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Prehistory

• Diffusion-limited aggregation Witten & Sander 1981

• Active zone of Eden clusters Plischke & Rácz 1984

• Scaling form of the surface width Family & Vicsek 1985

• Stochastic continuum theory Kardar, Parisi, Zhang 1986

• Precursors:

– Stochastic Burgers equation Forster, Nelson, Stephen 1977

– Excess noise in driven diffusive systems van Beijeren, Kutner, Spohn 1985

• Key insight: Growth processes governed by two universal scaling
exponents α , z with α = 1/2, z = 3/2 in 1+1 dimensions

• Scaling relation α + z = 2 in all dimensions JK 1987



The link to growth models

The one-dimensional KPZ equation

∂h
∂ t

= ν∇2h+
λ
2
(∇h)2+η , 〈η(x, t)η(x′, t ′)〉 = Dδ (x− x′)δ (t − t ′)

can be connected quantitatively to discrete growth models through

• the stationary height fluctuations: Huse, Henley, Fisher 1985

lim
t→∞

〈[h(x+ r, t)−h(x, t)]2〉 = A|r| with A =
D
2ν

• the inclination-dependent growth rate: λ = v′′(u) JK, H. Spohn 1990

• The finite size correction to the growth rate: JK, P. Meakin 1990

v(L = ∞)− v(L) =
λA
2L

+O(1/L2)



KPZ scaling theory

• Use the KPZ equation to identify the dimensions of the two macrosopic
parameters A and λ :

[A] =
[h]2

[x]
, [λ ] =

[x]2

[h][t]

• Thus refined universality is expected to hold in terms of the non-
dimensional variables

h̃ =
h

(A2|λ |t)1/3
, x̃ =

x
(Aλ 2t2)1/3

• In modern notation Prähofer & Spohn 2000

h(x, t) = vt +sgn(λ )

(

1
2

A2|λ |t
)1/3

χ

where χ is a universal random variable



Early numerical amplitude estimates

JK, P. Meakin, T. Halpin-Healy 1992

class mean variance skewness kurtosis

flat (growth) −0.73±0.05 0.64±0.02 0.28±0.04 0.12±0.01
flat (DPRM) −0.68±0.05 0.63±0.09 0.296±0.028
flat (KMB*) 0.29±0.02 ≈ 0.16
TW GOE −0.76007 0.63805 0.2935 0.1652

stationary 0 1.130±0.005 0.331±0.007
F0 0 1.15039 0.35941

*Kim, Moore, Bray 1991

• The existence of a third (‘curved/point-to-point’) class with distinct
amplitudes was noticed in 1992, but no numerical estimates were reported

• From the KPZ picture it is evident that 〈χ〉 < 0 for the non-stationary
classes



KPZ behavior in microbial colonies

Eden 1961



Genetic segregation in growing bacterial colonies

Hallatschek et al., PNAS 2007



Sector boundaries display superdiffusive KPZ fluctuations

Hallatschek et al., PNAS 2007



Basic concepts of population genetics

S.-C. Park, D. Simon, JK, J. Stat. Phys. 138:381 (2010)



Wright-Fisher model for asexual populations

time

U

U

U

U

• N individuals, discrete generations

• Individuals have types which can change through mutations (rate U )

• An individual is chosen as parent with a probability proportional to its fitness

• No spatial structure (“well-mixed” population)



Selection

• K types, ni individuals of type i, ∑K
i=1ni = N, type i has fitness wi

• Neglecting mutations and fluctuations (“genetic drift”) the genetic structure
of the population evolves according to

ni(t +1) =
wi

〈w〉(t)ni(t), 〈w〉(t) =
1
N ∑

i

wini(t)

• Continuous time dynamics: generation time ∆t, wi = e∆t fi

⇒ dni

dt
= ( fi−〈 f 〉) ni for ∆t → 0

⇒ d
dt
〈 f 〉 =

1
N

K

∑
i=1

fi ṅi = 〈 f 2〉−〈 f 〉2 ≥ 0

“Fisher’s fundamental theorem”

• For t → ∞ the best type wins and 〈 f 2〉−〈 f 〉2 → 0



Fixation

• U = 0: When a single mutant of fitness w ′ is introduced into a
homogeneous population of fitness w, the outcome for t → ∞ is either
fixation (all w ′) or loss of the mutation (all w)

• Fixation probability for the Wright-Fisher model Kimura 1962

πN(s) ≈ 1− e−2s

1− e−2Ns
, s =

w ′

w
−1 selection coefficient

• Under strong selection: (N|s| ≫ 1) deleterious mutations (s < 0) cannot fix,
while beneficial mutations (s > 0) fix with probability

π(s) = 1− e−2s ≈ 2s, s ≪ 1

• Mean time to fixation of a beneficial mutation:

tfix ≈
2lnN

s



Regimes of evolutionary dynamics

• Beneficial mutations with selection coefficient sb > 0 occur in the population
at rate Ub per individual and generation

• Mutations are strongly beneficial in the sense of Nsb ≫ 1 but weakly
beneficial in absolute terms (sb ≪ 1)

• A given mutation survives stochastic noise with probability π∞(sb) ≈ 2sb

⇒ time between established mutations is tmut = (2sbUbN)−1

muttfixt

population fraction

0

1

t

Periodic selection: tfix ≪ tmut Clonal interference: tfix ≫ tmut



Onset of clonal interference S.-C. Park, D. Simon, JK 2010
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Speed of evolution as a function of population size

S.-C. Park, D. Simon, JK 2010
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• periodic selection: vN ∼ N • clonal interference: vN ∼ lnN



Surface growth & spatial evolution

with Jakub Otwinowski
arXiv:1302.4326, to appear in Physical Biology



Wright-Fisher model for spatial populations

• Natural populations usually live in a spatial habitat and reproduce and
compete locally

• Implementation on a d-dimensional lattice of length L with N ∼ Ld:
(here d = 1) J. Otwinowski, S. Boettcher, PRE 84:011925 (2011)

i i+1

i−1 i

i

t

t+1

t+2

• Mutant clones spread linearly rather than exponentially



Clonal interference in spatial populations

E.A. Martens, O. Hallatschek, Genetics 189:1049 (2011)



Clonal interference in spatial populations

E.A. Martens, O. Hallatschek, Genetics 189:1049 (2011)

• Fixation probability is the same as in the well-mixed case Maruyama 1974

⇒ tmut =
1

2sbUbN
=

1
2sbUbLd

• Boundaries of mutant clones spread at speed ∼ sb ⇒ tfix ∼ L/sb

• Clonal interference sets in above the interference length Lc ∼U−1/(d+1)
b

• For L ≪ Lc adaptation occurs by periodic selection and the speed of
evolution is V ∼ sb/tmut ∼ s2

bUbN as before

• What happens for L ≫ Lc?



Analogy to polynuclear growth

• In the polynuclear growth model (PNG) crystal layers of unit height nucleate
at random positions at rate Γ and the nuclei grow laterally at speed c

• For sample sizes L < Lc ∼ (c/Γ)1/(d+1) growth occurs layer-by-layer and
the growth rate is ∼ ΓLd

• Exact solution of the one-dimensional model shows that the growth rate
saturates at V∞ ∼

√
cΓ for L ≫ Lc Goldenfeld 1984

• For general d dimensional analysis shows that V∞ ∼ (cdΓ)1/(d+1)

van Saarloos & Gilmer 1986

• At least for large selection coefficients (sb ≈ 1) the spatial Wright-Fisher
model is equivalent to a PNG model with “surface height“ ln(w), nucleation
rate ∼ sbUb and spreading velocity ∼ sb

⇒ V∞ ∼ s2
bU

1/(d+1)
b independent of L



Evolution of fitness/height profiles

J. Otwinowski, S. Boettcher, PRE 84:011925 (2011)
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Speed of evolution in linear habitats (d = 1)

E.A. Martens, O. Hallatschek, Genetics 189:1049 (2011)



Speed of evolution vs. mutation rate

E.A. Martens, O. Hallatschek, Genetics 189:1049 (2011)



KPZ universality of fitness fluctuations?

• The PNG model is a prime representative of the KPZ universality class
Krug & Spohn 1989

• KPZ theory predicts that the fitness variance in one dimension grows as
σ 2 ∼ t2/3 for times t ≪ t× ∼ L3/2 and saturates at σ 2 ∼ L for times t ≫ t×

• In contrast, the speed of adaptation V = V∞ = O(1) for large L, in violation
of Fisher’s fundamental theorem V ∼ σ 2

• Boundaries of competing clones move superdiffusively as t2/3, which
implies that the fixation time of mutations in the clonal interference regime
is ∼ t× ∼ L3/2 Martens & Hallatschek 2011

• Expect: Fitness fluctuations governed by geometry-dependent Tracy-
Widom (TW) distributions Prähofer & Spohn 2000



Fixation times in linear habitats

E.A. Martens, O. Hallatschek, Genetics 189:1049 (2011)



KPZ scaling of the fitness variance
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Skewness and kurtosis of fitness fluctuations
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Universal fitness distributions
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• Dimensionless RV determined from χ = lnw−Vt
(ϑ t)1/3 with numerically fitted

parameters V and ϑ

• Blue squares show data for exponential distribution of selection coefficients



Deleterious mutations

• In the surface analogy deleterious mutations (s < 0) punch holes that are
closed by selection:

selection

mutation

• For small U = Ud holes appear and heal independently
⇒ fraction of sites ρ0 with zero mutations is reduced by 1−ρ0 ∼Ud/s2

• Holes percolate and cause a steady fitness decline when u ≡Ud/s2 ≈ 1

• Known as Muller’s ratchet in population genetics and nonequilibrium
wetting in growth models Kertész & Wolf 1989; Alon et al. 1996



Fraction of non-mutated sites in steady state
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Fraction of non-mutated sites at the critical point
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Prediction of directed percolation (DP) theory: ρ0 ∼ t−θ with θ ≈ 0.159464...



Critical behavior consistent with DP exponents
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• ρ0 ∼ (uc−u)β for u = Ud/s2 < uc, with β ≈ 0.276486...

• V ∼ (u−uc)
ν‖ for u > uc, with ν‖ ≈ 1.733847...



Summary

• Two biological realizations of KPZ universality:

– morphology of genetic clones in growing bacterial colonies
– fitness dynamics of populations adapting in a spatial habitat

• Surface growth analogies for two important evolutionary scenarios:

– clonal interference ≃ kinetic roughening
– Muller’s ratchet ≃ nonequilibrium wetting

Lessons for evolutionary biology

• Local competition in spatial systems reduces the strength of selection,
leading to

– a limit on the speed of adaptation
– a finite rate of fitness decline for infinite populations
– a reduction of the threshold for Muller’s ratchet from Ud ∼ |s| to Ud ∼ s2


