# The KPZ universality conjecture: Old ideas and new applications

#### Joachim Krug Institute for Theoretical Physics, University of Cologne

- An introduction to KPZ scaling theory
- KPZ behavior in microbial colonies
- Surface growth & spatial evolution models

YITP Workshop "Interface fluctuations and KPZ universality class" Kyoto, August 20, 2014

## Prehistory

| <ul> <li>Diffusion-limited aggregation</li> </ul>     | Witten & Sander 198           |  |  |
|-------------------------------------------------------|-------------------------------|--|--|
| <ul> <li>Active zone of Eden clusters</li> </ul>      | Plischke & Rácz 1984          |  |  |
| <ul> <li>Scaling form of the surface width</li> </ul> | Family & Vicsek 1985          |  |  |
| <ul> <li>Stochastic continuum theory</li> </ul>       | Kardar, Parisi, Zhang 1986    |  |  |
| Precursors:                                           |                               |  |  |
| <ul> <li>Stochastic Burgers equation</li> </ul>       | Forster, Nelson, Stephen 1977 |  |  |

- Excess noise in driven diffusive systems van Beijeren, Kutner, Spohn 1985
- Key insight: Growth processes governed by two universal scaling exponents  $\alpha$ , z with  $\alpha = 1/2$ , z = 3/2 in 1+1 dimensions

JK 1987

• Scaling relation  $\alpha + z = 2$  in all dimensions

# The link to growth models

The one-dimensional KPZ equation

$$\frac{\partial h}{\partial t} = v \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \eta, \quad \langle \eta(x,t) \eta(x',t') \rangle = D \delta(x-x') \delta(t-t')$$

can be connected quantitatively to discrete growth models through

• the stationary height fluctuations:

Huse, Henley, Fisher 1985

$$\lim_{t \to \infty} \langle [h(x+r,t) - h(x,t)]^2 \rangle = A|r| \text{ with } A = \frac{D}{2\nu}$$

- the inclination-dependent growth rate:  $\lambda = v''(u)$  JK, H. Spohn 1990
- The finite size correction to the growth rate: JK, P. Meakin 1990

$$v(L = \infty) - v(L) = \frac{\lambda A}{2L} + \mathcal{O}(1/L^2)$$

# KPZ scaling theory

• Use the KPZ equation to identify the dimensions of the two macrosopic parameters A and  $\lambda$ :

$$[A] = rac{[h]^2}{[x]}, \quad [\lambda] = rac{[x]^2}{[h][t]}$$

 Thus refined universality is expected to hold in terms of the nondimensional variables

$$\tilde{h} = \frac{h}{(A^2|\lambda|t)^{1/3}}, \quad \tilde{x} = \frac{x}{(A\lambda^2 t^2)^{1/3}}$$

• In modern notation

Prähofer & Spohn 2000

$$h(x,t) = vt + \operatorname{sgn}(\lambda) \left(\frac{1}{2}A^2|\lambda|t\right)^{1/3} \chi$$

where  $\chi$  is a universal random variable

# Early numerical amplitude estimates

JK, P. Meakin, T. Halpin-Healy 1992

| class         | mean             | variance          | skewness          | kurtosis      |
|---------------|------------------|-------------------|-------------------|---------------|
| flat (growth) | $-0.73 \pm 0.05$ | $0.64\pm0.02$     | $0.28\pm0.04$     | $0.12\pm0.01$ |
| flat (DPRM)   | $-0.68 \pm 0.05$ | $0.63\pm0.09$     | $0.296 \pm 0.028$ |               |
| flat (KMB*)   |                  |                   | $0.29\pm0.02$     | pprox 0.16    |
| TW GOE        | -0.76007         | 0.63805           | 0.2935            | 0.1652        |
| stationary    | 0                | $1.130 \pm 0.005$ | $0.331 \pm 0.007$ |               |
| $F_0$         | 0                | 1.15039           | 0.35941           |               |

\*Kim, Moore, Bray 1991

- The existence of a third ('curved/point-to-point') class with distinct amplitudes was noticed in 1992, but no numerical estimates were reported
- From the KPZ picture it is evident that  $\langle \chi \rangle < 0$  for the non-stationary classes

# **KPZ** behavior in microbial colonies



Eden 1961

# Genetic segregation in growing bacterial colonies

#### Hallatschek et al., PNAS 2007



## Sector boundaries display superdiffusive KPZ fluctuations

Hallatschek et al., PNAS 2007



# Basic concepts of population genetics

S.-C. Park, D. Simon, JK, J. Stat. Phys. 138:381 (2010)

# Wright-Fisher model for asexual populations



- *N* individuals, discrete generations
- Individuals have types which can change through mutations (rate U)
- An individual is chosen as parent with a probability proportional to its fitness
- No spatial structure ("well-mixed" population)

#### **Selection**

- *K* types,  $n_i$  individuals of type *i*,  $\sum_{i=1}^{K} n_i = N$ , type *i* has fitness  $w_i$
- Neglecting mutations and fluctuations ("genetic drift") the genetic structure of the population evolves according to

$$n_i(t+1) = \frac{w_i}{\langle w \rangle(t)} n_i(t), \quad \langle w \rangle(t) = \frac{1}{N} \sum_i w_i n_i(t)$$

• Continuous time dynamics: generation time  $\Delta t$ ,  $w_i = e^{\Delta t f_i}$ 

$$\Rightarrow \frac{dn_i}{dt} = (f_i - \langle f \rangle) n_i \text{ for } \Delta t \to 0$$

$$\Rightarrow \quad \frac{d}{dt} \langle f \rangle = \frac{1}{N} \sum_{i=1}^{K} f_i \, \dot{n}_i = \langle f^2 \rangle - \langle f \rangle^2 \ge 0$$

"Fisher's fundamental theorem"

• For  $t \to \infty$  the best type wins and  $\langle f^2 \rangle - \langle f \rangle^2 \to 0$ 

# **Fixation**

- U = 0: When a single mutant of fitness w' is introduced into a homogeneous population of fitness w, the outcome for  $t \to \infty$  is either fixation (all w') or loss of the mutation (all w)
- Fixation probability for the Wright-Fisher model Kimura 1962

$$\pi_N(s) \approx \frac{1 - e^{-2s}}{1 - e^{-2Ns}}, \quad s = \frac{w'}{w} - 1$$
 selection coefficient

• Under strong selection:  $(N|s| \gg 1)$  deleterious mutations (s < 0) cannot fix, while beneficial mutations (s > 0) fix with probability

$$\pi(s) = 1 - e^{-2s} \approx 2s, \quad s \ll 1$$

• Mean time to fixation of a beneficial mutation:

$$t_{\rm fix} \approx \frac{2\ln N}{s}$$

# Regimes of evolutionary dynamics

- Beneficial mutations with selection coefficient  $s_b > 0$  occur in the population at rate  $U_b$  per individual and generation
- Mutations are strongly beneficial in the sense of  $Ns_b \gg 1$  but weakly beneficial in absolute terms ( $s_b \ll 1$ )
- A given mutation survives stochastic noise with probability  $\pi_{\infty}(s_b) \approx 2s_b$  $\Rightarrow$  time between established mutations is  $t_{\text{mut}} = (2s_b U_b N)^{-1}$



Periodic selection:  $t_{\rm fix} \ll t_{\rm mut}$ 

Clonal interference:  $t_{\rm fix} \gg t_{\rm mut}$ 

#### **Onset of clonal interference**

S.-C. Park, D. Simon, JK 2010



 $s_b = 0.02, U_b = 10^{-6}$   $N = 10^4, 10^5, 10^6, 10^7$ 

# Speed of evolution as a function of population size

S.-C. Park, D. Simon, JK 2010



• periodic selection:  $v_N \sim N$ 

• clonal interference:  $v_N \sim \ln N$ 

# Surface growth & spatial evolution

with Jakub Otwinowski arXiv:1302.4326, to appear in Physical Biology

# Wright-Fisher model for spatial populations

- Natural populations usually live in a spatial habitat and reproduce and compete locally
- Implementation on a *d*-dimensional lattice of length *L* with  $N \sim L^d$ : (here d = 1) J. Otwinowski, S. Boettcher, PRE 84:011925 (2011)



• Mutant clones spread linearly rather than exponentially

# **Clonal interference in spatial populations**

E.A. Martens, O. Hallatschek, Genetics 189:1049 (2011)





## **Clonal interference in spatial populations**

E.A. Martens, O. Hallatschek, Genetics 189:1049 (2011)

• Fixation probability is the same as in the well-mixed case Maruyama 1974

$$\Rightarrow \quad t_{\rm mut} = \frac{1}{2s_b U_b N} = \frac{1}{2s_b U_b L^d}$$

- Boundaries of mutant clones spread at speed  $\sim s_b \Rightarrow t_{fix} \sim L/s_b$
- Clonal interference sets in above the interference length  $L_c \sim U_b^{-1/(d+1)}$
- For  $L \ll L_c$  adaptation occurs by periodic selection and the speed of evolution is  $V \sim s_b/t_{mut} \sim s_b^2 U_b N$  as before
- What happens for  $L \gg L_c$ ?

# Analogy to polynuclear growth

- In the polynuclear growth model (PNG) crystal layers of unit height nucleate at random positions at rate  $\Gamma$  and the nuclei grow laterally at speed c
- For sample sizes  $L < L_c \sim (c/\Gamma)^{1/(d+1)}$  growth occurs layer-by-layer and the growth rate is  $\sim \Gamma L^d$
- Exact solution of the one-dimensional model shows that the growth rate saturates at  $V_{\infty} \sim \sqrt{c\Gamma}$  for  $L \gg L_c$  Goldenfeld 1984
- For general d dimensional analysis shows that  $V_{\infty} \sim (c^d \Gamma)^{1/(d+1)}$ van Saarloos & Gilmer 1986
- At least for large selection coefficients  $(s_b \approx 1)$  the spatial Wright-Fisher model is equivalent to a PNG model with "surface height"  $\ln(w)$ , nucleation rate  $\sim s_b U_b$  and spreading velocity  $\sim s_b$

$$\Rightarrow V_{\infty} \sim s_b^2 U_b^{1/(d+1)}$$
 independent of *L*

# **Evolution of fitness/height profiles**

J. Otwinowski, S. Boettcher, PRE 84:011925 (2011)



#### Speed of evolution in linear habitats (d = 1)

E.A. Martens, O. Hallatschek, Genetics 189:1049 (2011)



### Speed of evolution vs. mutation rate



E.A. Martens, O. Hallatschek, Genetics 189:1049 (2011)

# KPZ universality of fitness fluctuations?

- The PNG model is a prime representative of the KPZ universality class
   Krug & Spohn 1989
- KPZ theory predicts that the fitness variance in one dimension grows as  $\sigma^2 \sim t^{2/3}$  for times  $t \ll t_{\times} \sim L^{3/2}$  and saturates at  $\sigma^2 \sim L$  for times  $t \gg t_{\times}$
- In contrast, the speed of adaptation  $V = V_{\infty} = \mathcal{O}(1)$  for large *L*, in violation of Fisher's fundamental theorem  $V \sim \sigma^2$
- Boundaries of competing clones move superdiffusively as  $t^{2/3}$ , which implies that the fixation time of mutations in the clonal interference regime is  $\sim t_{\times} \sim L^{3/2}$  Martens & Hallatschek 2011
- Expect: Fitness fluctuations governed by geometry-dependent Tracy-Widom (TW) distributions
   Prähofer & Spohn 2000

#### Fixation times in linear habitats

E.A. Martens, O. Hallatschek, Genetics 189:1049 (2011)



# KPZ scaling of the fitness variance



 $s_b = 0.05, U_b = 10^{-5}$ 

# Skewness and kurtosis of fitness fluctuations



 $s_b = 0.05, U_b = 10^{-5}$ 

## Universal fitness distributions



• Dimensionless RV determined from  $\chi = \frac{\ln w - Vt}{(\vartheta t)^{1/3}}$  with numerically fitted parameters V and  $\vartheta$ 

• Blue squares show data for exponential distribution of selection coefficients

# **Deleterious mutations**

 In the surface analogy deleterious mutations (s < 0) punch holes that are closed by selection:



- For small  $U = U_d$  holes appear and heal independently  $\Rightarrow$  fraction of sites  $\rho_0$  with zero mutations is reduced by  $1 - \rho_0 \sim U_d/s^2$
- Holes percolate and cause a steady fitness decline when  $u \equiv U_d/s^2 \approx 1$
- Known as Muller's ratchet in population genetics and nonequilibrium wetting in growth models
   Kertész & Wolf 1989; Alon et al. 1996

# Fraction of non-mutated sites in steady state



 $U_d = 10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}$ 

### Fraction of non-mutated sites at the critical point



Prediction of directed percolation (DP) theory:  $\rho_0 \sim t^{-\theta}$  with  $\theta \approx 0.159464...$ 

#### Critical behavior consistent with DP exponents



•  $\rho_0 \sim (u_c - u)^{\beta}$  for  $u = U_d/s^2 < u_c$ , with  $\beta \approx 0.276486...$ 

•  $V \sim (u - u_c)^{v_{\parallel}}$  for  $u > u_c$ , with  $v_{\parallel} \approx 1.733847...$ 

# Summary

- Two biological realizations of KPZ universality:
  - morphology of genetic clones in growing bacterial colonies
  - fitness dynamics of populations adapting in a spatial habitat
- Surface growth analogies for two important evolutionary scenarios:
  - clonal interference  $\simeq$  kinetic roughening
  - Muller's ratchet  $\simeq$  nonequilibrium wetting

#### Lessons for evolutionary biology

- Local competition in spatial systems reduces the strength of selection, leading to
  - a limit on the speed of adaptation
  - a finite rate of fitness decline for infinite populations
  - a reduction of the threshold for Muller's ratchet from  $U_d \sim |s|$  to  $U_d \sim s^2$