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Why NPRG?

Many exact results for KPZ in d = 1 ⇒ RG is not needed.

But not so many results for KPZ in d > 1 !

We know that there exists a phase transition between a smooth
and a rough phase for d > 2, but...

Is there an upper critical dimension dc (meaning of dc?)

Can we explain “generic” scaling in the rough phase?

Can we compute the critical exponents and the correlation
function (and the probability distribution)?

⇒ need a versatile and reliable method
⇒ RG is the method of choice...

... but perturbative RG is known to fail in the rough phase for
d > 1...

⇒ non-perturbative RG
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Field theory for KPZ

(NP)RG works on correlation (and response) functions
⇓

Derive from KPZ equation a generating function(al) Z of correlation
functions in terms of a functional integral

⇓
Introduce a response field h̃ that allows us to enforce

the equation of motion and that takes care of the fluctuations
induced by the noise term

∂th = ν∇2h +
λ

2
(∇h)2 + η ⇐⇒ Z =

∫
D[h, i h̃] e−S[h,h̃]+

∫
(jh+j̃ h̃)

S[h, h̃] =

∫
ddx dt

{
h̃

[
∂th − ν∇2h − λ

2
(∇h)2

]
− D h̃2

}
〈h(x1, t1) . . . h̃(xn+p, tn+p)〉 =

1

Z[j , j̃ ]

δn+pZ[j , j̃ ]

δj(x1, t1) . . . δj̃(xn+p, tn+p)

NPRG for KPZ



Perturbative RG before non-perturbative RG

Perturbation theory I: treat the non linear term

S[h, h̃] =

∫
ddx dt

{
h̃

[
∂th − ν∇2h − λ

2
(∇h)2

]
− D h̃2

}
as a perturbation and expand (around Edwards-Wilkinson).

Perturbation theory II: use the Cole-Hopf formulation and expand
the non gaussian term.

In the two cases, the rough phase is unreachable (for d > 1)
⇓

The recourse to other methods is unavoidable
.
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Other methods

- Study of discrete models, (Tang et al. 1992, E. Marinari et al.
2012, Kelling and Ódor, PRE 2011);

- Direct integration, (Miranda and Reis 2008);

- Real space RG (Castellano et al. 1998-99);

- Perturbative FRG (Le Doussal and Wiese, PRE 72,2005);

- Mode-Coupling Theory, (Frey, Täuber and Hwa, PRE 1996,
Colaiori and MoorePRL2001);

- Self-Consistent Expansion, (Schwartz and Edwards 1992,
Schwartz and Katzav 2008).

And, of course, numerical simulations and experiments!
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The non-perturbative RG for the Ising model

Z =

∫
Dφ(x) e−H[φ]+

∫
x Jφ

with

H[φ] =

∫
ddx

( 1

2
(∂xφ)2 +

1

2
rφ2 + gφ4

)
We want to compute:

→ Helmoltz free energy (up to a −kT factor): W[J] = lnZ[J]

→ Gibbs free energy (Legendre transform):

Γ[M] +W[J] =
∫
x J(x)M(x) with M(x) = 〈φ(x)〉 =

δW[J]

δJ(x)

Perturbation expansion = expansion of exp(−g
∫
φ4)
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Wilson’s idea:
Organize the summation over the fluctuations in a different way.

⇓
Block-spins à la Kadanoff-Wilson

⇓

⇓
Summation over rapid modes → effective hamiltonian for the slow modes

rapid modes = φ>(q) = φ(q > k)
slow modes = φ<(q) = φ(q < k)

Z =
∫
Dφ<(x) Dφ>(x) e−H[φ<,φ>]+

∫
x J(φ<+φ>)

Z =
∫
Dφ<(x) e−Hk [φ<]+

∫
x Jφ<

⇓
Flow equations of functions (or even functionals)
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Integration over the “rapid” modes: The modern way

Idea: deform the model.
⇓

Build a one-parameter family of models, indexed by a scale k .

Integrate over the rapid modes only → freeze the slow modes
→ make them non-critical → give them a “large mass”

Z[J]→ Zk [J] =

∫
Dφ exp

{
− H[φ]−∆Hk [φ] +

∫
x

J(x)φ(x)
}

∆Hk [φ] =
1

2

∫
q

Rk(q)φ(q)φ(−q)

q

Rk HqL

k

k2
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The one-parameter family of models
Define:

• Zk [J] =
∫

Dφ exp
{
− H[φ]−∆Hk [φ] +

∫
x J(x)φ(x)

}
• Wk [J] = lnZk [J]

• Γk [M] +Wk [J] =
∫
x JxMx − 1

2

∫
q Rk(q)MqM−q

→ when k = Λ all fluctuations are frozen ⇒ mean field is exact:
∀q, Rk=Λ(q) ∼ Λ2, ⇒ ΓLeg

k=Λ = H + ∆Hk=Λ

⇒ work with Γk [M] = ΓLeg
k [M]−∆Hk [M]

⇒ Γk=Λ[M] = H[M]

→ when k = 0 all fluctuations are integrated out and the original
model is retrieved
∀q, Rk=0(q) = 0, ⇒ Zk=0[J] = Z[J] and Γk=0 = Γ
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To summarize:

q

Rk HqL

k

k2

Zk [J] =
∫

Dφ exp
{
− H[φ]−∆Hk [φ] +

∫
x J(x)φ(x)

}


Rk=Λ(q) ∼ Λ2 (or ∞)

Rk=0(q) = 0
⇒


Γk=Λ[M] = H[φ = M]

Γk=0[M] = Γ[M]
(1)

then Γk=Λ[M] interpolates between the microphysics at k = Λ and
the macrophysics at k = 0.
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Exact flow equation: Wetterich’s equation

The flow equation for Γk [M] writes:

∂kΓk [M] =
1

2

∫
q
∂kRk(q)Gk [q; M] (2)

where Gk [q; M] is the full 2-point function (propagator):

Gk [q; M] = (Γ
(2)
k + Rk)−1 with Γ

(2)
k [q; M] = δ2Γk [M]

δM(q)δM(−q)

Some properties of the Wetterich’s equation:
– differential formulation of field theory
– involves only one integral
– the initial condition is the (microscopic) bare theory
– good properties of decoupling of the massive and rapid modes
– starting point of non-perturbative approximation schemes (not
linked to an expansion in a coupling constant)

BUT
– leads to very few exact results;
– difficult to implement for gauge theories in high energy physics.
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Two approximation schemes:

• The derivative expansion:

Γk [M] =
∫

ddx
{

Uk

(
M(x)

)
+ 1

2 Zk

(
M(x)

)
(∇M)2 + . . .

}
→ extremely accurate critical exponents, calculation of
non-universal quantities, work for equilibrium and out of
equilibrium systems, but... not appropriate for KPZ.

• The Blaizot-Mendez-Wschebor (BMW) approximation: flow of

the two-point function Γ
(2)
k (p) and approximation on Γ

(3)
k and Γ

(4)
k

→ extremely accurate determination of the two-point function,
but... impossible to implement for KPZ because of the symmetries.
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Symmetries of the KPZ field theory

Z[j , j̃ ] =
∫
D[h, i h̃] e−S[h,h̃]+

∫
(jh+j̃ h̃)

S[h, h̃] =
∫

ddx dt
{

h̃
[
∂th − ν∇2h − λ

2 (∇h)2
]
− D h̃2

}
gauged shift symmetry:

h(t,~x)→ h(t,~x) + c(t) ⇒ Γ(1,1)(ω,~p = 0) = iω

gauged Galilean symmetry (infinitesimal){
h(t,~x) → ~x · ∂t~v(t) + h(t,~x + λ~v(t))

h̃(t,~x) → h̃(t,~x + λ~v(t))

⇓
iω∂~pΓ(2,1)(ω,~p = ~0;ω1, ~p1) = λ~p1

(
Γ(1,1)(ω + ω1, ~p1)− Γ(1,1)(ω1, ~p1)

)
time reversal symmetry in d = 1{

h(t,~x) → −h(−t,~x)

h̃(t,~x) → h̃(−t,~x) + ν
D∇

2h(−t,~x)
⇒ 2ReΓ(1,1)

κ = − ν
D

p2Γ(0,2)
κ
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The quest for a symmetry-preserving scheme

→ Find a “geometric interpretation” of the Galilean symmetry:

Definition: f (~x) is a scalar if
∫

ddx f (~x) is Galilean invariant

=⇒
{

h̃ , ∇2h → scalars
h , ∂th → not scalars

(3)

Analogy with fluid mechanics: introduce covariant time derivatives

D̃t ≡ ∂t − λ∇h · ∇ , Dth ≡ ∂th −
λ

2
(∇h)2

Building blocks of a (gauged) Galilean invariant quantity:
three scalars: h̃, ∇i∇jh, Dth with two operators D̃t , ∇.

For instance: S =
∫
x ,t

{
h̃
(

Dth − ν∇2h
)
− D h̃2

}
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Computing the two-point functions Γ(0,2)(ω, p) and Γ(1,1)(ω, p)

Define ψ(t,~x) = 〈h(t,~x)〉 and ψ̃(t,~x) = 〈h̃(t,~x)〉
⇒ Γk = Γk [ψ(t,~x), ψ̃(t,~x)]

Propose an ansatz for Γk consisting of an expansion at second
order in the response field ψ̃ :

Γans
k [ψ, ψ̃] =

∫
t,~x

{
ψ̃f λk Dtψ −

1

2

[
∇2ψf νk ψ̃ + ψ̃f νk ∇2ψ

]
− ψ̃f D

k ψ̃

}
with f X

k = three arbitrary functions : f X
k ≡ f X

k (−D̃2
t ,−∇2).

Γ
(2,0)
k (ω,~p) = 0,

Γ
(1,1)
k (ω,~p) = iω f λk

(
ω2, ~p 2

)
+ ~p 2 f νk (ω2, ~p 2),

Γ
(0,2)
k (ω,~p) = −2 f D

k (ω2, ~p 2).

This is the most general form of Γ
(1,1)
k and Γ

(0,2)
k compatible with

the symmetries.
Infinitely many other Γ(n,1) and Γ(n,2) are in the ansatz to preserve
all the symmetries.
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Integration of the RG flow: I

We look for scale invariance ⇒ fixed point of the RG flow ⇒ we
must work with dimensionless renormalized quantities

f̂ D
k ($̂2, p̂2) = f D

k (ω2, p2)/Dk p̂ = p/k

f̂ νk ($̂2, p̂2) = f νk (ω2, p2)/νk $̂ = ω/(Dkk2)

f̂ λk ($̂2, p̂2) = f λk (ω2, p2)

→ two (running) “anomalous dimensions”

ηD(k) = −k∂k ln Dk , η
ν(k) = −k∂k ln νk

from which follows the two critical exponents:

z = 2− η∗ν , χ = (2− d + η∗D − η∗ν)/2

→ one dimensionless coupling ĝk = λ2Dk/νk
3kd−2 whose flow is:

k∂k ĝk = ĝk(d − 2 + 3ην(k)− ηD(k))

Thus, for a fixed point with g∗ 6= 0 ⇒ z + χ = 2.

NPRG for KPZ



Integration of the RG flow: II

• In d = 1, “time-reversal” symmetry ⇒ f D
k (ω2, p2) = f νk (ω2, p2)

and f λk (ω2, p2) = 1 ⇒ only one independent function (called
f = f D

k = f νk

• In d > 1, we make a further approximation on the three functions
(NLO): f X

k (ω2, p2)→ f X
k (p2) (on the r.h.s. of the flow equations)

• Initial condition of the RG flow, k = Λ:
ΓΛ[ψ, ψ̃] = S[h = ψ, h̃ = ψ̃] ⇒ f D

Λ = D, f νΛ = ν, f λΛ = 1.

But we could (must?) take generic initial conditions ! (Role of the

irrelevant operators?)
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Results

d χ NLO χ num.

1 1/2 1/2
2 0.373 0.384
3 0.180 0.304

See results by T. Halpin-Healy in this conference for many results
of χ in 2 + 1 dimensions (0.380 ≤ χ ≤ 0.389).
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Results in d = 1: fixed point and scaling

Only one function left

{
νk = Dk f̂ νk = f̂ D

k ≡ f̂k(ω2, p2)

f̂ λk = 1 ηνk = ηDk ≡ ηk

Dimensionless flow equations

k∂k f̂k($̂, p̂) = ηk f̂k + p̂ ∂p̂ f̂k + (2− ηk)$̂ ∂$̂ f̂k + Ik($̂, p̂)
k∂k ĝk = ĝk(2ηk − 1)

• There exists a fixed point: (f̂∗($̂, p̂), ĝ∗)
• When k → 0 at fixed p or ω p̂ = p/k and/or
$̂ = ω/(k2Dk)� 1

f̂∗($̂, p̂) =
1

p̂1/2
ζ̂

(
$̂

p̂3/2

)
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Results in d = 1: Comparison with exact scaling functions

C ($, p) = − Γ(0,2)($, p)

|Γ(1,1)($, p)|2
=

2

p7/2

ζ̂
(

$̂
p̂3/2

)
$̂2

p̂3 + ζ̂2
(

$̂
p̂3/2

)
≡ 2

D0p7/2
F̊

(
$

D0p3/2

)
Dk = D0k−η

D
∗

Normalisations: Scaling function g defined by

C (t, x) = α t2/3 g(β x/t3/2)

with arbitrary constants α and β fixed by comparison with
Prähofer and Spohn, J. Stat. Phys., 115, (2004). They define three
functions:

f (y) = g ′′(y)/4

f̃ (k) = 2

∫ ∞
0

dy cos(ky)f (y)

f̊ (τ) = 2

∫ ∞
0

dk cos(kτ)f̃ (k2/3)
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Asymtotic behavior:

f̃ ∼ cos(a0k3/2)e−b0k3/2
fork →∞

a0 b0

NPRG 0.28(5) 0.49(1)
exact 1/2 1/2
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Universal amplitude ratio:

g0 = 2Γ(1/3)/π2

∫ ∞
0

dτ τ2/3 f̊ (τ)

g0

exact 1.15039
NPRG 1.19(1)

In d dimensions:

C (t, x) = x2χF (t/xz) ⇒ with F (y) =

{
F0 y → 0

F∞y 2χ/z y →∞
then

R =
F∞

F
2/z
0 λ2χ/z

KCW find in 2+1 dimensions R = 0.940(2).
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Conclusions

• KPZ with long-range correlated noise :

〈η(t, x)η(t ′, x ′)〉 = 2D(x − x ′)δ(t − t ′)

with D(p) = D(1 + wp2ρ) has been studied by us with NPRG.
Very rich structure, highly non trivial!
• Anisotropic KPZ has also been studied by Kloss, anet and
Wschebor (not yet published).

BUT... much remains to be done in 2+1 3+1 (and beyond):
• Improve the approximation (but time consuming): critical
exponents, amplitude ratios, existence of an upper critical
dimension
• Compute the height PDF in 2+1
• Study the Cole-Hopf version of KPZ
• Study the (stochastic) Navier-Stokes equation (paper in
preparation)
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