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Plan of the talk

1 KPZ equation (Ill-posedness, Renormalization)

2 Cole-Hopf solution, linear stochastic heat equation (SHE)
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1. KPZ equation

The KPZ (Kardar-Parisi-Zhang, 1986) equation describes
the motion of growing interface with random fluctuation.

It has the form for height function h(t, x):

∂th = 1
2
∂2
xh +

1
2
(∂xh)

2 + Ẇ (t, x), x ∈ R (or S). (1)

We consider in 1D on a whole line R or on a finite
interval S = R/Z under periodic boundary condition.

The coefficients 1
2
are not important, since we can change

them under space-time scaling.

Ẇ (t, x) is a space-time Gaussian white noise with mean 0
and correlation function:

E [Ẇ (t, x)Ẇ (s, y)] = δ(t − s)δ(x − y). (2)
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Ill-posedness of the KPZ eq (1):

The nonlinearity and roughness of the noise do not match.

The linear SPDE:

∂th = 1
2
∂2
xh + Ẇ (t, x),

obtained by dropping the nonlinear term has a solution
h ∈ C

1
4
−, 1

2
−([0,∞)× R) a.s. Therefore, no way to define

the nonlinear term (∂xh)
2 in (1) in a usual sense.

Actually, the following Renormalized KPZ eq with
compensator δx(x) (= +∞) has the meaning:

∂th = 1
2∂

2
xh + 1

2{(∂xh)
2 − δx(x)}+ Ẇ (t, x),

as we will see later.
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2. Cole-Hopf solution to the KPZ equation

Viscous stochastic Burgers equation: u := ∂xh satisfies

∂tu = 1
2
∂2
xu + 1

2
∂xu

2 + ∂xẆ (t, x). (3)

Motivated by this, consider the linear stochastic heat
equation (SHE) for Z = Z (t, x):

∂tZ = 1
2
∂2
xZ + ZẆ (t, x), (4)

with a multiplicative noise. This is a well-posed eq.
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The solution Z (t) of (4) is defined in a generalized
functions’ sense or in a mild form due to Duhamel’s
principle using heat kernel p(t, x , y) = 1√

2πt
e−(y−x)2/(2t).

These two notions are equivalent, and ∃unique solution
s.t. Z ∈ C ([0,∞)× R) and supx∈R e

−r |x ||Z (t, x)| < ∞
for ∀r > 0 a.s.

(Strong comparison) Z (0, x) ≥ 0 for ∀x ∈ R and
Z (0, x) > 0 for ∃x ∈ R
=⇒ Z (t, x) > 0 for ∀t > 0,∀ x ∈ R a.s.

Therefore, we can define the Cole-Hopf transformation:

h(t, x) := log Z (t, x). (5)
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Heuristic derivation of the KPZ eq (with renormalization factor
δx(x)) from SHE (4) under the Cole-Hopf transformation (5):

Apply Itô’s formula for h = log z :

∂th = Z−1∂tZ − 1
2
Z−2(∂tZ )

2

= Z−1
(

1
2
∂2
xZ + ZẆ

)
− 1

2
δx(x)

by SHE (4) and (dZ (t, x))2 = (ZdW (t, x))2

dW (t, x)dW (t, y) = δ(x − y)dt

= 1
2
{∂2

xh + (∂xh)
2}+ Ẇ − 1

2
δx(x)

Tadahisa Funaki University of Tokyo

KPZ equation, its renormalization and invariant measures



This leads to the Renormalized KPZ eq:

∂th = 1
2
∂2
xh +

1
2
{(∂xh)2 − δx(x)}+ Ẇ (t, x). (6)

The function h(t, x) defined by (5) is meaningful and
called the Cole-Hopf solution of the KPZ eq, although the
equation (1) does not make sense.

Goal: To introduce approximations for (6), in particular,
well adapted to finding invariant measures.

Hairer (2013, 2014) gave a meaning to (6) without
bypassing SHE.
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3. KPZ approximating equation-1: Simple
Symmetric convolution kernel Let η ∈ C∞

0 (R) s.t.
η(x) ≥ 0, η(x) = η(−x) and

∫
R η(x)dx = 1 be given, and

set ηε(x) := η(x/ε)/ε for ε > 0.
Smeared noise The smeared noise is defined by

W ε(t, x) = ⟨W (t), ηε(x − ·)⟩
(
= W (t) ∗ ηε(x)

)
.

Approximating Eq-1:

∂th = 1
2
∂2
xh +

1
2

(
(∂xh)

2 − ξε
)
+ Ẇ ε(t, x)

∂tZ = 1
2
∂2
xZ + ZẆ ε(t, x),

where ξε = ηε2(0) (:= ηε ∗ ηε(0)).
It is easy to show that Z = Z ε converges to the sol Z of
(SHE), and therefore h = hε converges to the Cole-Hopf
solution of the KPZ eq.
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KPZ approximating equation-2: Suit for inv meas

Goal: We want to introduce an approximation which is
suitable to study the invariant measures.

General principle. Consider the SPDE

∂th = F (h) + Ẇ ,

and let A be a certain operator. Then, the structure of the
invariant measures essentially does not change for

∂th = A2F (h) + AẆ .

This may not be true in non-reversible situation.
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KPZ approximating equation-2

∂th = 1
2
∂2
xh +

1
2

(
(∂xh)

2 − ξε
)
∗ ηε2 + Ẇ ε(t, x), (7)

where η2(x) = η ∗ η(x), ηε2(x) = η2(x/ε)/ε and
ξε = ηε2(0).

Note that the solution h of (7) is smooth in x , so that we
can consider the associated tilt process ∂xh.
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Let νε be the distribution of ∂x(B ∗ ηε(x)), where B is the
two-sided Brownian motion. νε is independent of choice of B(0).

Theorem 1

νε is invariant for the tilt process ∂xh determined by SPDE (7).

DaPrato-Debussche-Tubaro (2007) studied a similar
SPDE to (7) on S.
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Sketch of the proof:
Step 1: Consider on a discrete torus TN = {1, 2, . . . ,N}.
The discretization of (∂xh)

2 should be carefully chosen
(cf. Myllys’ talk, Krug-Spohn):

1
3

{
(hi+1 − hi )

2 + (hi − hi−1)
2 + (hi+1 − hi )(hi − hi−1)

}
, i ∈ TN

Discrete version of νε defined on TN is invariant.

Step 2: Continuum limit as N → ∞ leads to the result on
S. This can be easily extended to a torus SM = R/MZ of
size M .

Step 3: Take an infinite-volume limit as M → ∞ by usual
tightness and martingale problem approach.
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Remark: Infinitesimal invariance can be directly shown based
on Wiener-Itô expansion of tame functions Φ:∫

LεΦ(h)νε(dh) = 0, (8)

where Lε is (pre) generator of the SPDE (7).

Lε = Lε
0 +Aε,

Lε
0Φ(h) =

1
2

∫
R2

D2Φ(x1, x2; h)η
ε
2(x1 − x2)dx1dx2 +

1
2

∫
R
∂2
xh(x)DΦ(x ; h)dx ,

AεΦ(h) = 1
2

∫
R

(
(∂xh)

2 − ξε
)
∗ ηε2(x)DΦ(x ; h)dx .

Combined with the well-posedness of Lε-martingale problem,
which can be shown at least on S, it is expected that the
infinitesimal invariance implies Thm 1. But this is not clear in
infinite-dimensional setting; cf. Echeverria (1982),
Bhatt-Karandikar (1993).
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Cole-Hopf transform for SPDE (7)

The goal is to pass to the limit ε ↓ 0 in the KPZ
approximating equation (7):

∂th = 1
2∂

2
xh + 1

2

(
(∂xh)

2 − ξε
)
∗ ηε2 + Ẇ ε(t, x).

We consider its Cole-Hopf transform: Z (≡ Z ε) := eh.
Then, by Itô’s formula, Z satisfies the SPDE:

∂tZ = 1
2∂

2
xZ + Aε(x ,Z ) + ZẆ ε(t, x), (9)

where

Aε(x ,Z ) =
1

2
Z (x)

{(
∂xZ

Z

)2

∗ ηε2(x)−
(
∂xZ

Z

)2

(x)

}
.

The complex term Aε(x ,Z ) looks vanishing as ε ↓ 0.
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But this is not true. Indeed, under the average in time t,
Aε(x ,Z ) can be replaced by a linear function 1

24
Z .

The limit as ε ↓ 0 (under stationarity of tilt),

∂tZ = 1
2
∂2
xZ+

1
24
Z + ZẆ (t, x).

Or, heuristically at KPZ level,

∂th = 1
2
∂2
xh +

1
2
{(∂xh)2 − δx(x)}+ 1

24
+ Ẇ (t, x).
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Taking the limit ε ↓ 0 (Similar to Boltzmann-Gibbs principle)

Asymptotic replacement of Aε(x ,Z ε(s)) by 1
24Z

ε(s, x).

To avoid the complexity arising from the infiniteness of invariant
measures, we view hε(t, ρ) =

∫
he(t, x)ρ(x)dx (height averaged by

ρ ∈ C∞
0 (R),≥ 0,

∫
ρ(x)dx = 1) in modulo 1 (called wrapped

process).

Theorem 2

For every φ ∈ C0(R) satisfying supp φ ∩ supp ρ = ∅, we have that

lim
ε↓0

Eπ⊗νε

[{∫ t

0

Ãε(φ,Z ε(s))ds

}2
]
= 0,

where π is the uniform measure for hε(0, ρ) ∈ [0, 1),

Ãε(φ,Z ) =

∫
R
Ãε(x ,Z )φ(x)dx

Ãε(x ,Z ) = Aε(x ,Z )− 1
24Z (x).
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Proof of Theorem 2
(1) Reduction of equilibrium dynamic problem to static one:

The expectation is bounded by

≤ 20 t sup
Φ∈L2(π⊗νε)

{
2Eπ⊗νε

[
Ãε(φ,Z )Φ

]
− ⟨Φ, (−Lε

0)Φ⟩π⊗νε

}
,(

= 20t∥Aε(φ,Z )∥2−1,ε

)
where Lε

0 is the symmetric part of Lε. This is a generic
bound in a stationary situation.
Here,

2Eπ⊗νε
[
Ãε(φ,Z )Φ

]
= Eπ

[
ZρE

νε

[Bε(φ,Z )Φ(h(ρ),∇h)]
]
,

where Zρ = exp{
∫
R logZ (x)ρ(x)dx}, Bε(x ,Z ) = 2Aε(x,Z)

Zρ
and

Bε(φ,Z ) =
∫
R Bε(x ,Z )φ(x)dx .
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(2) The key is the following static bound:

Proposition 3

For Φ = Φ(∇h) ∈ L2(C̃, ν) such that
∥Φ∥21,ε = ⟨Φ, (−Lε

0)Φ⟩π⊗νε < ∞ , and φ satisfying the
condition of Theorem 2, we have that∣∣E νε [Bε(φ,Z )Φ]

∣∣ ≤ C (φ)
√
ε∥Φ∥1,ε, (10)

with some positive constant C (φ), which depends only on φ,
for all ε: 0 < ε ≤ δ

2
∧ 1

6
.

Once this proposition is shown, the proof of Theorem 2 is
concluded, since the sup in the last slide is bounded by

≤ 20t sup{2eC (φ)
√
ε∥Φ∥1,ε − ∥Φ∥21,ε} = const(

√
ε)2 → 0.
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Point of the proof of Proposition 3

First note that

E νε [Bε(φ,Z )Φ]

= E νε
[
Z (x)

Zρ

(
{Ψε ∗ ηε2(x)−Ψε(x)} − 1

12

)
Φ

]
To compute this expectation, since {Ψε ∗ ηε2(x)−Ψε(x)}
is 2nd order Wiener functional, we need to pick up the
2nd order and 0th order terms of the products of two
Wiener functionals Z(x)

Zρ
× Φ. We apply the diagram

formula to compute the Winer chaos expansion of
products of two functions.
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Note that, under ν,

Z (x)

Zρ
= eB(x)−

∫
R B(y)ρ(y)dy

= ea(x)

{
1 +

∞∑
n=1

1

n!

∫
Rn

ϕ⊗n
x (u1, . . . , un)dB(u1) · · · dB(un)

}
,

where,

ϕx(u) = 1(−∞,x](u)−
∫ ∞

u

ρ(y)dy ,

a(x) = 1
2

∫
R
ϕx(u)

2du.

Note that the kernel ϕx has jump.
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1
24
is the speed of growing interface, and already appears

in some previous talks and in many KPZ related papers.

For general convolution kernel η, this constant is given by
J/2, where

J = P(R1 + R3 > 0,R2 + R3 > 0)− P(R1 > 0,R2 > 0),

and {Ri}3i=1 are i.i.d. r.v.s distributed under η2(x)dx
If η is symmetric,

P(R1 + R3 > 0,R2 + R3 > 0) = P(R1 − R3 > 0,R2 − R3 > 0)

= P(R3 = minRi ) =
1
3 ,

so that J = 1
3
− 1

4
= 1

12
.

If the support of η ⊂ [0,∞) (or ⊂ (−∞, 0]), then J = 0.
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Wrapping can be removed by showing uniform estimate:

sup
0<ε<1

E

[
sup

0≤t≤T
hε(t, ρ)2

]
< ∞.

Namely, height cannot move very fast. This is shown only
on a torus (since we need Poincaré inequality).
Under the stationary situation of the tilt processes, in the
limit, we obtain the SHE:

∂tZ = 1
2∂

2
xZ + 1

24Z + ZẆ (t, x). (11)

This looks different from the original SHE (4), but the
solution Zt of (11) gives the solution Z̃t of (4) under the
simple transformation Z̃t := e−

t
24Zt .

This implies the invariance of the distribution of the
geometric Brownian motion for the tilt process
determined by the SHE (4), and therefore that of BM for
Cole-Hopf solution.
We formulate the results more precisely in the next
section.
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4. Invariant measures of Cole-Hopf sol and SHE

As a byproduct, one can give a class of invariant measures for
the stochastic heat equation (4) and for the Cole-Hopf
solution of the KPZ equation.

Let µc , c ∈ R be the distribution of eB(x)+c x , x ∈ R on
C+, where B(x) is the two-sided Brownian motion such
that µc(B(0) ∈ dx) = dx .

Let νc be the distribution of B(x) + c x on C.
Note that these are not probability measures.
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Theorem 4

{µc}c∈R are invariant under SHE (4), i.e.,

Z (0)
law
= µc ⇒ Z (t)

law
= µc for all t ≥ 0 and c ∈ R.

Corollary 5

{νc}c∈R are invariant under the Cole-Hopf solution of the
KPZ equation.

c means the average tilt of the interface.

We have different invariant measures for different average
tilts.

Reversibility does not hold, but a kind of Yaglom
reversibility holds.
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(Scale invariance) If Z (t, x) is a solution of (4), then

Z c(t, x) := ecx+
1
2 c

2tZ (t, x + ct)

is also a solution (with a new white noise). Therefore,
once the invariance of µ0 is shown, µc is also invariant for
every c ∈ R.
One expects µc , c ∈ R to be all the extremal invariant
measures (except constant multipliers), but this remains
open; cf. F-Spohn for ∇φ-interface model.
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The argument at the end of the last Section combined
with Theorem 1 at approximating level shows the
invariance of µ for tilt processes.

To extend this to the height processes Zt , we introduce
the transformation hε(x ,Z ) := log(Z ∗ ηε(x)). Then, the
evolution of hε(x ,Zt) is governed only by the tilt variables
and the initial data hε(x ,Z0).
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5. Multi-component KPZ equation

Ferrari-Sasamoto-Spohn (2013) studied Rd -valued KPZ
equation for h(t, x) = (hα(t, x))dα=1 on R:

∂th
α = 1

2
∂2
xh

α+ 1
2
Γαβγ∂xh

β∂xh
γ + Ẇ α(t, x), x ∈ R, (12)

where Ẇ (t, x) = (Ẇ α(t, x))dα=1 is an Rd -valued
space-time Gaussian white noise. The constants
(Γαβγ)1≤α,β,γ≤d satisfy the condition:

Γαβγ = Γαγβ = Γγβα. (13)

Similar SPDE appears to discuss motion of loops on a
manifold, cf. Funaki (1992), Hairer (2013, preprint).

Tadahisa Funaki University of Tokyo

KPZ equation, its renormalization and invariant measures



We introduce the smeared noise:

W ε(t, x) ≡ (Ẇ ε,α(t, x))dα=1 = ⟨W (t), ηε(x − ·)⟩,
and consider Rd -valued KPZ approximating equation for
h = hε(t, x) ≡ (hε,α(t, x))dα=1:

∂th
α = 1

2
∂2
xh

α+ 1
2
Γαβγ(∂xh

β∂xh
γ−ξεδβγ)∗ηε2+Ẇ ε,α(t, x),

(14)
where δβγ denotes Kronecker’s δ.
Let νε be the distribution of ∂x(B ∗ ηε(x)) on
C = C (R;Rd), where B is the Rd -valued two-sided
Brownian motion satisfying B(0) = 0.

Theorem 6

The probability measure νε on C is infinitesimally invariant for
the tilt process ∂xh of the SPDE (14).
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Summary of the talk.

1 KPZ equation:

∂th = 1
2∂

2
xh + 1

2 (∂xh)
2 + Ẇ (t, x), x ∈ R.

2 KPZ approximating equation with W ε(t, x) = ⟨W (t), ηε(x − ·)⟩:

∂th = 1
2∂

2
xh + 1

2

(
(∂xh)

2 − ξε
)
∗ ηε2 + Ẇ ε(t, x)

has invariant measure νε (=distribution of B ∗ ηε).
3 Cole-Hopf transform Z := eh leads to the SPDE:

∂tZ = 1
2∂

2
xZ + 1

2Z

{(
∂xZ

Z

)2

∗ ηε2 −
(
∂xZ

Z

)2
}

+ ZẆ ε(t, x)

4 As ε ↓ 0, one can replace the middle term by 1
24Z under time

average and get the SPDE in the limit:

∂tZ = 1
2∂

2
xZ + 1

24Z + ZẆ (t, x), x ∈ R.

5 Multi-component KPZ approximating equation.
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Thank you for your attention!
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