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Outline:

e Dynamical soft edge scaling limit: Airyg RPFs (8 =1,2,4)
e Dynamical bulk scaling limit: Sine RPFs and an SDE gap
e Ginbre and Bessel RPFs



Geometric scaling limit

Geometric soft edge/bulk scaling limits
of Gaussian ensembles
e The distribution of eigen values of the G(O/U/S)E Random Ma-
trices are given by (8 =1,2,4)
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Bulk/Soft edge scaling
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e Bulk scaling: For —2 < 0 < 2 take z; = (s; — 0) /N in (@):
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e Soft edge scaling: Take z, — 2V N + s;N~1/6 in (@):
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Soft edge scaling limit
Airy RPF: ppig (8=1,2,4)
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Airy RPF — Soft edge scaling limit
e 3=12 = ppjp is a determinantal RPF given by (Kaj,dz):

Ai(z)Ai'(y) — Ai'(z)Ai(y)
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Here Ai(-) is the Airy function.
The correlation function ph; is defined as

pai(x) = det[Kai(z;, zj)]; =1
o If 5 = 1,4, the correlation func of uaj g are given by similar formula
of quaternion determinant.

e \We discuss a dynamical counter part of this scaling.



Airy RPF — Dynamical soft edge scaling limit
e From
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we deduce the SDE of the N particle system:
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e From
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e Indeed, ng’i are associated with the Dirichlet form:
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Airy RPF — Dynamical soft edge scaling limit
e The SDE of the N particle system:

N
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e T he dynamics are also given by the space-time correlation func-

tions.

e Problem: What SDE does the limit X; = limy_,, X;¥ satisfy?
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How to solve the limit ISDE?




Airy RPF — Dynamical soft edge scaling limit
For a configuration s = 3. ds,, let £(s) = (s1,50,...,) =s € RN be a
label such that s; > so > ---, which is well defined for MAI,B-a.s..
Thm 1 (O.-Tanemura '14). [Existence of strong solutions]
Let B =1,2,4. Define ISDE (@) of X = (X");cy as
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o For pb, 4-a.s.s, ISDE (@) has a strong solution with Xo = s.
e The associated unlabeled dynamics X; = 3 724 0y IS paj g-reversible.
t Y

o If 3 =2 and Xg ~ p: 5, then X} ~ F5. Here F, is the Tracy-Widom
distribution and X} is the Airy process A(t).



Remarks:
e [ he key idea to derive the Ilimit ISDE is to take the rescaled semi-
circle law ¢¥V:

N(z) i =N3¢(— 4 2)

N2/3
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as the first approximation of the 1-correlation fun p,; 5
e We expect that our method can be applied to other soft edge

)
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scaling.
e The SDE gives a kind of Girsanov formula. This yields that fi-
nite particles (X}, ..., X;") are absolutely continuous with respect to

M-dimensional Brownian motion under the distribution conditined
(XtM“Ll,...). From this we can solve the conjecture of Johansson.
This conjecture has been already solved by Corwin-Hammond ('14)
and Hagg ('08) by a different method.



Airy RPF — Dynamical soft edge scaling limit
Thm 2 (O.-Tanemura '14). [Pathwise uniqueness]
Let 3=1,2,4. Then:
e Solutions of ISDE (@) of X = (X"),cy Starting at s

dxg?:ng'JrBlim{( > 1 ) /H< Q(x)da:}dt ()

57‘—)00 . Xi_Xj N —
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satisfying abs cont cond (Bl) are pathwise unique for MAi 5=a.S.s.

paigro Xyt < paipr  fOr pajg-a.s. t. (5)
Here uai g+ is @ regular conditional probability w.r.t.to the tail o-field
T of the configuration space.
o If B =2, then T is ppjg-trivial. Hence the uniqueness holds.
e The solutions in Thm [1l satisfy (8). Hence tail preserving solutions
exist uniquely.
e Weak solutions satisfying (B) are automatically unique strong so-
lutions.
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Airy RPF — Dynamical soft edge scaling limit
If 3 = 2, then Johansson, Spohn, Katori-Tanemura & others show
that there exist stochastic dynamics associated with uajo> given by
the space-time correlation function given by the extended Airy kernel:

fgo due_u(t_s)/zAi(u + z)Ai(u + y), t>s
— [0 due (=52 Ai(u + 2) Ai(u + y), t<s

Thm 3 [O.-Tanemura, '14]
Let 8 = 2. Then these two dynamics are the same.

Kpi(s,z;t,y) = {

e T his comes from the uniqueness of Dirichlet forms associated with
these dynamics. To prove the uniqueness of Dirichlet forms, we use
the uniqueness of weak solutions of the ISDE ((4) .
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Airy RPF — Dynamical soft edge scaling limit
Let XV = (ng”‘)fil be the N-particle system as before:

N
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Set XV pe the first m-component.
xNm = (x Nt Xy

Thm 4 [0.-Tanemura, O.-Kawamoto] (Finite-particle approximation)
Let 8 =1,2,4. Then for each 0 < ¢ € L1(uy; 5) wWith [@uh; 5= 1,

XN:m with Xév’m ~ oy 5 converge to the first m-component X" of
the solution of the limit ISDE weakly in C ([0, c0); R™).

e When g = 2, we have two proofs.
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Bulk scaling
Bulk scaling limit & an SDE gap
e Bulk scaling: For —2 < 0 < 2 take z; = (s; — 0) /v N in (dl):
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Then “é\ifn,ﬁ,e converge to sineg RPF:
AIm _pisine 3,0 = HSine,s

The right-hand side is independent of 6 up to constant scaling.
If B =2, then usjne g is determinantal with kernel

P
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Bulk scaling
e [ he associated N particle system is given by the SDE:

1 - 0
dX;"' = dBj 4+ = Z T dt — %XtN’Zdt + %dt (7)
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e Very loosely, the associated oo particle system is given by

1 0
dX} =dB! + = Z 7, %dt
]#ZX Xt
This is not the case for 6 = 0.
The limit ISDE is for all 6
I5; 1
dX;=dB;+7 lim { > — X;Z}dt (8)

J#, IX;Z|<7“ t
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Bulk scaling: limit ISDE

Thm 5 [o.-Tanemura '14] [EXistence of strong solutions]
Let = 1,2,4. Define ISDE (@) of X = (X%);en aS

B 1 .
Snt Totae @

j#i, |Xi|<r T

dX}! = dB} +

o For p&: . g-a.s.s, ISDE (B) has a strong solution with Xg =s.
e The associated unlabeled dynamics Xy = » 72 1 0 IS usine g-reversible.
t Y
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Sine RPF - Dynamical bulk scaling limit
Thm 6 [O.-Tanemura '14] [Pathwise uniqueness]
Let 8 =1,2,4. Then:
e Solutions of ISDE (8) of X = (X%),cy Starting at s

B8 . 1 -
il Y e @
g7, | X |<r Tt t

dX! = dB! +

satisfying abs cont cond (@) are pathwise unique for /‘esme ga.s.s.

—1
USine, 8t © X; ~ < HSine, gt  fOr Usineg-a.s. t. (9)

o If 3 =2, then T is Msme,ﬂ—trivial. Hence the uniqueness holds.

e The solutions in Thm satisfy (@). Hence tail preserving solutions
exist uniquely.

e Weak solutions satisfying (@) are automatically unique strong so-
lutions.

e If 3 = 2, the solution equal to the stochastic dynamics given by
space-time correlation functions (extended Sine kernels).
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Sine RPF - Dynamical bulk scaling limit
Let XV = (XtN”‘)f;\Ll be the N-particle system as before:

N
N.i B 1 B N 50

dX,"’ = dB} —E dt — —X; "dt + —dt [7]

t tt 3 ANt Ty ()

N, N,j
G Xy T Xy
Thm 7 [O.-Tanemura, O.-Kawamoto] (Finite-particle approxim)
Let 8 =1,2,4. Then for each 0 < ¢ € L1(uy; 5) wWith [@uy; 5= 1,

XN:m with Xév’m ~ gpqui g converge to the first m-component X" of
the solution of the limit ISDE

1
B im { > L dt )

-ET—Mm . Aﬂ__;xj
g, | X< T T

dX} = dB} +
weakly in C([0,00); R™).
e The limit ISDE (@) is independent of . In this sense, an SDE gap

OCCuUrs.
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Bessel RPF: hard edge scaling
Bessel RPF & a hard edge scaling

Thm 8 [O.-Honda, '14] Let ¢ > 1 and 8 = 2. Let “ges,z be the
Bessel3 RPF. Then the associated ISDE is given by the following,
and has a unique strong solution as in the same meaning of the
previous theorems.

. . a [ — 1
dX; =dB} + ——dt + = E , dt.
1 J
Thm 9 The associated N-particle system X,{V = (XlgN’l,...,XtN’N)
converge to the limit X; = (Xg)z-eN in the same sense as before.

e 3=1,4is in progress.
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Ginibre RPF
Ginibre RPF : Non-hermitian Gaussian random matrixes

Ginibre RPF is a determinantal RPF on C with exponential kernel.
Thm 11 [O.,'13, O.-Tanemura '14] Let ugin be a Ginibre RPF. Then
the associated ISDE is given by the following, and has a unique
strong solution as in the same meaning of the previous theorems.

dX{=dB}+ lim ) "
r—00 ‘ |Xz _ XJ|2
|X§—X%7|<7° t t
JFi

The solution also satisfy the following ISDEs for all a € C:

dX{ =dBj — (X{ —a)dt+ lim ) U 7
T—>00 . |X7’ _ XJ|2
|a—Xi7|<r t t
J7Ft
The associated N-particle system converge to the limit in the same
sense as before.

19



Idea of "weak/strong solutions of ISDES"

e General theory to construct unique, strong solutions of
infinite-dimensional stochastic differential equations

e Weak solution: (O. JPSJ 10, PTRF 12, AOP 13, SPA 13)
e logarithmic derivative d*: Very informally,
d"(z,y) = Vg log pl!
Here ulll is a 1-Campbell measure of u.
e 11 iS quasi-Gibbs
e Mariginal assumptions
Then ISDE has a weak solution (X, B):

. 1 X
dX{ =dBj+ ~d"(X},> 6,;) (i€N)
2 — X
J7i
e Strong solutions and uniqueness:
e IFC solutions, tail analysis.
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Strong solutions of ISDE: Non Markov type
S =R [0, 00),C
Ww(sN) =c([0,7); SN), (0<T < x) labeled path sp.
e a quadruplet ({o'}, {b*}, Weo, So)
Weo : a Borel subset of W(SY)  sp of solutions of ISDE
ol bt Weo — W (SN) coefficients of ISDE
So be a Borel subset of SN initial starting points of ISDE

e the ISDE on SN of the form

dX! = " (X)dB! + b'(X)¢dt (i € N) (10)
Xo =5 = (8;)ieN € So (11)
X € Wqgl- (12)

* X = {(Xg)ieN}te[O,T) € Wsol
e B=(B") (i € N) is the SN-valued standard Br motion.
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Strong solutions of ISDE: Assump (P1)

dX! = 0" (X)dB! + b"(X)¢dt (i € N)
Xo =5 = (5;)ieN € So
X_ E Wsol.

(P1) ISDE (IQ) has a solution (X, B). (not a strong sol! )

Here B = (B%),cy is the Brownian motion on SN

Problem: Prove that X is a functional of the Br B

Idea:
Strong solutions of Infinite-dimensional SDE
&
Infinite-many, finite-dimensional SDEs with consistency
_|_

Triviality of Tail o-field of label paths
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Assump (P2) infinite-many, finite-dimensional SDEs with consistency
e Ps: a prob meas on W(SY) x wo(sN)
e P,g = Ps(X € :|B): the regular conditional prob
e Py =P (X e€.), PgL = Ps(B € )

FOF X E Wso|, S E SO, and m E N,
we introduce a new SDE (@I5) on Y™ = (V}!,..., /™).

dY} = o' (Y™ + X"™)dB} 4 b' (Y™ + X™)dt (13)
Y6n = (Sl, Cee Sm) ~ Sm, where s = (S@')fil,

Here X™* = (O, .. .,O,X?+1,X[”’+2, ...) and we set

Y™ 4 XM = (YL, Y Xt 2, (14)
X™M* is interpreted as a part of the coefficients of the SDE (I%).
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Strong solutions of ISDE: (P2) seq of finite-dim SDEs with consistecy

dY} = o' (Y™ + X"™)dB} 4 b1 (Y™ 4+ X™)dt (15)
81 — (817°"78m) € Sma
Ym _I_ Xm* 6 Wso|.
(P2) The SDE (I5) has a unique, strong solution

for each s € S, X € WS, and m € N.
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Strong solutions of ISDE: (P3) Tail triviality
Let Tuil (W(SYN)) be the tail o-field of W(SN); we set

Tail W (SY)) = (] o[X™]. (16)

m=1

Here P is a probability measure on W (SN).

(P3) Tail (W (SY)) is Ps-trivial for each s € Sy.
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Strong solutions of ISDE: Main Theorem 1
(P1) ISDE (IQ) has a solution (X, B).
(P2) SDE (I5) has a unique, strong solution for all s, X, m.
(P3) Tail (W(SY)) is Ps-trivial for each s € Sp.

Thm 3. Assume (P1)—(P3). Then
(1) ISDE (IQ)—(I2) has a strong solution for each s € Sy.
(2) Let Ys and Y. be strong solutions of ISDE (IQ0)—(12) starting
at s € Sg defined on the same space of Brownian motions B. Then
Ys =Y. a.s. if and only if

Tail N (Law(Ys)) = Tuil H(Law(Y))). (17)
Here

Tail TN(P) = {A € Tail (W (SY)); P(A) = 1}

e [hus the tail o-field of the labeled path can be regarded as a
boundary condition of ISDEs.
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Strong solutions of ISDE: Idea of Main Theorem 1 (1)
(P1) ISDE (IQ) has a solution (X, B).
(P2) SDE (I5) has a unique, strong solution for all s, X, m.
(P3) Tail (W (SY)) is Ps-trivial for each s € Sp.

e (X,B): sol of ISDE by (P1). Let (X,B) be fixed.

e Y™ is a unique strong sol of SDE(I4) by (P2)

e Y™ is ¢[B]\/ o[X™]-m'ble. X" = (X")m<n<oo.

e Y™ = (X1 . .. XM by (P2)

e X is o[B]V Tail (W(SY))-m'ble by m — .

o Tuil (W(SN)) is trivial by (P3) = X is a strong solution.
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Strong solutions of ISDE: How to prove (P1)—(P3)
(P1) ISDE (@1Q) has a solution (X, B).
(P2) SDE (I5) has a unique, strong solution for all s, X, m.
(P3) Tail (W(SY)) is Ps-trivial for each s € S.

e (P1) follows from a general theory of O..
e (P2) is classical.
e How to prove (P3)?= Tail Theorems.

e We prove (P3) for ISDE of the form
dX{ =o(X{, ) 5Xg)dB§ +b(X}, ) 5Xg)dt
JFi JFi
Here a = olo and
1
b(z,y) = S{Va(a,y) + a(z,y)d" (z,y) }dt

d#(x,y) is the logarithmic derivative (informally) defined as
V109 ,U[l]
with 1-Campbel measure plll of 4.
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Strong solutions of ISDE: How to prove (P1)—(P3)
(Q1) p is tail trivial.
(Q2) PMoXt_l < u for all t.

Let S = {|z| < r}, X¢ = ZieNcSXg, X = {X}}.

m, = inf{m € N; X* € C([0,T]; S%) for m < Vi € N}.
(QR3) Pu(N2{mr(X) < oo}) =1.
Thm 4. Assume (Q1)—(Q3). Then (P3) holds.
(P3) Tail (W(SYN)) is Ps-trivial for each s € Sy.

e All determinantal measures satisfy (Q1). Quasi-Gibbs measures
have a decomposition withe respect to tail o-field such that each

components are tail trivial.
e (Q2) follows from the u-reversibility of the unlabeled diffusion X;.
e (Q3) holds if o = 1 or bounded from above.
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