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Plan of the talk

The KPZ equation was introduced by Kardar, Parisi, Zhang

The scaling properties were studied by Halpin-Healy, Krug,
Spohn etc.

The Tracy-Widom distributions were introduced by Tracy,
Widom. It appeared in problems of zero-temperature directed

polymer and determinantal growth processes (PNG,
TASEP...).

What about the KPZ equation itself?

= One can solve the KPZ equation exactly!



Explanation about a few subtle (but important) points and exact
solutions for the 1D KPZ equation. The goal is to understand the

meanings of the sentences:
"The KPZ equation is not really well-defined.”

"The 1D KPZ equation has been solved exactly. The height
distribution can be written in terms of a Fredholm determinant”

"The KPZ universality and the universality of the KPZ equation

are different.”



1. Well-definedness of the KPZ equation

h(x,t): height at position x € R and at time ¢t > 0

dth(x,t) = IA(Ozh(z,t))? + vd2h(z,t) + vV Dn(z,t)

where 1) is the Gaussian noise with mean zero and covariance

(n(z, t)n(z’,t')) = o(x — x')o(t — t')

By a simple scaling we can and will do set v = %, A=D=1.

The KPZ equation now looks like

Oith(x,t) = %(Bwh(w, t))?% + %Bih(w, t) + n(x,t)



Cole-Hopf transformation
Z(x,t) = exp (h(z,1))

If we set

this quantity (formally) satisfies

0 10%Z(x,t)
—Z(x,t) = — t)Z(x,t
It (z, 1) 9 92 + n(z,t)Z(x, t)

This can be interpreted as a (random) partition function for a

directed polymer in random environment 7.

h(x.t)

2At/0
1

The polymer from the origin: Z(x,0) = d(x) = girr(l)c(se_|w|/5
é

corresponds to narrow wedge for KPZ.



The KPZ equation is not well-defined

e With n(x,t)” = ”dB(x,t)/dt, the equation for Z can be
written as (Stochastic heat equation)

10%Z(x,t
dZ(x,t) = 5 8:(:2 )dt + Z(x,t) X dB(x,t)

Here B(x,t) is the cylindrical Brownian motion with
covariance dB(x,t)dB(x',t) = §(x — x’)dt.

e Interpretation of the product Z(x,t) X dB(x,t) should be
Stratonovich Z(x,t) o dB(x,t) since we used usual
calculus. Switching to Ito by Z(x,t) o dB(x,t) =
Z(x,t)dB(x,t) + %dZ(w, t)dB(x,t), we encounter §(0).

e On the other hand SHE with lto interpretation from the



beginning

10%Z(x,t)
dZ(ZE, t) — 5 8:32

Is well-defined. For this Z one can define the " Cole-Hopf”
solution of the KPZ equation by h = log Z.

dt + Z(x,t)dB(x,1t)

So the well-defined version of the KPZ equation may be

written as
Oth(x,t) = %(Omh(a:, t))? + %Bih(m, t) — oo + n(x,t)

[who got the Fields medal last week!| found a way to
define the KPZ equation without but equivalent to Cole-Hopf

(using ideas from rough path and renormalization).



2. Exact solution for the height distribution
Thm( )

h(z,t) = —x?/2t — L) + 1és

where v¢ = (t/2)1/3. The distribution function of & is

& @)

Fi(s) =P& <s]=1-— / exp | — e"t(s_'“’)}

— OO

X(det(l — P, (Bt — Paj)P,) — det(1 — PuBtPu))d’u,

where Paj(x,y) = Ai(x)Ai(y), P, is the projection onto
[u, 00) and the kernel By is

©  Ai(z + AN)Ai(y + A
Biw.y) = [ axSEL WIS

— OO




Finite time KPZ distribution and TW
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—: exact KPZ density F}(s) at v+ = 0.94
— —: Tracy-Widom density

e In the large t limit, F} tends to the GUE Tracy-Widom
distribution F5 from random matrix theory.



Fredholm determinant formula for generating function

The formula for the height distribution is equivalent to the

following formula for the generating function.
For the initial condition Z(x,0) = d(x) (narrow wedge for KPZ)

t
_eh(oat)+ﬂ —YtS

(e ) = det(1 — K.)

where v¢ = (t/2)1/3 and K4 is

© Ai(z + A)Ai(y + A)

K i(z,y) = /_oo dA ert(s=X) 1 1
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3. The first derivation through ASEP

ASEP = asymmetric simple exclusion process

q p q p q

¢:‘::> ¢:‘ ‘::> ¢:‘

-3 -2 -1 0 1 2 3
e TASEP(Totally ASEP, p = 0 or ¢ = 0)

e N(x,t): Integrated current at (x,x + 1) upto time ¢

e T=p/q
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Mapping to surface growth
Flat

Wedge VAN VN

Step Alternating

Integrated current N (x,t) in ASEP
< Height h(x,t) in surface growth

This surface growth model is in the KPZ universality class.
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KPZ equation as WASEP limit

Scaling (e: small) in ASEP

Ly, time: e 2%t

space: €
asymmetry: ¢ — p = v/ (Weakly ASEP, WASEP)

In this limit, the ASEP becomes the KPZ equation!
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Gartner transformation

For ASEP, we can introduce a lattice version of the Cole-Hopf

transformation (Gartner transformation)

Zo(a,t) = — 7 N@D ot

2/

which satisfies a discrete version of the SHE,
1
dZ. = EbeAeZs + ZedMsa

where A¢ is lattice Laplacian and M. is a martingale.

In the limit € — 0, this goes to the continuous SHE.
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The initial condition

The step initial condition for ASEP

-2 -1 0 1 2 3 4

corresponds to the narrow wedge initial condition
Z(x,0) = eM®:0) — §(x) for the KPZ equation.

h(x,t)
203
Il
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Tracy-Widom formula for ASEP
T (t): the position of the mth particle from left at time ¢

P(zm(t/(a—p)) < z) = . H(l uTk)det(lJrJ(u))—
0 k=0

where

o Pol(C) (™ uf(u,C/n)
Tpsmn) = [ =y

Poo() = (1 —m)~"et(/=m)

This is obtained by Bethe ansatz and ingenious calculations.
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Ramanujan summation formula

i (@5Dn_, _ (a%39)00(4/a%3 @)oo (43 @) oo (b/ a5 4) oo
(b;@)n (5 @)oo (b/az; @)oo (b5 @) o (@/ a3 ) o

nN=—oo

where
® @)
(a59)00 = || (1 — ag™)
n=0

=
o
@
N
L
©
N
, O

IND/A POSTAGE

(a;q)n

Using this one finds

_ (BT25T)oo(1/ 125 T) oo (T35 T ) oo (T3 T) oo

B (T257)oo(1/25 T)oo (145 T) oo (T /145 T) oo

f(p,z)
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The distribution of N(x = 0,t) in WASEP

N (0,t) = integrated current up to time ¢ at the bond (0, 1)

2 -1 0 1 2 3 4
_N(O 5_2t) . 1t€—3/2 _I_ 10g(2\/g)
lim P i 4 2ve s g
e—0 “Y¢ T
where Ny = 9—1/341/3
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The distribution for finite ¢

In the limit € — 0, we get the distribution

Fy(s) =/ e~ det(1 + I(u))~dy
r 7

©

where the kernel is

L(usn, ') = / exp [ — 3¢ + 5(n)° 4+ s(C —n)]

L' ¢C—n
T

sin(vy; "w (0 — ¢))

In fact Fy(s) = Fi(s) by a manipulation of determinants.

< oY (n'—C) log(—r)y~1d¢
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3. " Universalities” associated with the KPZ equation

"Usual” universality class for equilibrium systems

e In equilibrium statistical mechanics, systems at a critical
temperature shows scale-invariant universal features which are

not system-dependent.

e These "universality classes” are associated with a few scaling
exponents. "Usually” a universality class (and hence its all
correlation functions) is determined only by its exponents. |[cf.

renormalization group, CFT]
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For the KPZ equation
We have seen an exact solution for the KPZ equation for

finite time t.

The KPZ universality class in the "usual” sense appears only
in the t — oo limit. For the height distribution for the wedge
case, the universal function is the GUE TW distribution.

It seems that systems in the KPZ class share the exponents
(like 1/3) but the universal function depends on initial and
boundary conditions. The KPZ universality class is subdivided
into a few subclasses.

The KPZ equation itself has some "universal” features: it is
expected to appear for many surface growth models with weak

drive (universal crossover from Edwards-Anderson to KPZ) .
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4. Developments: 4.1. Derivation by replica approach

Feynmann-Kac expression for the partition function,
Z($, t) =E, (ef(f n(b(S),t—S)dsZ(b(t), O))

Because 717 is a Gaussian variable, one can take the average over
the noise 1) to see that the replica partition function can be

written as (for narrow wedge case)

(Z" (z,1)) = (z|e”"N?|0)

where H v is the Hamiltonian of the (attractive) 6-Bose gas,
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We are interested not only in the average (h) but the full
distribution of h. We expand the quantity of our interest as

oo —e —YtS

_eh(O,t)-I—ﬁ—‘YtS Z
(e

=0

)N 2

(ZN(0,t)) e

Using the integrability (Bethe ansatz) of the §-Bose gas, one gets
explicit expressions for the moment (Z™) and see that the
generating function can be written as a Fredholm determinant.
But for the KPZ, (ZN) ~ eV’ (= rigorous version for lattice
models like ASEP)

e Various generalizations for flat surface, half-space etc have
been achieved (= talk by ).
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4.2 Stationary 2pt correlation

Not only the height/current distributions but correlation functions
show universal behaviors.

e For the KPZ equation, the Brownian motion is stationary.

h(x,0) = B(x)

where B(x),x € R is the two sided BM.
e Two point correlation

h
A
WW
. s rf > ‘4"%\ w”i"v‘ WM . - A i IW\* > x
N R’/ / \“"\v\«\ o /MM\"’W\J “WAM)' i 0 n W;"VW"./ V\/""‘"m’v ‘u«j’ Y \"‘\M[\« /""'urw ;«\\3 /f-\\
Y
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Scaling limit

e The limiting two-point correlation function was first computed
(for PNG) by

e For TASEP ( ) with density 1/2,

SG.1) = (n(, n(0,0)) — |

~ Clt_2/3g”(02j/t2/3)

e The KPZ equation case was studied by
1
(0zh(x,t)05h(0,0)) = _(2t)~ 23gy (w/(2)?)

lim gj'(z) = g" ()
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Scaled KPZ 2-pt function

Figure from exact formula

20¢ V=1
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Stationary 2pt correlation function g}’ (y) for v := (%)
The solid curve is the scaling limit g”’(y).

e This scaled KPZ 2-pt function is expected to appear
universally in systems in the KPZ class.
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4.3 " Stochastic Integrability

What is the underlying mechanism for the exact calculations?
Basically the answer is the integrability.

The models in the KPZ class are often related to " quantum

integrable” systems, but there are extra nice features.

There would be unifying notions and frameworks for
integrable stochastic models ( Stochastic Integrability)

= Talks by
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Finite T' polymer and quantum Toda

Partition function of the semi-discrete directed polymer

N
zZN(B) = / exp 3 (Z(Bi(ti) — Bz’(tz‘—l)>
0<ti1<..<tn_1<t i—=1
Toda lattice
N N-—-1
Hrow =3 opd+ Y et
=1 J=1

Th. ZN (1) is the same (in distribution) as the left-most particle
in IN particle quantum Toda lattice
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Summary

There are well-defined notions for (a solution of) the KPZ

equation.

Exact solutions have been obtained for the height distribution
for the 1D KPZ equation.

The first derivation was through the weakly asymmetric limit
of the ASEP, for which the Tracy-Widom found a current

formula.

There are so many interesting further developments, as will be

explained in the rest of this workshop!
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