); Loudet J.C., Yodh A.G., Pouligny B., *Phys Rev Lett* (2006); Kralchevsky, Paunov, Ivanov and Nagayama, J. Coll. Inter. Sci., (1992)

Highly anisotropic ellipsoids prefer tipto-tip or side-to-side

GeorgiaInstitute

echnology

Outward flows drive coffee ring-effect

Coffee Rings for Spheres but not Ellipsoids!

Ellipsoids form loosely-packed, open network

Reminiscent of growth process simulation

Georgia Institute of Technology

Growth process depends on particle shape

Coffee-ring effect

Poisson Process

KPZ Process

11

Colloidal Matthew Effect

Which growth processes?

Why particle shape?

How do deposits grow during evaporation?

Georgia Institute of Technology

What types of growth processes occur? How does growth process depend on particle shape?

Deposit Characterization mm -----

25 μm **—**

h

Deposit Characterization month h

Width,
$$w = \left\langle \sqrt{\left\langle \left(h - \left\langle h \right\rangle\right)^2 \right\rangle} \right\rangle \sim t^{\beta}$$

Georgia Institute
of Technology

Deposit width increases over time

Use h instead of t

Data collapse into distinct trends based on particle shape

Three distinct regimes

Spheres $\epsilon = 1.0, 1.05$ Poisson Process

Random deposition – Poisson process

Drop Edge

Drop Edge

Drop Edge

Drop Edge

Drop Edge

Drop Edge

Drop Edge

Slightly anisotropic particles ε =1.1, 1.2 KPZ Process

Slightly stretched particle deposition similar to ballistic deposition

Interparticle interaction is >> 1 k_BT for nearest neighbors only

Stamou, Duschl, and Johannsmann PRE (2000); Family, Physica A (1990)

Roughness exponent α agrees with KPZ

Skewness and Kurtosis approach KPZ values

Very anisotropic ellipsoids ε > 1.2 Colloidal Matthew Effect

Particle-rich regions get richer

What type of growth process is this?

- Anomalous roughening?
 - Nicoli, Cuerno, and Castro PRL (2013)
- KPZ?
 - Oliveira, Aarao Reis arXiv:1401.0696 (2014)
- KPZQ?

Georgialnstitute

chmologw

– Dias, Araujo, Telo da Gama, arXiv:1407.2374 (2014)

Drop Edge

10 um

Must explain abrupt transition

Must explain abrupt transition

Minimal simulation?

Simulation of patchy colloids

Dias, Araujo, Telo da Gama, arXiv:1407.2374

Highly anisotropic ellipsoids prefer tipto-tip or side-to-side

GeorgiaInstitute

echnology

Abrupt transition occurs

Summary

 Changing particle shape selects 3 distinct growth processes

Acknowledgements

- Advisor: Arjun G. Yodh
- Collaborators: Alexei Borodin, Doug J. Durian, Tom Lubensky, Matthew A. Lohr, Tim Still

Physics: Coffee Stains Test Universal Equation

January 18, 2013

Georgia Institute of Technology

An equation that describes a wide array of phenomena can be directly tested by wa the equivalent of a drying coffee drip. [Focus on Phys. Rev. Lett. **110**, 035501 (2013)]

Read Article | More Focus

P. J. Yunker, T. Still, M.A. Lohr, A.G. Yodh, Nature (2011)
P. J. Yunker, M. Gratale, T. Still, M.A. Lohr, T.C. Lubensky, A.G. Yodh, PRL (2012)
P. J. Yunker, T. Still, M.A. Lohr, D.J. Durian, Alexei Borodin, A.G. Yodh, PRL (2013)
P. J. Yunker, D.J. Durian, A.G. Yodh, Physics Today (2013)