Growing on Different Worlds

Javier Rodríguez Laguna

Mathematics Dept., Universidad Carlos III de Madrid

Instituto de Física Teórica (CSIC), Madrid

work in collaboration with

Silvia N. Santalla, Tom LaGatta, Alessio Celi and Rodolfo Cuerno

Kyoto, August 23, 2014

京都大学 基礎物理学研究所 Yukawa Institute for Theoretical Physics Kyoto University

Growth is about geometry

• Our beloved Kardar-Parisi-Zhang equation in 1D: $\partial_t h(x,t) = \nu \nabla^2 h(x,t) + \frac{\lambda}{2} |\nabla h(x,t)|^2 + \eta(x,t)$ $\langle \eta(x,t) \rangle = 0 \qquad \langle \eta(x,t) \eta(x',t') \rangle = D \, \delta(x-x') \delta(t-t')$

- Assumptions:
- No overhangs.
- Small slopes.
- Euclidean space!

Growth is about geometry

Growth is about geometry

Discrete Geometry can be good Geometry

- Our discretization attempts to be **geometrically natural**
- The interface is simulated as an **quark-like** string of points.

• Curvature is estimated from the circumscribed circle

$$K_i = \frac{2\sin\alpha_i}{d_{i-1,i+1}}$$

 $\partial_t \vec{r} = (A_0 + A_1 K(\vec{r}) + A_n \eta(\vec{r}, t)) \vec{n}(\vec{r}) + \text{Removal of self-intersections.}$

Scaling in band geometry

• Family-Vicsek scaling: $W(t) \sim t^{\beta}, \ \beta = 1/3; \qquad w(\ell) \sim \ell^{\alpha}, \ \alpha = 1/2.$

• For low noise, $\beta = 1/4$ and $\alpha = 1/2 \rightarrow$ **Edwards-Wilkinson**.

• For small systems, $\beta = 1/3$ and $\alpha = 2/3 \rightarrow$ Self-Avoiding Walk.

Santalla, R-L & Cuerno, PRE 2014

 $\partial_t \vec{r} = (A_0 + A_1 K(\vec{r}) + A_n \eta(\vec{r}, t)) \vec{n}(\vec{r}) + \text{Removal of self-intersections.}$

Scaling in circular geometry

- Short-time regime: no growth, $\beta = 1/3$, $\alpha = 2/3 \rightarrow$ Self-Avoiding Walk.
- Transition time: $\beta = 1/4$, $\alpha = 1/2 \rightarrow$ Edwards-Wilkinson.
- Long-time regime: $\beta = 1/3$, $\alpha = 1/2$, $\rightarrow \text{KPZ}$.

Scaling in circular geometry

- Noise makes you grow faster \rightarrow renormalization of growth rate.
- Radial fluctuations:

 $R(t) \sim V t + \Gamma t^{1/3} \chi$

From KPZ to KPZ

- \bullet Knizhnik-Polyakov-Zamolodchikov (KPZ_2) studied effect of fluctuating geometry on a critical 2D system.
- Fluctuating geometry **is relevant**, and changes the critical exponents of a primary conformal field:

$$\Delta = \frac{\sqrt{1 - c + 24\Delta^{(0)}} - \sqrt{1 - c}}{\sqrt{25 - c} - \sqrt{1 - c}}$$

• So, $\text{KPZ}_1 \rightarrow \text{KPZ}_2$... How does a fluctuating geometry affect growth?

Bend it like Riemann!

- What about a curved background space? How will KPZ look like?
- Establish an arbitrary Riemannian metric $g_{\mu\nu}(\vec{r})$.
- No noise, no curvature: the **ball equation**: $\partial_t \vec{r} = \vec{n}_g(\vec{r})$

Santalla, R-L, LaGatta, Cuerno, ArXiv 2014

Deterministic growth on curved surfaces

Drunk Euclid still rules

- Random static $g_{\mu\nu}$, smooth, short-range correlators.
- $W(t) \sim t^{1/3}$ and $\sigma_R \sim t^{1/6}$...

- Exponent z also appears in the random geodesics: z = 3/2.
- So, z = 3/2, $\alpha = 1/2$... BUT fluctuations are not TW!!!

Arrival times

- Yet... KPZ is hidden!!
- Inspired by First Passage Percolation (FPP)...
- Look at arrival times!

Arrival times

- No pre-asymptotic!
- One might suspect a **quenched KPZ**...

- Parallel Transport: $\vec{\nu}(A) \rightarrow \vec{\nu}(B) = \Gamma(A \rightarrow B) \vec{\nu}(A)$.
- $\Gamma(A \rightarrow B)$ is given by the Christoffel symbols.
- Geodesic curvature: Angular deviation per unit length

• Measures how much your trajectory deviates from a geodesic.

Topology & KPZ

- KPZ on a **cylinder** \rightarrow TW-GOE fluctuations.
- KPZ on a **plane** \rightarrow TW-GUE fluctuations.
- Is there something in between?

• Possibility: KPZ on cones.

Santalla, R-L, Celi, Cuerno, under progress.

Topology & KPZ

• Will cones show intermediate fluctuations between TW-GOE & TW-GUE?

Against:

— A small amount of "U" changes the universality.

In favor:

- There is a natural continuous family of of TW distributions.
- We have a (topological) constant of motion.

• The Gauss-Bonnet theorem states:

$$\int_{\partial \mathcal{M}} k_g \, ds + \int_{\mathcal{M}} K \, dA = 2\pi \, \chi(D)$$

With K the Gaussian curvature of the surface. In our case:

$$\int_{\partial M} k_g \, \mathrm{d}s = 2\pi \sin(\theta)$$

Analogy with Gauss law \rightarrow the tip is our sun!

Our map of the cones

Measuring with bent rulers

- Another problem: finding covariant measures.
- In cones: radial distances are preserved, azimuthal distances are normalized.
- Roughness is straightforward, but morphology can be tricky.
- Nice possibility: expected distance to crossing with fitting circle.

Preliminary results

- For large enough noise, initial stage is SAW.
- $$\begin{split} &-W(t)\sim t^{1/3}.\\ &-\xi(t)\sim t^{1/2} \end{split}$$
- For intermediate times, a (short) EW behavior.
- For long times, KPZ behavior.
- (Likely) GUE behavior for all $\theta \neq 0$, but with a long crossover time.
- Thus, GOE would be a **black hole indicator**, the Hawking radiation of growth • processes.

Take-home message

Growth is about geometry

Young droplets are self-avoiding walks

Euclid rules even when drunk

From KPZ to KPZ?

How to grow in different worlds

The tip is our Sun

How to measure with bent rulers

Tracy-Widom feels the black holes

Thank you for your attention!

- Please, visit our web: http://moria.uc3m.es/kpz
- Please, visit our papers:

RL, Santalla, Cuerno, JSTAT 2011, 1105.1727.

Santalla, RL, Cuerno, PRE 2014, 1312.7696.

Santalla, RL, LaGatta, Cuerno, submitted 2014, 1407.0209.

