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1 D =11 Supergravity

Guess: on-shell mode number counting

e”, 112 — ;1 Cy(LL) — 2 x 11(GC ghosts) = 44
Yo ¢ (11x32+32(B,)) x 3 — 2 x 32(Super ghosts) = 128

requires

128 — 44 =84 = 9-8-7/3! = gC5 bosons —  antisymmetric gauge field A,,, !

Lagrangian
L = _2%2@}2(@,@ -~ %G@ﬁuF"paDP(w er @WU 3 -14!€F’3””"
- 1\(5/?2@(&@#&575% +120°T79°) (Fagys + Fapys)
—l—%gmmuuF!“"'N4FM5"'u8Au9ulouu
where

1 1
= dA, F= ZFw,pgdx“dx”dx’)dx”, A= gAWpdx“dx”dx”

Opmn = Wumn(€e) + i(zﬁufmqpn — zﬁufnwm + zﬁmfuwn) < supercov’tion of w(e)

Wymn = a}umn - %(@Zaraumnﬁqﬁﬁ) < (SS/(SW =000

I3 = Fupo+ 30uluts) « (4x30000000)

uvpo
1 mn

Dy(w)y = (9u— 1% )Linnt

This is invariant under the following (local) SUSY transformation:

K

6em,u = §§meu,
1 ~ \/§ ey el n
(5170# = EDH((’U)& + ﬂ(l“u Ao _ 85111—‘5%5)6 Fa/g,y(;,
2
6wy = —~eljuty, +3000000

(1)

(2)



SUSY algebra:
[0g(e2), dg(e1)] = dac(§”) + do(—E€"1w) + 0 (A™) + dgange (Aw)

where &M = %glrmSQ e,
N — éuwﬂmn + g—l(anaﬁ'yé . 246ma€n'8F75)Fa575
N = —360,06 — €Ay, With Sguged = dA. (6)

2 Reduction to D=4 N =8 SUGRA

Simple Reduction:

O(zM=(a",2")) —  D(z")
oA e, e, curved index: M = (u(=0,1,2,3) ,i(=4,5,---, 10)),(7)
M\ e = flat index: A= (a(=0,1,2,3) ,a(=4,5,---,10)).

Now each 11 dimensional index split into a 4 dimensional part and an external part, and
the 32 component Majorana spinor in 11 dimensions is decomposed into 8 four-component
Majorana spinors in 4 dimensions corresponding to the following tensor product decompo-
sition of 11 y-matrices I'*:

re =415
. N A B=1,2-.. 20/ =g
{ I =v%e® (F(7))§7

Thus this dimensional reduction gives rise to the following field constant in 4 dimensions:

N ezé(g,uu) ' 1 (J=2)
exr(gun) — 4 €i(9u) ~ B, 7
e (9ij) ~ dij 28
A,y ~ auxiliary 28 (j=1) 35 (yP—ot)
Api ~ i 7 70 (7=0)
A — . i
Az‘jk 703 =35 (JP=07)
i 8 (s=3/2)
— ; 8
Yu {%A ~ Aapc < (Ug))aptic)  sC3 =56 (j=1/2) (8)

Now the general coordinate transformation GC(11) and the local Lorentz invariance
SO(1,10)ry, in 11 dimensions reduce to

GO(4)
GC(ll) — GL(77 R)global
Abelian gauge [U(1)]"
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SO(1,3)LL

SO(l,lO)LL — { 80(7)1()%1, (9)

respectively, in the resultant 4-dimensional theory. Here we should note that the general
coordinate transformations in the extra dimensions which survive the dimensional reduc-
tion are only those with the transformation parameter &'(x™) of the form &i(x# 2%) =
Nsx? 4 & (). A} corresponds to the global (z#-independent) general linear transformation
GL(7, R)global and & (2#) to the abelian gauge transformation [U(1)]".

So GL(7, R)global X SO(7)10cal is & manifest internal symmetry of this 4-dimensional the-
ory, N = 8 supergravity. Cremmer and Julia, however, noted that these 7-dimensional
symmetries are in fact easily enlarged to the 8-dimensional ones:

GL(7,R)gioba — SL(8, R)giobal,
SO<7)10C31 — SO(8>local- (10)

The symptoms of these 8-dimensional symmetries appear in the following facts:

i) The y-matrix generators ['* of SO(7) are combined with ['* (a =4,---,10) to form
SO(8) generators.

ii) The vector fields appearing in the above, seven BZ and twenty one ij, are combined
to yield 28 representation of SL(8, R) (or SO(8) ).

iii) The scalar fields, twenty eight ¢,; and seven ¢;, are also combined to yield 35 repre-
sentation of SL(8, R).

Cremmer and Julia have shown at this stage that the lagrangian for the 35 scalar( J¥ =
0%) sector can be written in the form of nonlinear sigma model based on SL(8, R)/SO(8)
[dim(SL(8, R)) — dim(SO(8)) = 63 — 28 = 35].

Proceeding further, they have found that the total scalar field sector, the 35 sector plus
35 pseudo-scalar fields, is just described by the nonlinear sigma model on the coset !

Er47/SU(8) (dim(Er(17)) — dim(SU(8)) = 133 — 63 = 70),
and that the symmetries of N = 8 supergravity are in fact larger ones than (10):

SL(8, R)global — E7(47) globals
SO<8)local — SU(8>10cal- (11)

All the fermionic fields are inert under E7(7) giobat and J = 1, 2 bosonic fields are inert under
SU(8)10car- Since the fermionic fields 1,4 and Aapc are Majorana spinors, the SU(8)iocal
transformation A’} +iA”% are understood to be A’% +ivsA”% on them. [ Since the smallest

! E7(47) denotes a non-compact form of E7, which has SU(8) as maximum compact subgroup and
+7 = 70—63 is the signature of the non-compact group ( implying the number of negative metric generators
minus positive ones.)



non-trivial representation of F; is 56 dimensional, the 28 vector fields do not fit in the FE;
representation and hence the Er(,7) cannot be a lagrangian symmetry of the vector field
sector. However, the 28 equations of motion for their field strength and the 28 Bianchi-
identities turn out to fall into 56 representation of Er7), and the E;7) is therefore a
symmetry on-the-mass shell in the vector sector.]

It will be instructive to see explicitly how the 70 scalar (J = 0) fields appear in the N = 8
supergravity lagrangian. The 133 generators of Er7) group are given by 63 generators
T8 (A,B=1,2,---,8) of its maximal subgroup SU(8) plus 70 generators X 4pcp which
is totally anti-symmetric and self-dual i.e.,

XABCD _ L upcperan Xpren.

(Xapep)' = Nk

The infinitesimal transformation

: l < o S
0 = iA3TH + — (Sapep X PP + SAPP X ypep)

4]

with parameters A% and ¥ 4pcp,

_ 1
ABCD ABCDEFGH
by —€ YEFGH

4]

is expressed as follows in the case of fundamental representation 56 whose basis vector is
given by (Zap, ZAP) with Zap = —Zpa, Z*P = (Zap)*

= (Xapcp)" = —

6 Zap = NG Zcp + A5 Zac + SapopZ°P,
§ ZAB = N&Z9P 1 NBEZAC 4 4B 7. (12)

The basic variable § in the scalar field sector is the E7 7 group element

XABCD_’_QT)ABCD (w)XABC’D)
J

f(x) = ei¢§(u’v)T]‘3“ . e%(d’ABCD(JE)

which is a 56 x 56 matrix by taking the matrix representation of T’ f and X 4pcp in the above
fundamental representation 56, and transforms under g € E7(i7yg10pal and h(x) € SU(8)iocal
as

E(x) = €'(2) = h(w)é(x)g".

Then the Maurer-Cartan 1-form becomes
oy = 1 L€ &= ( QZE;CD PM?BCD]>
g P " 2Q [c D]

where

Q105 = (@ 405 — Qad% — Qupdd + Qp0%).



The @, part corresponds to a,|, proportional to the unbroken” generators T8 of H =
SU(8), and the P, part, to a,,, proportional to the broken” generators X sgcp and XAPCP
in the terminology of section 4.1. Therefore the scalar field lagrangian invariant under
Er(47)global and SU(8)1ocal is given by

2 PUABCD
ﬁscalar ~ tr (a,LLJ_) ~ ,uABCDP'u .

This is exactly the lagrangian of the scalar field sector in N = 8 supergravity found by
Cremmer and Julia. The original 70 scalar plus pseudo-scalar fields correspond to ¢papcp
and ¢4PYP which survive the SU(8)10ca1 gauge fixing ¢4 = 0.

It is also interesting to see that the kinetic term of 8 Rarita-Schwinger fields 1,4 take
the following form in the N = 8 supergravity lagrangian:

1 vpo 7,
§€u P w,uAﬁ)/UﬁYS((SfDV - QEA)wa-

where D, is local Lorentz covariant derivative. This form is understandable since o, ~
B transforms inhomogeneously just like a hidden local SU(8) gauge field and hence
J f D, —QB, is an SU(8)cal-covariantized derivative on 9,4, transforming as 8 of SU(8)ocal-

Table 1: Supergravity o-model symmetries.

D] G | A ]
9 GL(2,R) SO(2)
8 | SL(3,IR) x SL(2,IR) | SO(3) x SO(2)
7 SL(5,R) SO(5)
6 SO(5,5) SO(5) x SO(5)
3 Ee(+6) USP(8)
4 E74n SU(8)
3 Eg(1s) SO(16)

E7(47) is an on-shell symmetry:
Vector ij € 28. The representation 56 of Err) is given by

Fi F . field strength of By
b L, _ 405 (13)
v M e sF,
so that o N
Binachi: d,(e F*") =0 < eq. of motion: 9,(e G*") = 0. (14)

—  Er(47) is a (Cremmer-Julia) duality symmetry.
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3 Superconformal group SU(2,2|1)
4D Conformal Group: SO(4,2) = SU(2,2)

M, M, o] = — ’(mpr — N Mo — Nuo M, + anup);
M) = i(mpu Py — 1p By,

,:U

[

[

Ky, M) = i(mpudy — o0 K,),

(D, M| = [ B =Ky K] =0,

[Pw D] = [K D] = —iI,

[Pw KV] (muD M#u) (15)

This 4D conformal group is in fact identical with the extended Lorentz group SO(4,2) in
6 dimensions with metric
Nuv
Tab = —1 s (16)
+1

for which the generators My, = —Mp, (a,b=0,1,---,5) satisfy
[Maba Mcd] = _7:<7]achd - nbcMad - nadec + nbdMac)' (17)

and

My =3(P,— K,), My=22P,+K,), Ms=D. (18)

5= 23
By considering the (Weyl) spinor representation, this algebra is also seen to be isomorphic
with SU(2,2). The generators I'* of the Clifford algebra for SO(4,2), can be represented,
for instance, by the following 8 x 8 matrices:

1 0 A
MM=+*®d = (7# 0 )

. 0 oy

4 _ 1 5
=1y = (i% 0),

I°=1®(-0% = ( 0 i(l)‘*). (19)

—214

The Lorentz generators M, of SO(4,2) are then represented by

] 1 ( Oab 0
My = £, Ty =3 _
ab 4 [ a b] 2 0 Tab )
Oa=pb=v = Opvy Opud = VuV5, Ous = Vu, 054 = 275

6a:u,b:1/ = Ouv, 5;14 = Yu5, 5-/L5 = T O54 = _175 (20)
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Clearly the 4-component Weyl spinor gives an irreducible representation of the Lorentz
group SO(4,2), for which the Lorentz group element A = exp(%s“bMab) is represented by

exp(%e“baab). (21)

These 4 x 4 matrices belong to SU(2,2) since o, are traceless and hermitian under the
metric a = 7° (which has two +1 and two —1 eigenvalues). Moreover, Since 6 x5/2 = 15 g4
exist and give a complete set for such traceless and hermitian 4 x 4 matrices, any SU(2,2)
matrix is expressed in the form Eq. (21) (at least in the neighborhood of the identity) and
so we have the isomorphism of the algebra SO(4,2) ~ SU(2,2).

We have seen that the 4D conformal algebra SO(4,2) ~ SU(2,2) can be represented by
traceless 4 x 4 matrices M, = %aab acting on a 4-component spinor ©. Then it is clear that
it can be extended to the superconformal algebra SU(2,2|1) acting on a (4+41)-component
super-spinor (1, ¢) by adding another single component ¢ (which should have opposite
statistics to the original component v). SU(2,2|1) is defined to be a supergroup consisting
of 5 x 5 matrices (of unimodular superdeterminant) which leave the innerproduct

Wives + ol g (22)

invariant. Clearly, there are 24 independent generators as a whole, which we can take, for

instance,
_1fow O _ 1(1s 0
Mab_2(0 0)7 A= 4(0 4)7
B 0, O S 04 Of
soa(B0), (U 1), -

Note that a diagonal (supertraceless) matrix A appears here. This gives the defining
representation of SU(2,2|1) algebra. From this we can easily find the following albebra
written in 6 dimensinal notation:

[27 Mab] = %O-ab27 [27 Mab] = _%io_ab

5, Al =438, [, A4 =-3%, My, A =0,

(£, 2}={%, %} =0, {2, 2} = 0" M, — 4A. (24)
This shows that ¥ is an SU(2,2) ~ SO(4, 2) spinor generator and ¥ charge is its conjugate,

so that they can be decomposed into two 2-component Weyl spinors in 4-dimension as
follows:

5 (?) ST — (8%, Ga). (25)



Clearly, these 15+4+4+1 = 24 matrices again span a complete set of 5 x 5 (supertrace-
less) matrices and give the whole generators of SU(2,2|1) superconformal algebra. The
SU(2,2|1) group acts on the 5 component super spinor as

exp i(%@“bMab +0A + X + X¢) (ﬁ) (26)

(where v is an SU(2,2) spinor field and ¢ a single component field and they should be
fermion and boson (or vice versa), respectively, since the spinor transformation parameter
e is Grassmann odd) with & = ea, which leaves invariant the innerproduct with metric

az(¢)1). (27)

Rewriting Eq. (24) into 4 dimensional notation, we find the following algebra in addition
to the SO(4,2) ~ SU(2,2) subalgebra:

(@)oo (2): (oo (%)
Q.PI=0. Q. K]=%S 0
S P/ =0@ 1S K]=0, ( )”ﬂ

(A, M) = (4, B = [4, K,] = [4, D] =0,

{Q.Qt=29"P,, {5, S} ="K,
{Sv Q} = 2D + UWM;W + 475 A, ({Q, S‘} = —2iD + UWMMV - 4’7514)'
(28)
4 Yang-Mills theory for superalgebra
Consider a superalgebra whose generators (devided by i), X4 = T4 /i satisfying
[XA, XB} = fABCXC’- (29)

For definiteness, we here mean by X, always a certain matrixz representation acting a
supermultiplet matter field ®, for which the infinitesimal transformation is given by

5(e)® = e, =Xy, (30)

A

where £ are the transformation parameters. Introduce the gauge field by

hy = hyXa. (31)
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The covariant derivative

¢ = (9, —h,)o (32)
is defined by a property
5(e)(D,®) = e D, (Xa®), (33)
from which follows
d(e)h, = Oue + e, by, — <5(a€)h;1 = 8,35‘4 + EBhngCA. (34)

The curvature tensor (field strength) is defined by

R,, = [D,, D, = 0,h, — 0,h, — [h,, h,),
— R;‘V = 0,h} — Ot — hIh fpc (35)

The curvature tensor is covariant as usual:

(5(8)R,w = [57RMV]7 - 5( )RA = 5BRC fBC : (36)

XA = Z.71(Pm7 Q7 an7 D7 Aa S? Km)
E (Pm7 Q7 an’ D7 A’ S? Km)7
Xy = P, +5Q+lAm”an+pD+9A+c’S+£%Km,

WXy = " P+ 0.Q + 50, My, +b,D + A, A+ 3,8 + [T K.
(37)
Curvatures:
R, (P)= — 2w, ey + 2b,€" + 200,71y,
R, LM 28,,(,0“ — 2w, w,, +4(f"; e, — I m) + dirp, 0™ "Ou,
RW(D) 20,by + Af " enp + 4hupy
R, (A) =20,A, — 8i,750,
R, "™ (K) = 20,1 = 2w, fau — 2b, [T, + 2i5,7 ™,
R,U,V(Q) = 2Dw1/1p, + buwu - %iAu'757vZ)u - QiVmQOVeﬂL,
Ruu(S) = 2D2¢, — b + 314,50, — iyt f0 (38)
with _
Dy = 0yt + w0, O (39)

(and the same for ¢,,,)



goo:

de", = 0,8™ + Ay, — w, " — pe”l, + b £ — 208"y,

O, =A™ + 20w, " — 2(8e", — Eice”) + 2(f € = [TET)
—2ig0™"p,, — 201,0™"(,

§b, = 0up — 280y + 2f"u§n — 280, + 2¢,¢

0A, = 0,0 + 4igvysp, — 41, 75C

0 f ™ = OuR AN oy — w0, a4 pf T — bulR — 200" 0y,

0, = D¥e — IX"o 0, — 2o, + b + S0y, — SiA,nse
i€, YmC — 1 VmPp,

Spu = D¢ — SN0 + 5000 — 50uC — Fi00,75 + 1A

+Z’fn;7m5 — 1R Ym Wy, (40)
For inverse vierbein,
5emu = _enuemy((senu)
= =l 0" — "N+ w4 pel — bl + 20y by, (41)

Curvature 0 group 000 6Rj, 0000 gaugeDO OO0 6k) 009, 0000000
hEO RE, 0000000000

5 Deformation of the the SU(2,2|1) algebra

Sac(EMhy = 0,8 hy + & 0\h,
= Du(& ) + ENOnh — Dby
[Du(&-h)* + Ry,
= §(¢&-h) R+ &Ry, (42)

The last equality is because

S(e)hy = (Due)”

S(& )Rt = 0u(&h™Y) + (£h)PRS . (43)
Note that
0(6-h) = 0p(E™)+ D da(-hM),
A'(#£P)
g = e,
&hY o= Enl =¢mhy, (44)
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Therefore, we have a key relation:

Sp(E€™Mhy = bac(é 253' &P )Rt — R (45)

= 5a(¢™)

Now, we deform the SU(2,2|1) algebra by making a replacement

Sp(E™) — 05(6™) = dac(&) — Z S (€-RP). (46)
First we note that, among the commutators [04/, 05| for A’, B’ # P, the only one yielding

dp in the RHS is [0g(e2), dg(e1)] = dp(—2i&17™e2). So we require first that

[(5@(82), (5Q(81)] = 5§(§m)7 Wlth 5 = —2261’}/ €9, (47)

holds on any independent gauge fields, and find constraints necessary for that.

5.1 On e”L

On e",, we originary have

[0g(e2), dqler)]e”, = dp(£™)e",,
= 0p(EM)e", — E'R(P). (48)
So it is necessary and sufficient to impose the constraint:
0= R, (P)|=20,e", — 2w, e,, + 2b,e", + 2ith, 7", (49)

This can be solved by the M gauge field w,™" and yields

w,"™ =w,""(e,¥,b), (50)

so that w,/™ is no longer an independent gauge field. However, since the constraint

R, (P) = 0 is invariant under My, D, A, S, Ky, w,™ still keeps the same transforma-
tion law as the original group transformation under M,,,, D, A, S, K,, transformations.
On the other hand, the constraint R,)"(P) = 0 is not invariant under @) transformation,
the @ transformation of w,™" becomes different from the original group transformation

law:

d(e)w, ™ (e4h,b) = 65" (e)w,™" + 0 (e)w,™™. (51)
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The difference can be easily found by noting that the constraint R,"(P) = 0 is of course
an identity and Q-invariant if w,™" there is replaced by w,™"(e,%,b), so that we have

0 = 0" ()R, (P)+dg(e)w,™, — dgle)w,”,

uv v vV op
= —2i87" R (Q) + og(e)w,", — dg(e)w,™,. (52)

(Note that we are anticipating that €"s Y, by will remain to be independent gauge fields
and receive no changes in the @Q-transformation laws.) Solving this (in a similar way to
solve Christoffel symbol in terms of g,, ), we find

0 (&)wumn = (1 Rmn(Q) + Y Byun (@) = Y LRy (Q)) = i8R umn Q). (53)

5.2 Omn vy,

Noting
do(e), = (0, + %wumnamn + %bu - %i’yg)Au)s (54)

and that w,™ now receives an extra @ transformation dg(¢) in addition to the original
group transformation 0" (), we find that the [0, dg] commutator on ¢, now reads

[0q(e2), dg(en)]ty = [657"(e2), 65" (e1)]vbn + L (0 (e2)wy0er — (14 2))
= 5ﬁ(§)¢u — " Rum(Q) + %1(529<52)wu'051 — (1 2)). (55)
So we see that the condition
(122 Rpumn(@Q)) ™1 — (1 4 2)) = —2i(517"€2) R (Q) (56)

should hold. From this, after some some calculations like Fierzing, we find a constraint

7 R,(Q) = 0. (57)

is the necessary and sufficient condition for the [dg, dg] algebra Eq. (47) hold on v,. The
extra () transformation for w,™" now takes a simple form:

0 (E)wpmn = 2187, Rinn(Q) | (= ~20i Ry (Q)78)- (58)

The constraint (57), 7" R, (Q) = 0, is solved by the S-gauge field ¢,

0 = YRw(Q) =0+ %wu'a + %bu - %i75Au>¢u — (1< 2)] —iv"(vutpr — Vpp)
= ou=ule, ¥, 0, A). (59)
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So ¢, now become dependent gauge field. Since the constraint v*R,,,(Q)) = 0is M, D, A, S, K,
invariant but not invariant under @), the Q-transformation of ¢,, is modified:

0 = doE)(" R (Q)) = 708" (&) Run(Q) + (Fa(e)e )™ Ry Q)
+ 17" [(0(€)w, ™ Tmnth — (1 v)] = (468 — 77,)d(e) P (60)
where
do(e)et = 2?57“1%
05" (ORuwl(Q) = (GRu(M)-0 + 5R,u(D) = Firs Ry A))e (61)

After some calculations, we find this leads to:

Lo 1. i 1
E)pn = =500 = 51 IRve = —5(Ru = g1 R)e
Ry = iyto™eRS (M) + 39"€R,,(D) — 3iyty5eR,, (A). (62)

This quantity (R, — %W’y-R)s can be much simplified if we use the Bianchi identity.
The Bianchi identity

0 = &"7[Dy, Ry| =" (0, Rpo — [hu, Ryol)-
— "0, R — B RS, fct) = 0. (63)

[

for A = P,, leads to identities like

EmabcR;C;VI;C(M) = _Q}Aémn(D) (64)
cov. — 1/ pcov. cov.
R,LW (M)|antisymm. part = §<ij (M) - Ry“ (M)) = _R,ul/(D)a (65)
where
ROV (M) = R (M)e,, e, (66)

Using those, we eventually find that the extra @ transformation dg (), is given by

?

1
0g(E)py = _§(Ru_67u7'7?’)5
i m 1 Cov. 1 peov. 15
= —50"e (= em B (M)) + g Ry (M) + 1 Rum(A))
+27 V5E §R,um(A>] (67)
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5.3 On A, and b,
Noting

do(e)A, = 4digvysp,
oo(e)b, = —28p,, (68)

and that ¢, now receives an extra @ transformation dg () in addition to the original group
transformation 03*""(¢), we find that the [dg, dq] commutator on A, and b, now reads

Ba(e2), dolen)]Auw = [E™(22), 05" (1)) Ay + 4i(e115(0(e2)0) - <1e>2>>
= 0p(§) A — " Ryum(A) + 4i((— )(51751’7 7552) S5Rum(A) — (1 ¢ 2))
= %(%—£MRum<A>+4i<—§>5m% Ryum(A) = 05(¢)A, OK!

Bo(e2), da(e)lby = [65°"(c2), 05 ()b, — 2(51(Fp(e2) ) — (1 3 2)
= 513(5)13/1 meum(D>

~2(=4) x 267" e2)( — T5emu R (M) + SR (M) + 5 Ry (A))
= 55(E)by — € Rym(D)

—€"( — e B (M)% + 3R (M) + $ Ry (A)) (69)

Thus, the [dg, dg] commutator on A, requires no constraint but that on b, requires a
condition

R (M) + 3 R (M) + Ry (A) = —Ryu(D) (70)

12 Emp 2 tum
which leads, by separating the symmetric and antisymmetric parts and using Eq. (65), to

R,(;%.(Mﬂsymm. part — 07
1 15
AR (D) + 1Ry A) = ~Ru(D). (71)

The latter condition is rewritten into
15 5 1
Rum(D) = _iRum(A) or — Rum(D) = +§Rum(A). (72)

If Eq. (65) is used, these two conditions can be rewritten into a constraint

R (M) + 3R, (A) = 0. (73)

This is the necessary and sufficient condition for the [0g, dg] algebra Eq. (47) to hold on
b,. Then the extra ) transformation Eq. (67) of ¢, is simplified into

Sle)n = — " (Rurs(A) + %5 Rurs(A)). (74)
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The constraint Eq. (73) can be solved by the K, gauge field S, which now becomes a
dependent field:
flw = Tle 1,0, A). (75)
Since the constraint Eq. (73) is not @Q-invariant and so f7, also receives an extra Q-
transformation, which can be derived in the same way as above:

Sole) ) = —2(0™ B3 (S) + R (S)). (76)

5.4 Resultant modified SU(2,2|1) algebra

Now that the M,,,, S and K, gauge fields w,/™, ¢, and f7, have become dependent
fields, there no longer remain other 1ndependent gauge fields. Thus the desired [0¢g, d¢]
algebra (47)
[0 (e2), dg(e1)] = 0p(€™), with &™ = —2ig17™ey (77)
already holds on all the independent gauge fields e, 1, A, and b,,.
This implies that

Proposition: For all the transformations other than ﬁm transformation, (which we
denote by primed index X' henceforth, X' € {Q, My, D, A, S, K,,}), the commutators

[y ("), ox:(e 2505 e fxy©) (78)

of the same form as the original SU(2,2|1) algebra, still hold. Note that when P,, appears

in the C' sum, it is always understood to stand for P,,.
Proof) Almost trivial.
Proposition:

[65(€™), 64 = 65" fap ) +05 > p (€MLY )R (79)

B all B'=M,S,K

Proof) Straightforward calculation using

Sp(E™) = dac( = EMe,) 263/ -hE"). (80)
Proposition:
(65(61), 6p(&)] = > 0a(€lEE Ryn,) Z O (8 (€1-1)Ea- B — 6y (&-10)€1- B
A =M,S,K
(81)
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or, equivalently,

[65(61), 0p(&)] =Y _ da(€l & R ™) (82)

A

Proof) Straightforward calculation.
Also note

R:;);;.A = Rﬁm - (5b(¢n)hﬁz - 5&2(wm)hﬁ) (83)

5.5 Final transformation rule of the gauge fields

The resultant Q, S, K, and A transformation laws of the gauge fields are given as follows,
from which one can read the final form of the structure functions of the local superconformal
algebra. With § = d¢(e) + 05(¢) + dx (k) + 0a(6),

de,* = =2y,
) 3 ..
577Z)u = DME + Z’YMC + 102’751/};17
6b, = —28p, + 20, — 2k,

§A, = 4digysp, — 4iCys, + 0,0,
0w, = 287", — 2iE, RY(Q) + 207", — dége,”,
. a e L _a 5 1l a o 3n-
0pp = DuC+ivaefu — i€xathy + 77 Rua(A) — 37756 Rua(A) — 1007504,
5fua = Dugﬁ( - 2i§7a90u - ié’YquRab(Q)a (84)
where the covariant derivatives of transformation parameters are defined by
D, = (8“ - }lwu“b%b + %bu - %i%AH) g,
1 a 1 3.
DMC = <0ﬂ — Zwu b’yab - Qbﬂ + ZZ,}%AN) C,
Dyl = (Ou—bu) &k — WuabgKb' (85)

6 N =1 Superconformal Tensor Calculus

6.1 Matter multiplets

The general, or so-called vector, (complex, unconstrained) superconformal multiplet V
corresponding to the superfield

V(z,0) = C(x)+02(x) + 00H(x) + ins0K(x) + 30y 50B,,(x)
+(00)0(A(x) + 302(2)) + 1(00)*(D(x) + 50C()) (86)
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in the case of usual supersymmetry, is now denoted by V = [C, Z,H, K, B,,, A, D]. (Real
vector multiplet is denoted as V' = [C, Z, H, K, B, A, D], by using the corresponding roman
letters.) The basic quantum numbers of the superconformal matter multiplet are Weyl
weight w and chiral weight n, which are defined through the transformation law of the first
component C:

00(p) +8a(B)] C(z) = (wp + 5inb) C(x). (87)
This vector multiplet V exists for any Weyl and chiral weights w, n (and even V4 with
arbitrary external Lorentz index A = (aq, -+, an; B, -+, Bm). On the contrary, the con-

strained type multiplets can exist only for particular values of (w, n) (and for particular
external Lorentz indices A). For instance, the chiral multiplets exist only when they carry
the same values of Weyl and chiral weights, w = n (and only with purely undotted spinor
indices A = (aq, -+, ap)).

Here we do not give the transformation laws for the vector multiplet V), but give those for
the chiral multiplet ¢ = [z, x, h| possessing no external Lorentz index, which is embedded
into the vector multiplet as follows:

V(¢) =1z, —ixr, —h, ih, iD;,z, 0, 0]. (88)
The chiral multiplet transforms under @, S, D and A as
dospaz = (dg(e) 4+ 0s(C) + 0p(p) +04(0)) z = %5RXR + (wp + %iw@)z
dospaXr = Pz-ep + her + 2wzl + [(w + %)p - z(%w — %)H]XR

5QSDA h = %éLlDCXR + (1 - w)ERXR + [(w + 1)p + z(%w - %)Q]h, (89)
and inert under K,,, where D¢ denotes conformal covariant derivative:
D%z = (O — why — SiwAn)z — Sdryn
c w 1 1 3
Dixr = (Dy, — (w4 5)byn —i(5w — 7)An)Xr
_(pcz “YLm + hme) — 2WzPRm (90)

with local Lorentz covariant derivative D% .

6.2 Invariant action formula

F-term formula: applicable to chiral multiplet with weight w = n = 3, ¢py—n=3
= [2=3(A+iB), X, h=1(F+iG)]

Ir = /d433 [¢(w=n=3)]p = /d4513 e [h + %&Lm’meR + Lm0 ™" 2 YL + h.c.]
_ / d'ze [F + 10" + Sho™ (A — mB)wn] (91)
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The next action formula can be derived from this. Since the chiral projection (analogue of
DDV) of real vector multiplet V' with Weyl weight w = 2 gives a chiral multiplet ITV with
weight w =n = 3:

IV = [5(H —iK), i)°Zy, + Ag, —5(D +0°C + DS, B™)] (92)

D=

We can apply the above F-term formula to this chiral multiplet ITV and obtain
D-term formula: applicable to real vector multiplet V' = [C, Z, H, K, B,,, A\, D] with
weight w =2 n = 0:

Ip = /d4$ [V(wzz,n:())]p = /d4x [—1IV]

= [ dwelD ~ §amisA — G052 + € (R + G, R

+ii5mnkl¢_}m%¢k (Bz — A C — %@zzﬁ (93)
where
R = Ruymn<M)6W’L/en“7 RM = g#upa,y5rny;”¢g . (94)

6.3 N =1 SUGRA Lagrangian

One may have wondered in the above why we consider such a superconformal framework
possessing rather large local symmetry while we want supergravity which has only local
Poincaré invariance. We can now answer to this question. All the possible theories of
Poincaré supergravity can be obtained from our superconformal framework simply fix-
ing the gauges for the extraneous gauge symmetries, dilatation D, chiral A, conformal
supersymmetry S and special conformal K, symmetries. Then, we need special matter
multiplet(s) called compensator, whose component fields are used to fix those extraneous
gauges. Choosing different type of multiplet as the compensator yields a different formula-
tion of Poincaré supergravity: namely, chiral multiplet compensator leads to (old) minimal
formulation, (real) linear multiplet compensator to new-minimal formulation and complex
linear multiplet compensator to Breitenlohner formulation. One of the virtue of the super-
conformal framework is that all those different formulations of Poincaré supergravity can be
dreived in a unified way from this unique framework. There is another and more important
advantage in the superconformal tensor calculus actually, which we explain shortly.

We explain only the (old) minimal formulation of Poincaré supergravity. Pure (Poincaré)
supergravity Lagrangian is given by

Epure SUGRA — [EE]D (95)
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where ¥ is a chiral multiplet with weight w = n = 1, the compensator of the (old)
minimal formulation. Denoting the components of this compensator as ¥ = [A, ¥r, F],
the extraneous D, A, S, K,, gauges are fixed by the following conditions:

D: Red=+3, A: ImA=0,

S g =0, Ky: b,=0, (96)
where the last b, is the Weyl (D) gauge field. Then, writing F = \%(S — iP) and
A, = —%AZUX, ¥ takes the form

S aux 1 aux
X =[3,0, =25, 2P, =245, 0, —3(S” + P? — A3>?)] (97)

Substituting this components expression into Eq. (95) and applying the D-term formula,
we actually obtain the following action of pure supergravity:

Epure SUGRA — G[R + eilz/juRH - %(52 + P2 - AirLLIX2>]' (98)

S, P and Aj™ constitute the well-known minimal set of auxiliarly fields, hence the name
of minimal Poincaré supergravity.

If one considers more general matter coupled system, the Lagrangian would take the
form

L=[S83(¢,0)]p+ S W(P)]f (99)

omitting the possible gauge fields. Here ¢ denotes a set of matter multiplets { ¢; }. Now
we can explain another virtue of our superconformal tensor calculus, as promised above.

First, we note that we can eliminate the superpotential term by redefining the com-
pensator as W'/3(¢)Y — X, and rewrite the Lagrangian into the following form using
o=/ (WY

L= [EZ () ¢)]D + [Eg]F ) (100)

In this matter coupled system, the multiplet ©% ®(¢, ¢) = V in the D-term has the follow-
ing first two components:

(V) = A (22"
32(V) = AP (@i — @) + i (Avr — A'tn) (101)
with notation ®' = 0®(z, 2*)/dz;, ®; = P(z, 2*)/0z*". Therefore, to obtain the canonical

form of Einstein-Hilbert as well as Rarita-Schwinger action R + e, R*, it would be best
to take the gauge conditions for the extraneous gauges D, A, S, K,, as[2]

D: ReA=+30"12 A: ImA=0,
S: Yp=—ADd 1Dy, Kn: b,=0. (102)
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Indeed, in this superconformal gauge, we have C(V) = 3 and Z(V) = 0, yielding the
desired canonical Einstein-Hilbert and Rarita-Schwinger action R + e~!1,R* from the
beginning, as is seen from the D-term action formula. Note that this is really the power
of superconformal tensor calculus. In the Poincaré tensor calculus, there is no freedom of
choosing those gauges! From the superconformal viewpoint, the Poincaré tensor calculus
is just the tensor calculus obtained from the superconformal one by choosing the Poincaré
gauge fixing conditions Eq. (96). It is a good gauge conditions for pure supergravity system,
but is ridiculous one for the matter coupled system. There is, however, no other way in
the Poincaré tensor calculus, since there are no extraneous gauge freedom. Compare this
simplification with the big calculation performed by Cremmer, Ferrara, Girardello and Van
Proeyen[3] using the Poincaré tensor calculus. The first thing the latter authors had to do
was 1) Weyl rescaling of the vierbein and other fields, 2) chiral rotations of the fermion
fields, and 3) recombination of ® and the superpotential W into the Kéhler potential
%K — In(®/ |[W|*®). The first and second tasks are simply bypassed here by the above
D and A gauge conditions and the third was the task performed in one line already in
Eq. (100).
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Table 2:

Kugo-UeharaO OO OO

Kugo-Uehara

Ours

Ty = (Tg, T4)

(2%, it) — write 2" or —z,,

Om = (O, O4) (O, —i0;) — write 9, or —O*
0,0, =[] —9,0" = -
6mn _nuu
Y = (Vs Ya) (—=iv*, 7°%) = write —iv* or i,
YmOm = @ _ilyuau = _i@
meBm = $ _i7#<_vﬂ) = +ZV
Amn, ia#’/
Vs s
Omn = (1/4)[Vms Vol (1/4)[=in", —in"] = (i/2)0™
C7 9 HJ ICJ Bm7 A7 D CJ X5 N7 _MJ Vo >\7 D
Aa PRX7 F 2 \/§¢7 F
T T YR (Y
(¢R7¢L)a <wL) (W@D), (w)
Pn, A, D, Q P./i, Ali, D/i, (1/2)Q/i
Mn, K, S -M,, /i, —K,/i, —(1/2)S/i (negative signs!)

Ty — M or —x,

E’H’LTLT‘S

00000000 spaced 0000000
—ipe0 —iet (D000 —i)

super [ [J parameter €

2a
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