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Growth is about geometry

• Our beloved Kardar-Parisi-Zhang equation in 1D:

∂th(x, t) = ν∇2h(x, t) +
λ

2
|∇h(x, t)|2 + η(x, t)

〈η(x, t)〉 = 0
〈

η(x, t) η(x′, t′)
〉

= D δ(x− x′)δ(t− t′)

• Assumptions:

— No overhangs.

— Small slopes.

— Euclidean space!
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Growth is about geometry

Our proposal: the Covariant KPZ Equation

∂t
→
r = (A0 +A1K(

→
r) +Anη(

→
r, t))

→
n

R-L, Santalla & Cuerno, JSTAT 2011
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Growth is about geometry
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• Our noise is multiplicative and correlated with the interface.

“Simulated disorder implies perfect discipline”, Sun Zi



Discrete Geometry can be good Geometry

• Our discretization attempts to be geometrically natural

• The interface is simulated as an quark-like string of points.

• Curvature is estimated from the circumscribed circle

Ki =
2 sinαi

di−1,i+1



Results in band geometry

∂t
→
r = (A0 +A1K(

→
r) +Anη(

→
r, t))

→
n(

→
r) + Removal of self-intersections.
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Scaling in band geometry

• Family-Vicsek scaling: W(t) ∼ tβ, β = 1/3; w(ℓ) ∼ ℓα, α = 1/2.
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• For low noise, β = 1/4 and α = 1/2 → Edwards-Wilkinson.

• For small systems, β = 1/3 and α = 2/3 → Self-Avoiding Walk.



Now... circular!

Santalla, R-L & Cuerno, PRE 2014

∂t
→
r = (A0 +A1K(

→
r) +Anη(

→
r, t))

→
n(

→
r) + Removal of self-intersections.
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Scaling in circular geometry

• Short-time regime: no growth, β = 1/3, α = 2/3 → Self-Avoiding Walk.

• Transition time: β = 1/4, α = 1/2 → Edwards-Wilkinson.

• Long-time regime: β = 1/3, α = 1/2, → KPZ.
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Scaling in circular geometry

• Noise makes you grow faster → renormalization of growth rate.

• Radial fluctuations:

R(t) ∼ Vt+ Γt1/3χ
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From KPZ to KPZ

• Knizhnik-Polyakov-Zamolodchikov (KPZ2) studied effect of fluctuating geome-

try on a critical 2D system.

• Fluctuating geometry is relevant, and changes the critical exponents of a primary

conformal field:

∆ =

√

1− c+ 24∆(0) −
√
1− c√

25− c−
√
1− c

• So, KPZ1 → KPZ2... How does a fluctuating geometry affect growth?



Bend it like Riemann!

• What about a curved background space? How will KPZ look like?

• Establish an arbitrary Riemannian metric gµν(
→
r).

• No noise, no curvature: the ball equation: ∂t
→
r =

→
ng(

→
r)

~t ∂B(r)
g~t

~ng

x0

Santalla, R-L, LaGatta, Cuerno, ArXiv 2014



Deterministic growth on curved surfaces
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Drunk Euclid still rules

• Random static gµν, smooth, short-range correlators.

• W(t) ∼ t1/3 and σR ∼ t1/6...
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• Exponent z also appears in the random geodesics: z = 3/2.

• So, z = 3/2, α = 1/2... BUT fluctuations are not TW!!!



Arrival times

• Yet... KPZ is hidden!!

• Inspired by First Passage Percolation (FPP)...

• Look at arrival times!
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Arrival times
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• No pre-asymptotic!

• One might suspect a quenched KPZ...



Curavature

• Parallel Transport:
→
v(A) → →

v(B) = Γ(A → B)
→
v(A).

• Γ(A → B) is given by the Christoffel symbols.

• Geodesic curvature: Angular deviation per unit length

kg(A) = lim
B→A

α(
→
tA(B),

→
tB)

d(A,B)

A

B~tA

~tB

~tA(B)

• Measures how much your trajectory deviates from a geodesic.



Topology & KPZ

• KPZ on a cylinder → TW-GOE fluctuations.

• KPZ on a plane → TW-GUE fluctuations.

• Is there something in between?

(a) (b) (c)

• Possibility: KPZ on cones.

Santalla,R-L,Celi,Cuerno, under progress.



Topology & KPZ

• Will cones show intermediate fluctuations between TW-GOE & TW-GUE?

Against:

— A small amount of “U” changes the universality.

In favor:

— There is a natural continuous family of of TW distributions.

— We have a (topological) constant of motion.



Gauss-Bonnet Formula

• The Gauss-Bonnet theorem states:

∫

∂M
kg ds+

∫

M
K dA = 2π χ(D)

With K the Gaussian curvature of the surface. In our case:

θ

∫

∂M
kg ds = 2π sin(θ)

Analogy with Gauss law → the tip is our sun!



Our map of the cones
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Measuring with bent rulers

• Another problem: finding covariant measures.

• In cones: radial distances are preserved, azimuthal distances are normalized.

• Roughness is straightforward, but morphology can be tricky.

• Nice possibility: expected distance to crossing with fitting circle.



Preliminary results

• For large enough noise, initial stage is SAW.

— W(t) ∼ t1/3.

— ξ(t) ∼ t1/2

• For intermediate times, a (short) EW behavior.

• For long times, KPZ behavior.

• (Likely) GUE behavior for all θ 6= 0, but with a long crossover time.

• Thus, GOE would be a black hole indicator, the Hawking radiation of growth

processes.



Take-home message

Growth is about geometry

Young droplets are self-avoiding walks

Euclid rules even when drunk

From KPZ to KPZ?

How to grow in different worlds

The tip is our Sun

How to measure with bent rulers

Tracy-Widom feels the black holes



Thank you for your attention!

• Please, visit our web: http://moria.uc3m.es/kpz

• Please, visit our papers:

RL, Santalla, Cuerno, JSTAT 2011, 1105.1727.

Santalla, RL, Cuerno, PRE 2014, 1312.7696.

Santalla, RL, LaGatta, Cuerno, submitted 2014, 1407.0209.


