Understanding pending features of the KPZ class in discrete growth models

Silvio C. Ferreira Departamento de Física - Universidade Federal de Viçosa

silviojr@ufv.br sites.google.com/site/silvioferreirajr/

Financial support: FAPEMIG and CNPq

Interface fluctuations and KPZ universality class, Kyoto, August 2014.

Brazil - Minas Gerais

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Viçosa - Minas Gerais

Typical distances

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Belo Horizonte \longrightarrow 230 Km
- Rio de Janeiro \longrightarrow 350 Km
- Brasília \longrightarrow 950 Km
- Amazon forest $\longrightarrow \approx$ 2000 3000 Km
- Kyoto \longrightarrow 19000 Km

イロン 不得 とくほ とくほ とうほ

Outline

- Part I: Introduction and numerical recipes
- Part II: RSOS model in substrate dimensions *d* ≥ 3
- Part III: Corrections to the scaling in ballistic growth models

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Part IV: KPZ models on enlarging flat substrates

Kardar-Parisi-Zhang (KPZ) equation

$$\frac{\partial h}{\partial t} = F + \nu \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \xi \quad \text{[PRL 56, 889 (1986)]}$$
$$\langle \xi(x,t) \rangle = 0 \quad \langle \xi(x,t)\xi(x',t') \rangle = D\delta(x-x')\delta(t-t')$$

- Lateral growth
- Excess velocity

$$\partial_t \langle h \rangle = F + rac{\lambda}{2} \langle (
abla h)^2
angle$$

Selected KPZ events

Family-Viseck Ansatz [1985]

$$\langle h^2 \rangle_c = t^{2\beta} f\left(\frac{L}{t^{1/z}}\right) \sim \begin{cases} t^{2\beta} & t \ll L^z \\ L^{2\alpha} & t \gg L^z \end{cases} \qquad z = \frac{\alpha}{\beta}$$

KPZ equation [1986]

$$\partial_t h = F + \nu \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \xi$$

KPZ ansatz [Krug, Meakin, Halpin-Healy, late 80's/early 90's]

$$h = v_{\infty}t + s_{\lambda}(\Gamma t)^{\beta}\chi$$

Subclasses split [Prähofer, Spohn, Johansson early 2000's]

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Selected KPZ historic events

Experimental realization [Takeuchi and Sano in early 2010's]

• KPZ equation solutions [Spohn, Sasamoto, Corwin, Calabrese, etc... in 2010's]

$$Z(x,t) = \exp\left[\frac{\lambda}{2\nu}h(x,t)\right]$$

• KPZ ansatz in *d* = 2 + 1 dimensions [Halpin-Healy, 2012]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Family-Vicsek ansatz

Interface fluctuations in a scale L:

$$w^{2}(L, t) = \langle h^{2} \rangle_{c} = \langle h^{2} \rangle - \langle h \rangle^{2}$$

$$w = t^{\beta} f\left(\frac{L}{t^{1/z}}\right) \sim \begin{cases} t^{\beta} & t \ll L^{z} \\ L^{\alpha} & t \gg L^{z} \end{cases}$$

$$z = \frac{\alpha}{\beta}$$

Family and Vicsek, JPA 18, L75 (1985)

KPZ exponents (d = 1 + 1) : $\alpha = 1/2$, $\beta = 1/3$, z = 3/2

$$\alpha + z = 2$$

[KPZ, PRL 56, 889 (1986)]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Non-universal correction in the KPZ ansatz

$$h = \mathbf{v}_{\infty} t + (\Gamma t)^{\beta} \chi_{\tau w} + \eta + \cdots \Longrightarrow q = \frac{h - \mathbf{v}_{\infty} t}{(\Gamma t)^{\beta}} = \chi_{\tau w} + c t^{-\beta} + \cdots$$

Experiments in turbulent crystal liquids

Takeuchi, Sano PRL 104, 230601 (2010); JSP 147 853 (2012)

Explicit solutions of 1+1 KPZ Eq.

Sasamoto and Spohn PRL 104 (23), 230602 (2010)

• Solvable models in d = 1 + 1 (PNG, PASEP, etc..)

Ferrari, Frings JSP 144 (6), 1123 (2011).

• Simulations in d = 1 + 1 (Ballistic deposition, Eden, RSOS, etc...)

Alves, Oliveira, Ferreira JSTAT P05007 (2013); EPL 96 48003 (2011); PRE 85 010601(R) (2012);

Simulations in *d* = 2 + 1 dimensions

Alves, Oliveira, Ferreira PRE 87 040102(R) (2013)

Determination of scaling exponents

$$L \to \infty \quad \langle h^n \rangle_c \simeq t^{n\beta}$$

$$eta_{\mathrm{eff}} = rac{1}{n} rac{d \ln \langle h^n
angle_c}{d \ln t} \ n \geq 2$$

$$t \to \infty \quad \langle h^n \rangle_c \simeq L^{n\alpha}$$

$$\alpha_{\rm eff} = \frac{1}{n} \frac{d \ln \langle h^n \rangle_c}{d \ln L} \ n \ge 2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●三 - のへで

Determination of non-universal parameters

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Amplitude of fluctuations

Part II

RSOS model in high dimensional substrates

with Sidiney G. Alves and Tiago J. Oliveira (Univ. Fed. Viçosa)

ArXiv:1405.0974 to appear in PRE Rapid Communication

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

KPZ class in higher dimensions

d	α	β	z	
2	0.395(5)	0.245(5)	1.58(10)	
3	0.29(1)	0.184(5)	1.60(10)	
4	0.245(5)	0.15(1)	1.91(10)	
5	0.22(1)	0.115(5)	1.95(15)	

Simulations

Ódor et al. PRE 81, 031112 (2011)

Central theoretical issue:

Upper critical dimensions d_u ($\alpha = \beta = 0$ and z = 2):

- Mode-coupling theory and field theoretical approaches $2.8 < d_u \le 4$
- Renormalization group and simulations $d_u > 4$
- Some works suggest $d_u = \infty$

Concise review: Pagnani and Parisi PRE 87 010102(R) (2013)

The restricted solid-on-solid (RSOS) model

Depositions producing NN height differences $|\Delta h| > m$ are rejected.

Kim and Kosterlitz PRL 72 2289 (1989).

Some recentest advances:

- Very precise simulations "prove" that $d_u > 4$ [Pagnani and Parisi, PRE **87** 010102(R) (2013)]
- Restriction parameter m > 1 improves scaling in d = 4 + 1 [Kim and Kim PRE 88, 034102 (2013)]
- Scaling exponents using m > 1 support $d_u > 11$ [Kim and Kim JSTAT (2014) P07005]

Universal and non-universal quantities in d = 3 - 6

Alves, Oliveira, Ferreira ArXiv:1405.0974

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Dimensionless cumulant ratios

$$R = \frac{\langle h^2 \rangle_c}{\langle h \rangle^2} \to \frac{\langle \chi^2 \rangle_c}{\langle \chi \rangle^2} \quad S = \frac{\langle h^3 \rangle_c}{\langle h^2 \rangle_c^{3/2}} \to \frac{\langle \chi^3 \rangle_c}{\langle \chi^2 \rangle_c^{3/2}} \quad K = \frac{\langle h^4 \rangle_c}{\langle h^2 \rangle_c} \to \frac{\langle \chi^4 \rangle_c}{\langle \chi^2 \rangle_c^{2/2}}$$

Model	β	v_{∞}	R	S	K			
d = 3								
RSOS $(m = 2)$	0.189	0.44650	0.156	0.53	0.50			
RSOS $(m = 4)$	0.191	0.6340	0.163	0.53	0.52			
d = 4								
RSOS $(m=2)$	0.150	0.41518	0.093	0.57	0.63			
RSOS $(m = 4)$	0.155	0.6059	0.096	0.59	0.65			
d = 5								
RSOS $(m=2)$	0.13	0.39356	0.064	0.61	0.73			
RSOS $(m = 4)$	0.13	0.5858	0.063	0.63	0.76			
d = 6								
RSOS $(m = 4)$	0.11	0.57055	0.042	0.66	0.83			
RSOS $(m = 8)$	0.10	0.7380	0.037	0.68	0.86			

Note: data extrapolated for $t \to \infty$

Different parameters m (different λ) yield the same cumulant ratios, which should be modeldependent for d > d_u.

(日)

KPZ "machinery" in d = 3 + 1 and d = 4 + 1

・ロット (雪) (日) (日)

ъ

Universal and non-universal quantities

TABLE II. Estimates of nonuniversal parameters (A, λ, Γ) for the RSOS model in d = 1-4 dimensions. Height restriction parameters are shown in brackets. The estimates of the first and second cumulants of χ are shown in the last columns. Results for d = 1 were extracted from Ref. [8], where a factor of a different convention $\Gamma = |\lambda|A/2$ was used. Our results in d = 1 and 2 with m = 1 are in agreement with former reports [11,16].

d [m]	A	λ	Г	(x)	$\langle \chi^2 \rangle_c$
1 [1]	0.81	-0.77	0.51	-0.60	0.40
2 [1]	1.22(4)	-0.41(1)	0.68(6)	-0.83(2)	0.23(1)
2 [2]	4.5(1)	-0.121(3)	5.5(2)	-0.82(2)	0.23(1)
3 [2]	5.8(2)	-0.090(2)	38(3)	-0.86(2)	0.12(1)
3 [4]	19(2)	-0.024(2)	600(50)	-0.82(3)	0.11(1)
4 [2]	8(1)	-0.05(1)	240(50)	-1.00(4)	0.09(1)
4 [4]	25(2)	-0.015(2)	7600(900)	-0.98(5)	0.09(1)

Universal quantities

▲□▶▲圖▶▲≣▶▲≣▶ = 三 のQ@

Distributions

▲□▶▲□▶▲□▶▲□▶ = つくぐ

Conclusions of Part II

- The theoretical machinery developed for the KPZ equation in d = 1 + 1 holds up to d = 6.
- Interface height distributions are universal for all investigated dimensions.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Fluctuations are not negligible \implies $d_u > 6$.
- Extrapolation for $d \ge 7$ supports $d_u = \infty$.

Part III

Scaling Corrections in ballistic growth models in d = 2 + 1

with Sidiney G. Alves and Tiago J. Oliveira (Univ. Fed. Viçosa)

ArXiv:XXXX.YYYY

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Models

Grain deposition

Vold, J. Colloid Sci. 14, 168 (1959).

Ballistic deposition

Oliveira and Reis, J. Appl. Phys. 101, 063507 (2007).

・ロト・日本・日本・日本・日本・日本

Motivation

"Bad" scaling properties of DB models in high dimensions

Scaling in experiments

Yunker et al., PRL 110, 035501 (2013)

Nicoli et al., PRL **111**, 209601 (2013)

э

Intrinsic width

Heuristic formula:

Kertész and Wolf, JPA 21 747 (1988).

KPZ ansatz:

$$w_i^2 = \lim_{t \to \infty} \left[\langle h^2 \rangle_c - (\Gamma t)^{2\beta} \langle \chi^2 \rangle_c \right].$$

 $w_i = 3.6(2) \text{ (BD)}$, 10.0(5) (GD2) and 26(2) (GD4).

$$\langle h^2 \rangle_c = (\Gamma t)^{2\beta} \langle \chi^2 \rangle_c + 2(\Gamma t)^{\beta} \operatorname{cov}(\chi, \eta) + \langle \eta^2 \rangle_c + \cdots$$

 $w_i^2 = \operatorname{const.} \Longrightarrow \operatorname{cov}(\chi, \eta) \approx 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

Height increment fluctuations

Let $\delta h = h(\mathbf{x}, t + \delta t) - h(\mathbf{x}, t)$ is the height increment in a time step.

FIG. 4: (a) Second cumulant of δh (symbols) and $\langle h^2 \rangle_e - (\Gamma t)^{2\beta} \langle \chi^2 \rangle_e$ (lines) against time. (b) Third cumulant of δh (symbols) and $\langle h^3 \rangle_e - (\Gamma t)^{3\beta} \langle \chi^3 \rangle_e$ (lines) against time.

10 L

10

Binning method for ballistic growth

Method: The surface is binned using boxes of size ε where only the highest site inside a bin is used to reconstruct teh surface.

Non-universal parameters

According to the KPZ ansatz, Γ can also be obtained using

^{a)}Halpin-Healy, PRL (2012)

Conclusion: Binning method does not change the non-universal parameters.

Non-universal parameter for ballistic models in d = 2 + 1

Model	V_{∞}	λ	Г
BD	3.33396(3)	2.15(10)	57(7)
GD2	3.6925(1)	0.35(3)	3.5(3)×10 ³
GD4	5.1124(1)	0.76(3)	4.3(7)×10 ⁴

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Table: Non-universal parameters for ballistic models using Krug-Meakin analysis [JPA **23**, L987 (1990)] for binning windows of size $\epsilon = 4$.

Scaling exponents with binning

Intrinsic width for BD: $w_i = 3.6(2) \ (\varepsilon = 1); \ w_i = 1.5(2) \ (\varepsilon = 2); \ \text{and} \ 0.8(2) \ (\varepsilon = 4)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへぐ

Binning method to measure χ

model	β	α	$\langle \chi \rangle$	$\langle \chi^2 \rangle_c$	S	K
BD	0.239(15)	0.389(3)	0.86(2)	0.235(15)	0.41(2)	0.31(3)
GD2	0.225(15)	0.375(5)	0.85(2)	0.24(2)	0.43(3)	0.32(3)
GD4	0.237(18)	0.375(15)	0.84(3)	0.24(2)	0.44(3)	0.35(5)

TABLE II: Universal quantities determined for ballistic models either discounting the intrinsic width (β and α) or using surfaces constructed with $\varepsilon = 2t$ (the other quantities). Uncertainties in cumulants and cumulant ratios were obtained propagating the uncertainties in the non-universal parameters v_{∞} and Γ given in Table I.

In agreement with the recent characterization of the KPZ ansatz in d=2+1 [Halpin-Healy, PRL 2012, PRE 2013; OAF PRE 2013].

Conclusions of Part III

- Strong corrections to the scaling of ballistic growth models are strongly related to the fluctuations of height increments, ((δh)²)
- Discounting $\langle (\delta h)^2 \rangle$ from $\langle h^2 \rangle_c$, an excellent agreement with the KPZ exponents are found.
- Binning method is able to reduce corrections to the scaling allowing to determined the universal properties of the height fluctuations.
- The method can be applied to unveil universality in experimental systems with large steps in surface.

Part IV

Interface fluctuations in the deposition on enlarging flat substrates

with Ismael. S. S. Carrasco, Tiago J. Oliveira (UFV), Kazumasa A. Takeuchi (Univ. of Tokyo)

ArXiv:XXXX.YYYY

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Motivation

- Computational limitations of anisotropic systems
- Equivalence between interface fluctuations in radial growth and increasing substrates

Deposition on enlarging substrates

- Square lattice with $N = L^{d_s}$
- Periodic boundary cond (cylinder).
- Constant enlarging rate ω .
- Initial substrate size $L_0 \sim \omega$
- Implementation

$$egin{aligned} \mathcal{P}_{dep} &= rac{N}{N+\omega d_s} \ \mathcal{P}_{dup} &= rac{\omega d_s}{N+\omega d_s} \end{aligned}$$

 $\Delta t = \frac{1}{N + \omega d_s}$ Masoud et al. [Jstat L02001 (2012)] did similar simulations using a different rule and verified that scaling exponents are the same as the fixed-size case.

Etching model ($\lambda > 0$)

Mello et al. PRE 63 041113 (2001)

Universal quantities in d=1+1

◆□ > ◆□ > ◆三 > ◆三 > ○ ● ○ ○ ○

Logarithmic corrections

- If deposition is turned off, duplication leads to a decay $\langle |\nabla h|^2 \rangle \sim t^{-1}$.
- Assuming a correction t^{-1} in the gradient, a logarithmic is found.

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Distributions in d = 1 + 1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Universal distributions in d = 2 + 1

In agreement with the curved KPZ subclass in d=2+1 [Halpin-Healy, PRL 2012 and PRE 2013; OAF PRE 2013]

Spatial covariance

$$C_s(r,t) = \left\langle \tilde{h}(x,t)\tilde{h}(x+r,t) \right\rangle \simeq (\Gamma t)^{2\beta} \Psi[A_h r/(\Gamma t)^{2\beta}],$$

In d = 1 + 1 dimensions we have the Airy₁ (flat) and Airy₂ (curved) processes [see review by Kriecherbauer and Krug JPA **43**, 403001 (2010)].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Temporal covariance

See [Takeuchi and Sano, JSP 147, 853 (2012)] for temporal correlation function.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusions of Part IV

- Enlarging substrates belong to KPZ subclass for curved systems in both d = 1 + 1 and 2+1.
- Spatial and temporal covariances for the curved subclass in d = 2 + 1 are presented.
- Question: Does curvature indeed matter?

・ コット (雪) ・ (目) ・ (目)