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Plan of the talk

• The KPZ equation was introduced by Kardar, Parisi, Zhang

• The scaling properties were studied by Halpin-Healy, Krug,

Spohn etc.

• The Tracy-Widom distributions were introduced by Tracy,

Widom. It appeared in problems of zero-temperature directed

polymer and determinantal growth processes (PNG,

TASEP…).

• What about the KPZ equation itself?

⇒ One can solve the KPZ equation exactly!
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Explanation about a few subtle (but important) points and exact

solutions for the 1D KPZ equation. The goal is to understand the

meanings of the sentences:

”The KPZ equation is not really well-defined.”

”The 1D KPZ equation has been solved exactly. The height

distribution can be written in terms of a Fredholm determinant”

”The KPZ universality and the universality of the KPZ equation

are different.”
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1. Well-definedness of the KPZ equation

h(x, t): height at position x ∈ R and at time t ≥ 0

1986 Kardar Parisi Zhang

∂th(x, t) = 1
2
λ(∂xh(x, t))

2 + ν∂2
xh(x, t) +

√
Dη(x, t)

where η is the Gaussian noise with mean zero and covariance

⟨η(x, t)η(x′, t′)⟩ = δ(x − x′)δ(t − t′)

By a simple scaling we can and will do set ν = 1
2
, λ = D = 1.

The KPZ equation now looks like

∂th(x, t) = 1
2
(∂xh(x, t))

2 + 1
2
∂2
xh(x, t) + η(x, t)
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Cole-Hopf transformationIf we set
Z(x, t) = exp (h(x, t))

this quantity (formally) satisfies

∂

∂t
Z(x, t) =

1

2

∂2Z(x, t)

∂x2
+ η(x, t)Z(x, t)

This can be interpreted as a (random) partition function for a

directed polymer in random environment η.
2λt/δ

x

h(x,t)

The polymer from the origin: Z(x, 0) = δ(x) = lim
δ→0

cδe
−|x|/δ

corresponds to narrow wedge for KPZ.
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The KPZ equation is not well-defined

• With η(x, t)” = ”dB(x, t)/dt, the equation for Z can be

written as (Stochastic heat equation)

dZ(x, t) =
1

2

∂2Z(x, t)

∂x2
dt + Z(x, t) × dB(x, t)

Here B(x, t) is the cylindrical Brownian motion with

covariance dB(x, t)dB(x′, t) = δ(x − x′)dt.

• Interpretation of the product Z(x, t) × dB(x, t) should be

Stratonovich Z(x, t) ◦ dB(x, t) since we used usual

calculus. Switching to Ito by Z(x, t) ◦ dB(x, t) =

Z(x, t)dB(x, t) + 1
2
dZ(x, t)dB(x, t), we encounter δ(0).

• On the other hand SHE with Ito interpretation from the
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beginning

dZ(x, t) =
1

2

∂2Z(x, t)

∂x2
dt + Z(x, t)dB(x, t)

is well-defined. For this Z one can define the ”Cole-Hopf”

solution of the KPZ equation by h = logZ.

So the well-defined version of the KPZ equation may be

written as

∂th(x, t) = 1
2
(∂xh(x, t))

2 + 1
2
∂2
xh(x, t) − ∞ + η(x, t)

• Hairer [who got the Fields medal last week!] found a way to

define the KPZ equation without but equivalent to Cole-Hopf

(using ideas from rough path and renormalization).
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2. Exact solution for the height distribution

Thm(2010 TS Spohn, Amir Corwin Quastel)

h(x, t) = −x2/2t − 1
12

γ3
t + γtξt

where γt = (t/2)1/3. The distribution function of ξt is

Ft(s) = P[ξt ≤ s] = 1 −
∫ ∞

−∞
exp

[
− eγt(s−u)

]
×
(
det(1 − Pu(Bt − PAi)Pu) − det(1 − PuBtPu)

)
du

where PAi(x, y) = Ai(x)Ai(y), Pu is the projection onto

[u,∞) and the kernel Bt is

Bt(x, y) =

∫ ∞

−∞
dλ

Ai(x + λ)Ai(y + λ)

eγtλ − 1
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Finite time KPZ distribution and TW
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s
: exact KPZ density F ′

t (s) at γt = 0.94

−−: Tracy-Widom density

• In the large t limit, Ft tends to the GUE Tracy-Widom

distribution F2 from random matrix theory.
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Fredholm determinant formula for generating function

The formula for the height distribution is equivalent to the

following formula for the generating function.

For the initial condition Z(x, 0) = δ(x) (narrow wedge for KPZ)

⟨e−eh(0,t)+ t
24−γts⟩ = det(1 − Ks,t)

where γt = (t/2)1/3 and Ks,t is

Ks,t(x, y) =

∫ ∞

−∞
dλ

Ai(x + λ)Ai(y + λ)

eγt(s−λ) + 1
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3. The first derivation through ASEP

ASEP = asymmetric simple exclusion process

· · · ⇒

p

⇐

q

⇐

q

⇒

p

⇐

q

· · ·

-3 -2 -1 0 1 2 3

• TASEP(Totally ASEP, p = 0 or q = 0)

• N(x, t): Integrated current at (x, x + 1) upto time t

• τ = p/q
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Mapping to surface growth

Step

Curved

Wedge

↕ ↕

Alternating

Flat

↕ ↕

Integrated current N(x, t) in ASEP

⇔ Height h(x, t) in surface growth

This surface growth model is in the KPZ universality class.
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KPZ equation as WASEP limit

1988 Gärtner, 1997 Bertini Giacomin

Scaling (ε: small) in ASEP

space: ε−1x, time: ε−2t

asymmetry: q − p =
√
ε (Weakly ASEP, WASEP)

In this limit, the ASEP becomes the KPZ equation!
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Gärtner transformation

For ASEP, we can introduce a lattice version of the Cole-Hopf

transformation (Gärtner transformation)

Zε(x, t) =
1

2
√
ε
τN(x,t)+aεt

which satisfies a discrete version of the SHE,

dZε =
1

2
bε∆εZε + ZεdMε,

where ∆ε is lattice Laplacian and Mε is a martingale.

In the limit ε → 0, this goes to the continuous SHE.
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The initial condition

The step initial condition for ASEP

-2 -1 0 1 2 3 4

corresponds to the narrow wedge initial condition

Z(x, 0) = eh(x,0) = δ(x) for the KPZ equation.

2λt/δ
x

h(x,t)
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Tracy-Widom formula for ASEP

xm(t): the position of the mth particle from left at time t

2008 Tracy Widom

P
(
xm(t/(q−p)) ≤ x

)
=

∫
C0

∞∏
k=0

(1−µτk) det(1+J(µ))
dµ

µ

where

J(µ; η, η′) =

∫
C1

φ∞(ζ)

φ∞(η′)

ζm

(η′)m+1

µf(µ, ζ/η′)

ζ − η
dζ

φ∞(η) = (1 − η)−xet(η/(1−η))

f(µ, z) =
∞∑

k=−∞

τk

1 − µτk
zk

This is obtained by Bethe ansatz and ingenious calculations.
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Ramanujan summation formula

∞∑
n=−∞

(a; q)n

(b; q)n
xn =

(ax; q)∞(q/ax; q)∞(q; q)∞(b/a; q)∞

(x; q)∞(b/ax; q)∞(b; q)∞(q/a; q)∞

where

(a; q)∞ =
∞∏

n=0

(1 − aqn)

(a; q)n = (a; q)∞/(aqn; q)∞

Using this one finds

f(µ, z) =
(µτz; τ )∞(1/µz; τ )∞(τ ; τ )∞(τ ; τ )∞

(τz; τ )∞(1/z; τ )∞(µ; τ )∞(τ/µ; τ )∞
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The distribution of N(x = 0, t) in WASEP

N(0, t) = integrated current up to time t at the bond (0, 1)

-2 -1 0 1 2 3 4

lim
ε→0

P

N(0, ε−2t) − 1
4
tε−3/2 + log(2

√
ε)

2
√

ε

γt
≥ s

 = F̃t(s)

where
γt = 2−1/3t1/3
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The distribution for finite t

In the limit ϵ → 0, we get the distribution

F̃t(s) =

∫
Γµ

e−µ det(1 + I(µ))
1

µ
dµ

where the kernel is

I(µ; η, η′) =

∫
Γζ

exp
[
− 1

3
ζ3 + 1

3
(η′)3 + s(ζ − η′)

] 1

ζ − η′

×
π

sin(γ−1
t π(η′ − ζ))

eγ
−1
t (η′−ζ) log(−µ)γ−1

t dζ

In fact F̃t(s) = Ft(s) by a manipulation of determinants.
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3. ”Universalities” associated with the KPZ equation

”Usual” universality class for equilibrium systems

• In equilibrium statistical mechanics, systems at a critical

temperature shows scale-invariant universal features which are

not system-dependent.

• These ”universality classes” are associated with a few scaling

exponents. ”Usually” a universality class (and hence its all

correlation functions) is determined only by its exponents. [cf.

renormalization group, CFT]
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For the KPZ equation

• We have seen an exact solution for the KPZ equation for

finite time t.

• The KPZ universality class in the ”usual” sense appears only

in the t → ∞ limit. For the height distribution for the wedge

case, the universal function is the GUE TW distribution.

• It seems that systems in the KPZ class share the exponents

(like 1/3) but the universal function depends on initial and

boundary conditions. The KPZ universality class is subdivided

into a few subclasses.

• The KPZ equation itself has some ”universal” features: it is

expected to appear for many surface growth models with weak

drive (universal crossover from Edwards-Anderson to KPZ) .
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4. Developments: 4.1. Derivation by replica approach

Dotsenko, Le Doussal, Calabrese

Feynmann-Kac expression for the partition function,

Z(x, t) = Ex

(
e
∫ t
0 η(b(s),t−s)dsZ(b(t), 0)

)
Because η is a Gaussian variable, one can take the average over

the noise η to see that the replica partition function can be

written as (for narrow wedge case)

⟨ZN(x, t)⟩ = ⟨x|e−HN t|0⟩

where HN is the Hamiltonian of the (attractive) δ-Bose gas,

HN = −
1

2

N∑
j=1

∂2

∂x2
j

−
1

2

N∑
j ̸=k

δ(xj − xk).
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We are interested not only in the average ⟨h⟩ but the full

distribution of h. We expand the quantity of our interest as

⟨e−eh(0,t)+ t
24−γts⟩ =

∞∑
N=0

(
−e−γts

)N
N !

⟨
ZN(0, t)

⟩
eN

γ3
t

12

Using the integrability (Bethe ansatz) of the δ-Bose gas, one gets

explicit expressions for the moment ⟨Zn⟩ and see that the

generating function can be written as a Fredholm determinant.

But for the KPZ, ⟨ZN⟩ ∼ eN
3
(⇒ rigorous version for lattice

models like ASEP)

• Various generalizations for flat surface, half-space etc have

been achieved (⇒ talk by Le Doussal).
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4.2 Stationary 2pt correlation

Not only the height/current distributions but correlation functions

show universal behaviors.

• For the KPZ equation, the Brownian motion is stationary.

h(x, 0) = B(x)

where B(x), x ∈ R is the two sided BM.

• Two point correlation

x

h

t2/3 t1/3

∂xh(x,t)∂xh(0,0)

o
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Scaling limit

• The limiting two-point correlation function was first computed

(for PNG) by Prähofer Spohn (2002).

• For TASEP (Ferrari Spohn (2002)) with density 1/2,

S(j, t) = ⟨η(j, t)η(0, 0)⟩ −
1

4

∼ C1t
−2/3g′′(C2j/t

2/3)

• The KPZ equation case was studied by Imamura TS (2012).

⟨∂xh(x, t)∂xh(0, 0)⟩ =
1

2
(2t)−2/3g′′

t (x/(2t)
2/3)

lim
t→∞

g′′t (x) = g′′(x)
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Scaled KPZ 2-pt function

Figure from exact formula

0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

y

γt=1

γt=∞

Stationary 2pt correlation function g′′
t (y) for γt := ( t

2
)

1
3 = 1.

The solid curve is the scaling limit g′′(y).

• This scaled KPZ 2-pt function is expected to appear

universally in systems in the KPZ class.
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4.3 ”Stochastic Integrability

• What is the underlying mechanism for the exact calculations?

• Basically the answer is the integrability.

• The models in the KPZ class are often related to ”quantum

integrable” systems, but there are extra nice features.

• There would be unifying notions and frameworks for

integrable stochastic models ( Stochastic Integrability)

• ⇒ Talks by Borodin, Corwin
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Finite T polymer and quantum Toda

O’Connell 2010

Partition function of the semi-discrete directed polymer

ZN
t (β) =

∫
0<t1<...<tN−1<t

expβ

(
N∑
i=1

(Bi(ti) − Bi(ti−1)

)

Toda lattice

HToda =

N∑
j=1

1

2
p2
j +

N−1∑
j=1

eqj+1−qj

Th. ZN
t (1) is the same (in distribution) as the left-most particle

in N particle quantum Toda lattice
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Summary

• There are well-defined notions for (a solution of) the KPZ

equation.

• Exact solutions have been obtained for the height distribution

for the 1D KPZ equation.

• The first derivation was through the weakly asymmetric limit

of the ASEP, for which the Tracy-Widom found a current

formula.

• There are so many interesting further developments, as will be

explained in the rest of this workshop!
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