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Geometric scaling limit

Geometric soft edge/bulk scaling limits

of Gaussian ensembles

• The distribution of eigen values of the G(O/U/S)E Random Ma-

trices are given by (β = 1,2,4)

mN
β (dxN) =

1

Z

N∏
i<j

|xi − xj|βe−
β
4

∑N
i=1 |xi|2dxN , (1)

• The distribution of

1

N

N∑
i=1

δ
xi/

√
N

under mN
β

converges to the semi-circle law

ς(x)dx =
1

2π

√
4− x2dx (2)
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Bulk/Soft edge scaling

mN
β (dxN) =

1

Z

N∏
i<j

|xi − xj|βe−
β
4

∑N
i=1 |xi|2dxN , (1)

ς(x)dx =
1

2π

√
4− x2dx

• Bulk scaling: For −2 < θ < 2 take xi = (si − θ)/
√
N in (1):

µNsin,β,θ(dsN) =
1

Z

N∏
i<j

|si − sj|β
N∏

k=1

e−β|sk−θ|2/4NdsN (3)

• Soft edge scaling: Take xi 7→ 2
√
N + siN

−1/6 in (1):

µNAi,β(dsN) =
1

Z

N∏
i<j

|si − sj|βe−
β
4

∑N
i=1 |2

√
N+N−1/6si|2dsN .
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Soft edge scaling limit

Airy RPF: µAi,β (β = 1,2,4)

• Take the scaling xi 7→ 2
√
N + siN

−1/6 in

mN
β (dxN) =

1

Z

N∏
i<j

|xi − xj|βe−
β
4

∑N
i=1 |xi|2dxN

and set

µNAi,β(dsN) =
1

Z

N∏
i<j

|si − sj|βe−
β
4

∑N
i=1 |2

√
N+N−1/6si|2dsN .

Then µNAi,β converge to Airy RPF µAi,β :

lim
N→∞

µNAi,β = µAi,β
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Airy RPF – Soft edge scaling limit

• β = 2 ⇒ µAi,β is a determinantal RPF given by (KAi, dx):

KAi(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y

Here Ai(·) is the Airy function.

The correlation function ρnAi is defined as

ρnAi(x) = det[KAi(xi, xj)]
n
i,j=1.

• If β = 1,4, the correlation func of µAi,β are given by similar formula

of quaternion determinant.

• We discuss a dynamical counter part of this scaling.
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Airy RPF – Dynamical soft edge scaling limit

• From

µNAi,β(dsN) =
1

Z

∏
i<j

|si − sj|βe−
β
4

∑N
i=1 |2

√
N+N−1/6si|2dsN

we deduce the SDE of the N particle system:

dX
N,i
t = dBi

t +
β

2

N∑
j=1,j ̸=i

1

X
N,i
t −X

N,j
t

dt−
β

2
{N1/3 +

1

2N1/3
X

N,i
t }dt

• • •
• • •
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• From

µNAi,β(dsN) =
1

Z

∏
i<j

|si − sj|βe−
β
4

∑N
i=1 |2

√
N+N−1/6si|2dsN

we deduce the SDE of the N particle system:

dX
N,i
t = dBi

t +
β

2

N∑
j=1,j ̸=i

1

X
N,i
t −X

N,j
t

dt−
β

2
{N1/3 +

1

2N1/3
X

N,i
t }dt

• Indeed, X
N,i
t are associated with the Dirichlet form:

EµNAi,β(f, g) =

∫
RN

1

2

N∑
i

∂f

∂si

∂g

∂si
µNAi,β(dsN) on L2(RN , µNAi,β).

Then, by integration by parts, the generator is

− LN =
1

2
∆N +

β

2

N∑
i=1

[
N∑
j ̸=i

1

si − sj
−

β

2
{N1/3 +

si

2N1/3
}]

∂

∂si
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Airy RPF – Dynamical soft edge scaling limit

• The SDE of the N particle system:

dX
N,i
t = dBi

t +
β

2

N∑
j=1,j ̸=i

1

X
N,i
t −X

N,j
t

dt−
β

2
{N1/3 +

1

2N1/3
X

N,i
t }dt

• The dynamics are also given by the space-time correlation func-

tions.

• Problem: What SDE does the limit Xt = limN→∞XN
t satisfy?

Does lim
N→∞

{
N∑

j=1,j ̸=i

1

X
N,i
t −X

N,j
t

−N1/3} converge ?

How to solve the limit ISDE?
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Airy RPF – Dynamical soft edge scaling limit

For a configuration s =
∑

i δsi, let ℓ(s) = (s1, s2, . . . , ) = s ∈ RN be a

label such that s1 > s2 > · · · , which is well defined for µℓAi,β-a.s..

Thm 1 (O.-Tanemura ’14). [Existence of strong solutions]

Let β = 1,2,4. Define ISDE (4) of X = (Xi)i∈N as

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt (4)

ϱ(x) =

√
−x

π
1(−∞,0](x).

• For µℓAi,β-a.s. s, ISDE (4) has a strong solution with X0 = s.

• The associated unlabeled dynamics Xt =
∑∞

i=1 δXi
t
is µAi,β-reversible.

• If β = 2 and X0 ∼ µℓAi,2, then X1
t ∼ F2. Here F2 is the Tracy-Widom

distribution and X1
t is the Airy process A(t).
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Remarks:
• The key idea to derive the limit ISDE is to take the rescaled semi-
circle law ςN :

ςN(x) :=N1/3ς(
x

N2/3
+2)

=
1(−4N2/3,0)

π

√
−x(1 +

x

4N2/3
)

as the first approximation of the 1-correlation fun ρ
N,1
Ai,β.

• We expect that our method can be applied to other soft edge
scaling.
• The SDE gives a kind of Girsanov formula. This yields that fi-
nite particles (X1

t , . . . , X
M
t ) are absolutely continuous with respect to

M-dimensional Brownian motion under the distribution conditined
(XM+1

t , . . .). From this we can solve the conjecture of Johansson.
This conjecture has been already solved by Corwin-Hammond (’14)
and Hägg (’08) by a different method.



Airy RPF – Dynamical soft edge scaling limit

Thm 2 (O.-Tanemura ’14). [Pathwise uniqueness]

Let β = 1,2,4. Then:

• Solutions of ISDE (4) of X = (Xi)i∈N starting at s

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt (4)

satisfying abs cont cond (5) are pathwise unique for µℓAi,β-a.s. s.

µAi,β,t ◦ X−1
t ≺ µAi,β,t for µAi,β-a.s. t. (5)

Here µAi,β,t is a regular conditional probability w.r.t.to the tail σ-field

T of the configuration space.

• If β = 2, then T is µAi,β-trivial. Hence the uniqueness holds.

• The solutions in Thm 1 satisfy (5). Hence tail preserving solutions

exist uniquely.

• Weak solutions satisfying (5) are automatically unique strong so-

lutions.
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Airy RPF – Dynamical soft edge scaling limit

If β = 2, then Johansson, Spohn, Katori-Tanemura & others show

that there exist stochastic dynamics associated with µAi,2 given by

the space-time correlation function given by the extended Airy kernel:

KAi(s, x; t, y) =

{∫∞
0 due−u(t−s)/2Ai(u+ x)Ai(u+ y), t ≥ s

−
∫ 0
−∞ due−u(t−s)/2Ai(u+ x)Ai(u+ y), t < s

Thm 3 [O.-Tanemura, ’14]

Let β = 2. Then these two dynamics are the same.

• This comes from the uniqueness of Dirichlet forms associated with

these dynamics. To prove the uniqueness of Dirichlet forms, we use

the uniqueness of weak solutions of the ISDE (4) .
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Airy RPF – Dynamical soft edge scaling limit

Let XN
t = (XN,i

t )Ni=1 be the N-particle system as before:

dX
N,i
t = dBi

t +
β

2

N∑
j=1,j ̸=i

1

X
N,i
t −X

N,j
t

dt−
β

2
{N1/3 +

1

2N1/3
X

N,i
t }dt

Set XN,m be the first m-component.

XN,m = (XN,1
t , . . . , X

N,m
t )

Thm 4 [O.-Tanemura, O.-Kawamoto] (Finite-particle approximation)

Let β = 1,2,4. Then for each 0 ≤ φ ∈ L1(µℓAi,β) with
∫
φµℓAi,β = 1,

XN,m with X
N,m
0 ∼ φµℓAi,β converge to the first m-component Xm of

the solution of the limit ISDE weakly in C([0,∞);Rm).

• When β = 2, we have two proofs.
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Bulk scaling

Bulk scaling limit & an SDE gap

• Bulk scaling: For −2 < θ < 2 take xi = (si − θ)/
√
N in (1):

µNsin,β,θ(dsN) =
1

Z

N∏
i<j

|si − sj|β
N∏

k=1

e−β|sk−θ|2/4NdsN (6)

Then µNsin,β,θ converge to sineβ RPF:

lim
N→∞

µNSine,β,θ = µSine,β

The right-hand side is independent of θ up to constant scaling.

If β = 2, then µSine,β is determinantal with kernel

K2(x, y) =

√
1−

(θ
2

)2 sin(x− y)

π(x− y)
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Bulk scaling

• The associated N particle system is given by the SDE:

dX
N,i
t = dBi

t +
β

2

N∑
j ̸=i

1

X
N,i
t −X

N,j
t

dt−
β

4N
X

N,i
t dt+

βθ

4
dt (7)

• Very loosely, the associated ∞ particle system is given by

dXi
t = dBi

t +
β

2

∞∑
j ̸=i

1

Xi
t −X

j
t

dt+
βθ

4
dt.

This is not the case for θ ̸= 0.

The limit ISDE is for all θ

dXi
t = dBi

t +
β

2
lim
r→∞

{
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

}dt (8)
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Bulk scaling: limit ISDE

Thm 5 [O.-Tanemura ’14] [Existence of strong solutions]

Let β = 1,2,4. Define ISDE (4) of X = (Xi)i∈N as

dXi
t = dBi

t +
β

2
lim
r→∞

{
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

}dt (8)

• For µℓSine,β-a.s. s, ISDE (8) has a strong solution with X0 = s.

• The associated unlabeled dynamics Xt =
∑∞

i=1 δXi
t
is µSine,β-reversible.
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Sine RPF - Dynamical bulk scaling limit
Thm 6 [O.-Tanemura ’14] [Pathwise uniqueness]
Let β = 1,2,4. Then:
• Solutions of ISDE (8) of X = (Xi)i∈N starting at s

dXi
t = dBi

t +
β

2
lim
r→∞

{
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

}dt (8)

satisfying abs cont cond (9) are pathwise unique for µℓSine,β-a.s. s.

µSine,β,t ◦ X−1
t ≺ µSine,β,t for µSine,β-a.s. t. (9)

• If β = 2, then T is µSine,β-trivial. Hence the uniqueness holds.
• The solutions in Thm satisfy (9). Hence tail preserving solutions
exist uniquely.
• Weak solutions satisfying (9) are automatically unique strong so-
lutions.
• If β = 2, the solution equal to the stochastic dynamics given by
space-time correlation functions (extended Sine kernels).
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Sine RPF - Dynamical bulk scaling limit

Let XN
t = (XN,i

t )Ni=1 be the N-particle system as before:

dX
N,i
t = dBi

t +
β

2

N∑
j ̸=i

1

X
N,i
t −X

N,j
t

dt−
β

4N
X

N,i
t dt+

βθ

4
dt (7)

Thm 7 [O.-Tanemura, O.-Kawamoto] (Finite-particle approxim)

Let β = 1,2,4. Then for each 0 ≤ φ ∈ L1(µℓAi,β) with
∫
φµℓAi,β = 1,

XN,m with X
N,m
0 ∼ φµℓAi,β converge to the first m-component Xm of

the solution of the limit ISDE

dXi
t = dBi

t +
β

2
lim
r→∞

{
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

}dt (8)

weakly in C([0,∞);Rm).

• The limit ISDE (8) is independent of θ. In this sense, an SDE gap

occurs.
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Bessel RPF: hard edge scaling

Bessel RPF & a hard edge scaling

Thm 8 [O.-Honda, ’14] Let a > 1 and β = 2. Let µabes,2 be the

Bessela2 RPF. Then the associated ISDE is given by the following,

and has a unique strong solution as in the same meaning of the

previous theorems.

dXi
t = dBi

t +
a

2Xi
t

dt+
β

2

∞∑
j=1, j ̸=i

1

Xi
t −X

j
t

dt.

Thm 9 The associated N-particle system XN
t = (XN,1

t , . . . , X
N,N
t )

converge to the limit Xt = (Xi
t)i∈N in the same sense as before.

• β = 1,4 is in progress.
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Ginibre RPF
Ginibre RPF : Non-hermitian Gaussian random matrixes

Ginibre RPF is a determinantal RPF on C with exponential kernel.
Thm 11 [O.,’13, O.-Tanemura ’14] Let µgin be a Ginibre RPF. Then
the associated ISDE is given by the following, and has a unique
strong solution as in the same meaning of the previous theorems.

dXi
t = dBi

t + lim
r→∞

∑
|Xi

t−X
j
t |<r

j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt.

The solution also satisfy the following ISDEs for all a ∈ C:

dXi
t = dBi

t − (Xi
t − a)dt+ lim

r→∞

∑
|a−X

j
t |<r

j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt

The associated N-particle system converge to the limit in the same
sense as before.
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Idea of ”weak/strong solutions of ISDEs”

• General theory to construct unique, strong solutions of
infinite-dimensional stochastic differential equations

• Weak solution: (O. JPSJ 10, PTRF 12, AOP 13, SPA 13)
• logarithmic derivative dµ: Very informally,

dµ(x, y) = ∇x logµ[1]

Here µ[1] is a 1-Campbell measure of µ.
• µ is quasi-Gibbs
• mariginal assumptions
Then ISDE has a weak solution (X,B):

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∞∑
j ̸=i

δ
X

j
t
) (i ∈ N)

• Strong solutions and uniqueness:
• IFC solutions, tail analysis.
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Strong solutions of ISDE: Non Markov type

S = Rd, [0,∞),C
W (SN) = C([0, T );SN), (0 < T < ∞) labeled path sp.

• a quadruplet ({σi}, {bi},Wsol,S0)

Wsol ： a Borel subset of W (SN) sp of solutions of ISDE

σi, bi :Wsol→W (SN) coefficients of ISDE

S0 be a Borel subset of SN initial starting points of ISDE

• the ISDE on SN of the form

dXi
t = σi(X)tdB

i
t + bi(X)tdt (i ∈ N) (10)

X0 = s = (si)i∈N ∈ S0 (11)

X ∈ Wsol. (12)

• X = {(Xi
t)i∈N}t∈[0,T ) ∈ Wsol

• B = (Bi) (i ∈ N) is the SN-valued standard Br motion.
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Strong solutions of ISDE: Assump (P1)

dXi
t = σi(X)tdB

i
t + bi(X)tdt (i ∈ N)

X0 = s = (si)i∈N ∈ S0
X ∈ Wsol.

(P1) ISDE (10) has a solution (X,B). (not a strong sol! )

Here B = (Bi)i∈N is the Brownian motion on SN

Problem: Prove that X is a functional of the Br B

Idea:
Strong solutions of Infinite-dimensional SDE

⇔
Infinite-many, finite-dimensional SDEs with consistency

+
Triviality of Tail σ-field of label paths
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Assump (P2) 　 infinite-many, finite-dimensional SDEs with consistency

• P̄s: a prob meas on W (SN)×W 0(SN)
• P̄s,B = P̄s(X ∈ ·|B): the regular conditional prob

• Ps = P̄s(X ∈ ·), P∞
Br = P̄s(B ∈ ·)

For X ∈ Wsol, s ∈ S0, and m ∈ N,
we introduce a new SDE (15) on Ym = (Y 1

t , . . . , Y m
t ).

dY i
t = σi(Ym +Xm∗)tdB

i
t + bi(Ym +Xm∗)tdt (13)

Ym
0 = (s1, . . . , sm) ∈ Sm, where s = (si)

∞
i=1,

Ym +Xm∗ ∈ Wsol.

Here Xm∗ = (0, . . . ,0, Xm+1
t , Xm+2

t , . . .) and we set

Ym +Xm∗ = (Y 1
t , . . . , Y m

t , Xm+1
t , Xm+2

t , . . .). (14)

Xm∗ is interpreted as a part of the coefficients of the SDE (15).
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Strong solutions of ISDE: (P2) seq of finite-dim SDEs with consistecy

dY i
t = σi(Ym +Xm∗)tdB

i
t + bi(Ym +Xm∗)tdt (15)

Ym
0 = (s1, . . . , sm) ∈ Sm,

Ym +Xm∗ ∈ Wsol.

(P2) The SDE (15) has a unique, strong solution

for each s ∈ S0, X ∈ W s
sol, and m ∈ N.
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Strong solutions of ISDE: (P3) Tail triviality

Let Tail (W (SN)) be the tail σ-field of W (SN); we set

Tail (W (SN)) =
∞∩

m=1

σ[Xm∗]. (16)

Here P is a probability measure on W (SN).

(P3) Tail (W (SN)) is Ps-trivial for each s ∈ S0.
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Strong solutions of ISDE: Main Theorem 1

(P1) ISDE (10) has a solution (X,B).

(P2) SDE (15) has a unique, strong solution for all s,X,m.

(P3) Tail (W (SN)) is Ps-trivial for each s ∈ S0.

Thm 3.Assume (P1)–(P3). Then

(1) ISDE (10)–(12) has a strong solution for each s ∈ S0.

(2) Let Ys and Y′
s be strong solutions of ISDE (10)–(12) starting

at s ∈ S0 defined on the same space of Brownian motions B. Then

Ys = Y′
s a.s. if and only if

Tail [1](Law(Ys)) = Tail [1](Law(Y′
s)). (17)

Here

Tail [1](P) = {A ∈ Tail (W (SN)) ; P(A) = 1}

• Thus the tail σ-field of the labeled path can be regarded as a

boundary condition of ISDEs.
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Strong solutions of ISDE: Idea of Main Theorem 1 (1)

(P1) ISDE (10) has a solution (X,B).

(P2) SDE (15) has a unique, strong solution for all s,X,m.

(P3) Tail (W (SN)) is Ps-trivial for each s ∈ S0.

• (X,B): sol of ISDE by (P1). Let (X,B) be fixed.

• Ym is a unique strong sol of SDE(14) by (P2)

• Ym is σ[B]
∨

σ[Xm∗]-m’ble. Xm∗ = (Xn)m<n<∞.

• Ym = (X1, . . . , Xm). 　by (P2)

• X is σ[B]
∨

Tail (W (SN))-m’ble by m → ∞.

• Tail (W (SN)) is trivial by (P3) ⇒ X is a strong solution.
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Strong solutions of ISDE: How to prove (P1)–(P3)
(P1) ISDE (10) has a solution (X,B).
(P2) SDE (15) has a unique, strong solution for all s,X,m.
(P3) Tail (W (SN)) is Ps-trivial for each s ∈ S0.

• (P1) follows from a general theory of O..
• (P2) is classical.
• How to prove (P3)？⇒ Tail Theorems.

• We prove (P3) for ISDE of the form

dXi
t = σ(Xi

t,
∑
j ̸=i

δ
X

j
t
)dBi

t + b(Xi
t,
∑
j ̸=i

δ
X

j
t
)dt

Here a = σtσ and

b(x, y) =
1

2
{∇a(x, y) + a(x, y)dµ(x, y)}dt

dµ(x, y) is the logarithmic derivative (informally) defined as

∇x logµ[1]

with 1-Campbel measure µ[1] of µ.
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Strong solutions of ISDE: How to prove (P1)–(P3)

(Q1) µ is tail trivial.

(Q2) Pµ ◦ X−1
t ≺ µ for all t.

Let Sr = {|x| < r}, Xt =
∑

i∈N δXi
t
, Xi = {Xi

t}.

mr = inf{m ∈ N;Xi ∈ C([0, T ];Sc
r) for m < ∀i ∈ N}.

(Q3) Pµ(∩∞
r=1{mr(X) < ∞}) = 1.

Thm 4.Assume (Q1)–(Q3). Then (P3) holds.

(P3) Tail (W (SN)) is Ps-trivial for each s ∈ S0.

• All determinantal measures satisfy (Q1). Quasi-Gibbs measures

have a decomposition withe respect to tail σ-field such that each

components are tail trivial.

• (Q2) follows from the µ-reversibility of the unlabeled diffusion Xt.

• (Q3) holds if σ = 1 or bounded from above.
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