# A few caveats and exact solutions for the 1D KPZ equation

T. Sasamoto

20 Aug 2014 @ Kyoto

# Plan of the talk

- The KPZ equation was introduced by Kardar, Parisi, Zhang
- The scaling properties were studied by Halpin-Healy, Krug, Spohn etc.
- The Tracy-Widom distributions were introduced by Tracy, Widom. It appeared in problems of zero-temperature directed polymer and determinantal growth processes (PNG, TASEP...).
- What about the KPZ equation itself?
   ⇒ One can solve the KPZ equation exactly!

Explanation about a few subtle (but important) points and exact solutions for the 1D KPZ equation. The goal is to understand the meanings of the sentences:

"The KPZ equation is not really well-defined."

"The 1D KPZ equation has been solved exactly. The height distribution can be written in terms of a Fredholm determinant"

"The KPZ universality and the universality of the KPZ equation are different."

#### 1. Well-definedness of the KPZ equation

h(x,t): height at position  $x \in \mathbb{R}$  and at time  $t \ge 0$ 1986 Kardar Parisi Zhang

$$\partial_t h(x,t) = \frac{1}{2}\lambda(\partial_x h(x,t))^2 + \nu \partial_x^2 h(x,t) + \sqrt{D}\eta(x,t)$$

where  $\eta$  is the Gaussian noise with mean zero and covariance  $\langle \eta(x,t)\eta(x',t')
angle=\delta(x-x')\delta(t-t')$ 

By a simple scaling we can and will do set  $\nu = \frac{1}{2}, \lambda = D = 1$ . The KPZ equation now looks like

$$\partial_t h(x,t) = \frac{1}{2} (\partial_x h(x,t))^2 + \frac{1}{2} \partial_x^2 h(x,t) + \eta(x,t)$$

If we set

**Cole-Hopf transformation**  $Z(x,t) = \exp(h(x,t))$ 

this quantity (formally) satisfies

$$rac{\partial}{\partial t}Z(x,t)=rac{1}{2}rac{\partial^2 Z(x,t)}{\partial x^2}+\eta(x,t)Z(x,t)$$

This can be interpreted as a (random) partition function for a directed polymer in random environment  $\eta$ .



The polymer from the origin:  $Z(x,0) = \delta(x) = \lim_{\delta \to 0} c_{\delta} e^{-|x|/\delta}$  corresponds to narrow wedge for KPZ.

#### The KPZ equation is not well-defined

• With  $\eta(x,t)$ " = "dB(x,t)/dt, the equation for Z can be written as (Stochastic heat equation)

$$dZ(x,t) = \frac{1}{2} \frac{\partial^2 Z(x,t)}{\partial x^2} dt + Z(x,t) \times dB(x,t)$$

Here B(x,t) is the cylindrical Brownian motion with covariance  $dB(x,t)dB(x',t) = \delta(x-x')dt$ .

- Interpretation of the product  $Z(x,t) \times dB(x,t)$  should be Stratonovich  $Z(x,t) \circ dB(x,t)$  since we used usual calculus. Switching to Ito by  $Z(x,t) \circ dB(x,t) =$  $Z(x,t)dB(x,t) + \frac{1}{2}dZ(x,t)dB(x,t)$ , we encounter  $\delta(0)$ .
- On the other hand SHE with Ito interpretation from the

beginning

$$dZ(x,t) = \frac{1}{2} \frac{\partial^2 Z(x,t)}{\partial x^2} dt + Z(x,t) dB(x,t)$$

is well-defined. For this Z one can define the "Cole-Hopf" solution of the KPZ equation by  $h = \log Z$ . So the well-defined version of the KPZ equation may be written as

$$\partial_t h(x,t) = \frac{1}{2} (\partial_x h(x,t))^2 + \frac{1}{2} \partial_x^2 h(x,t) - \infty + \eta(x,t)$$

 Hairer [who got the Fields medal last week!] found a way to define the KPZ equation without but equivalent to Cole-Hopf (using ideas from rough path and renormalization). 2. Exact solution for the height distribution Thm(2010 TS Spohn, Amir Corwin Quastel)

$$h(x,t) = -x^2/2t - rac{1}{12}\gamma_t^3 + \gamma_t\xi_t$$

where  $\gamma_t = (t/2)^{1/3}$ . The distribution function of  $\xi_t$  is

$$egin{aligned} F_t(s) &= \mathbb{P}[\xi_t \leq s] = 1 - \int_{-\infty}^\infty \expig[-\mathrm{e}^{\gamma_t(s-u)}ig] \ & imesig(\det(1-P_u(B_t-P_{\mathrm{Ai}})P_u) - \det(1-P_uB_tP_u)ig)\mathrm{d} u \end{aligned}$$

where  $P_{\mathrm{Ai}}(x,y) = \mathrm{Ai}(x)\mathrm{Ai}(y)$ ,  $P_u$  is the projection onto  $[u,\infty)$  and the kernel  $B_t$  is

$$B_t(x,y) = \int_{-\infty}^{\infty} \mathrm{d}\lambda rac{\mathrm{Ai}(x+\lambda)\mathrm{Ai}(y+\lambda)}{e^{\gamma_t\lambda}-1}$$

### Finite time KPZ distribution and TW



—: exact KPZ density  $F_t'(s)$  at  $\gamma_t=0.94$ 

---: Tracy-Widom density

• In the large t limit,  $F_t$  tends to the GUE Tracy-Widom distribution  $F_2$  from random matrix theory.

#### Fredholm determinant formula for generating function

The formula for the height distribution is equivalent to the following formula for the generating function.

For the initial condition  $Z(x,0) = \delta(x)$  (narrow wedge for KPZ)

$$\langle e^{-e^{h(0,t)+rac{t}{24}-\gamma_t s}}
angle = \det(1-K_{s,t})$$

where  $\gamma_t = (t/2)^{1/3}$  and  $K_{s,t}$  is

$$K_{s,t}(x,y) = \int_{-\infty}^{\infty} \mathrm{d}\lambda rac{\mathrm{Ai}(x+\lambda)\mathrm{Ai}(y+\lambda)}{e^{\gamma_t(s-\lambda)}+1}$$

### 3. The first derivation through ASEP

#### **ASEP** = asymmetric simple exclusion process



- TASEP(Totally ASEP, p = 0 or q = 0)
- N(x,t): Integrated current at (x,x+1) upto time t

• 
$$au = p/q$$

## Mapping to surface growth



Integrated current N(x,t) in ASEP  $\Leftrightarrow$  Height h(x,t) in surface growth

This surface growth model is in the KPZ universality class.

## **KPZ** equation as **WASEP** limit

1988 Gärtner, 1997 Bertini Giacomin Scaling ( $\varepsilon$ : small) in ASEP space:  $\varepsilon^{-1}x$ , time:  $\varepsilon^{-2}t$ asymmetry:  $q - p = \sqrt{\varepsilon}$  (Weakly ASEP, WASEP) In this limit, the ASEP becomes the KPZ equation!

#### **Gärtner transformation**

For ASEP, we can introduce a lattice version of the Cole-Hopf transformation (Gärtner transformation)

$$Z_arepsilon(x,t) = rac{1}{2\sqrt{arepsilon}} au^{N(x,t)+a_arepsilon t}$$

which satisfies a discrete version of the SHE,

$$dZ_arepsilon = rac{1}{2} b_arepsilon \Delta_arepsilon Z_arepsilon + Z_arepsilon dM_arepsilon,$$

where  $\Delta_{\varepsilon}$  is lattice Laplacian and  $M_{\varepsilon}$  is a martingale. In the limit  $\varepsilon \to 0$ , this goes to the continuous SHE.

### The initial condition

The step initial condition for ASEP



corresponds to the narrow wedge initial condition  $Z(x,0) = e^{h(x,0)} = \delta(x)$  for the KPZ equation.



#### **Tracy-Widom formula for ASEP**

 $x_m(t)$ : the position of the mth particle from left at time t2008 Tracy Widom

$$\mathbb{P}ig(x_m(t/(q\!-\!p))\leq xig)=\int_{\mathcal{C}_0}\prod_{k=0}^\infty(1\!-\!\mu au^k)\det(1\!+\!J(\mu))rac{\mathrm{d}\mu}{\mu}$$

where

$$egin{aligned} J(\mu;\eta,\eta') &= \int_{\mathcal{C}_1} rac{arphi_\infty(\zeta)}{arphi_\infty(\eta')} rac{\zeta^m}{(\eta')^{m+1}} rac{\mu f(\mu,\zeta/\eta')}{\zeta-\eta} \mathrm{d}\zeta \ arphi_\infty(\eta) &= (1-\eta)^{-x} \mathrm{e}^{t(\eta/(1-\eta))} \ f(\mu,z) &= \sum_{k=-\infty}^\infty rac{ au^k}{1-\mu au^k} z^k \end{aligned}$$

This is obtained by Bethe ansatz and ingenious calculations.

## Ramanujan summation formula

$$\sum_{n=-\infty}^{\infty} \frac{(a;q)_n}{(b;q)_n} x^n = \frac{(ax;q)_{\infty}(q/ax;q)_{\infty}(q;q)_{\infty}(b/a;q)_{\infty}}{(x;q)_{\infty}(b/ax;q)_{\infty}(b;q)_{\infty}(q/a;q)_{\infty}}$$

where

$$(a;q)_{\infty} = \prod_{n=0}^{\infty} (1 - aq^n)$$
  
 $(a;q)_n = (a;q)_{\infty}/(aq^n;q)_{\infty}$ 



Using this one finds

$$f(\mu, z) = \frac{(\mu \tau z; \tau)_{\infty} (1/\mu z; \tau)_{\infty} (\tau; \tau)_{\infty} (\tau; \tau)_{\infty}}{(\tau z; \tau)_{\infty} (1/z; \tau)_{\infty} (\mu; \tau)_{\infty} (\tau/\mu; \tau)_{\infty}}$$

### The distribution of N(x = 0, t) in WASEP

N(0,t) =integrated current up to time t at the bond (0,1)



#### The distribution for finite t

In the limit  $\epsilon 
ightarrow 0$ , we get the distribution

$$ilde{F}_t(s) = \int_{\Gamma_\mu} \mathrm{e}^{-\mu} \det(1+I(\mu)) rac{1}{\mu} \mathrm{d}\mu$$

where the kernel is

$$\begin{split} I(\mu;\eta,\eta') &= \int_{\Gamma_{\zeta}} \exp\left[-\frac{1}{3}\zeta^3 + \frac{1}{3}(\eta')^3 + s(\zeta-\eta')\right] \frac{1}{\zeta-\eta'} \\ &\times \frac{\pi}{\sin(\gamma_t^{-1}\pi(\eta'-\zeta))} \mathrm{e}^{\gamma_t^{-1}(\eta'-\zeta)\log(-\mu)} \gamma_t^{-1} \mathrm{d}\zeta \end{split}$$

In fact  $ilde{F}_t(s) = F_t(s)$  by a manipulation of determinants.

# 3. "Universalities" associated with the KPZ equation

## "Usual" universality class for equilibrium systems

- In equilibrium statistical mechanics, systems at a critical temperature shows scale-invariant universal features which are not system-dependent.
- These "universality classes" are associated with a few scaling exponents. "Usually" a universality class (and hence its all correlation functions) is determined only by its exponents. [cf. renormalization group, CFT]

# For the KPZ equation

- We have seen an exact solution for the KPZ equation for finite time *t*.
- The KPZ universality class in the "usual" sense appears only in the  $t \to \infty$  limit. For the height distribution for the wedge case, the universal function is the GUE TW distribution.
- It seems that systems in the KPZ class share the exponents (like 1/3) but the universal function depends on initial and boundary conditions. The KPZ universality class is subdivided into a few subclasses.
- The KPZ equation itself has some "universal" features: it is expected to appear for many surface growth models with weak drive (universal crossover from Edwards-Anderson to KPZ).

# **4. Developments: 4.1. Derivation by replica approach** Dotsenko, Le Doussal, Calabrese

Feynmann-Kac expression for the partition function,

$$Z(x,t) = \mathbb{E}_x \left( e^{\int_0^t \eta(b(s),t-s)ds} Z(b(t),0) 
ight)$$

Because  $\eta$  is a Gaussian variable, one can take the average over the noise  $\eta$  to see that the replica partition function can be written as (for narrow wedge case)

$$\langle Z^N(x,t)
angle = \langle x|e^{-H_Nt}|0
angle$$

where  $H_N$  is the Hamiltonian of the (attractive)  $\delta$ -Bose gas,

$$H_N = -rac{1}{2}\sum_{j=1}^N rac{\partial^2}{\partial x_j^2} - rac{1}{2}\sum_{j
eq k}^N \delta(x_j-x_k).$$

We are interested not only in the average  $\langle h \rangle$  but the full distribution of h. We expand the quantity of our interest as

$$\langle e^{-e^{h(0,t)+rac{t}{24}-\gamma_t s}}
angle = \sum_{N=0}^{\infty}rac{\left(-e^{-\gamma_t s}
ight)^N}{N!} \left\langle Z^N(0,t)
ight
angle e^{Nrac{\gamma_t^3}{12}}$$

Using the integrability (Bethe ansatz) of the  $\delta$ -Bose gas, one gets explicit expressions for the moment  $\langle Z^n \rangle$  and see that the generating function can be written as a Fredholm determinant. But for the KPZ,  $\langle Z^N \rangle \sim e^{N^3}$  ( $\Rightarrow$  rigorous version for lattice models like ASEP)

 Various generalizations for flat surface, half-space etc have been achieved (⇒ talk by Le Doussal).

## 4.2 Stationary 2pt correlation

Not only the height/current distributions but correlation functions show universal behaviors.

ullet For the KPZ equation, the Brownian motion is stationary.h(x,0)=B(x)

where  $B(x), x \in \mathbb{R}$  is the two sided BM.

• Two point correlation



# Scaling limit

- The limiting two-point correlation function was first computed (for PNG) by Prähofer Spohn (2002).
- For TASEP (Ferrari Spohn (2002)) with density 1/2,

$$S(j,t) = \langle \eta(j,t)\eta(0,0) 
angle - rac{1}{4} \ \sim C_1 t^{-2/3} g''(C_2 j/t^{2/3})$$

• The KPZ equation case was studied by Imamura TS (2012).  $\langle \partial_x h(x,t) \partial_x h(0,0) \rangle = \frac{1}{2} (2t)^{-2/3} g_t''(x/(2t)^{2/3})$  $\lim_{t \to \infty} g_t''(x) = g''(x)$ 

## Scaled KPZ 2-pt function

Figure from exact formula



Stationary 2pt correlation function  $g_t''(y)$  for  $\gamma_t := (\frac{t}{2})^{\frac{1}{3}} = 1$ . The solid curve is the scaling limit g''(y).

• This scaled KPZ 2-pt function is expected to appear universally in systems in the KPZ class.

# 4.3 "Stochastic Integrability

- What is the underlying mechanism for the exact calculations?
- Basically the answer is the integrability.
- The models in the KPZ class are often related to "quantum integrable" systems, but there are extra nice features.
- There would be unifying notions and frameworks for integrable stochastic models (Stochastic Integrability)
- $\Rightarrow$  Talks by Borodin, Corwin

#### Finite T polymer and quantum Toda

O'Connell 2010

Partition function of the semi-discrete directed polymer

$$Z_t^N(eta) = \int_{0 < t_1 < ... < t_{N-1} < t} \expeta \left( \sum_{i=1}^N (B_i(t_i) - B_i(t_{i-1}) 
ight)$$

Toda lattice

$$H_{ extsf{Toda}} = \sum_{j=1}^{N} rac{1}{2} p_{j}^{2} + \sum_{j=1}^{N-1} e^{q_{j+1} - q_{j}}$$

Th.  $Z_t^N(1)$  is the same (in distribution) as the left-most particle in N particle quantum Toda lattice

# Summary

- There are well-defined notions for (a solution of) the KPZ equation.
- Exact solutions have been obtained for the height distribution for the 1D KPZ equation.
- The first derivation was through the weakly asymmetric limit of the ASEP, for which the Tracy-Widom found a current formula.
- There are so many interesting further developments, as will be explained in the rest of this workshop!