Note on the O(s,t) γ -matrix Taichiro Kugo*)

§1. Euclidean Case: SO(d=2n)

1.1. Clifford algebra C

The Clifford algebra \mathcal{C} is generated by γ_{μ} ($\mu = 1, \dots, 2n$):

$$\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu} = 2\delta_{\mu\nu}, \qquad \gamma_{\mu}^{\dagger} = \gamma_{\mu}. \tag{1.1}$$

Define creation and annihilation operators of n = d/2 fermions:

$$a_{k}^{\dagger} = \frac{1}{2}(\gamma_{2k-1} + i\gamma_{2k}) \qquad \gamma_{2k-1} = a_{k}^{\dagger} + a_{k}$$

$$a_{k} = \frac{1}{2}(\gamma_{2k-1} - i\gamma_{2k}) \qquad \gamma_{2k} = (a_{k}^{\dagger} - a_{k})/i$$

$$(1.2)$$

For the case of a single spece of fermion, the creation and annihilation operators a, a^{\dagger} are represented by the Pauli matrices as follows:

The representation space in this case is, therefore, given by:

$$\left\{ |\pm, \pm, \cdots, \pm\rangle \right\} = \left\{ |s_1, s_2, \cdots, s_n\rangle = a_1^{\frac{1-s_1}{2}} a_2^{\frac{1-s_2}{2}} \cdots a_n^{\frac{1-s_n}{2}} |+, +, \cdots, +\rangle \right\}$$
 (1.4)

On this basis, γ matrices are represented as (Standard Representation)

$$\gamma_{1} = \sigma_{1} \otimes 1 \otimes 1 \otimes \cdots \otimes 1 \otimes 1$$

$$\gamma_{2} = \sigma_{2} \otimes 1 \otimes 1 \otimes \cdots \otimes 1 \otimes 1$$

$$\gamma_{3} = \sigma_{3} \otimes \sigma_{1} \otimes 1 \otimes \cdots \otimes 1 \otimes 1$$

$$\gamma_{4} = \sigma_{3} \otimes \sigma_{2} \otimes 1 \otimes \cdots \otimes 1 \otimes 1$$

$$\vdots \qquad \vdots$$

$$\gamma_{2n-1} = \sigma_{3} \otimes \sigma_{3} \otimes \sigma_{3} \otimes \cdots \otimes \sigma_{3} \otimes \sigma_{1}$$

$$\gamma_{2n} = \sigma_{3} \otimes \sigma_{3} \otimes \sigma_{3} \otimes \cdots \otimes \sigma_{3} \otimes \sigma_{2}$$

$$(1.5)$$

^{*)} kugo@gauge.scphys.kyoto-u.ac.jp

Then $\Gamma_5 = \gamma_{2n+1}$ is defined by

$$\Gamma_5 = \sigma_3 \otimes \sigma_3 \otimes \sigma_3 \otimes \cdots \otimes \sigma_3$$
$$= i^{-n} \gamma_1 \gamma_2 \cdots \gamma_{2n} \equiv \gamma_{2n+1}. \tag{1.6}$$

1.2. Charge conjugation matrix

$$C^{-1}\gamma_{\mu}C = \eta'\gamma_{\mu}^{\mathrm{T}} \qquad (\eta' = \pm 1)$$

$$C^{\mathrm{T}} = \varepsilon'C , \qquad C^{\dagger}C = 1 . \qquad (1.7)$$

In even dimension, either sign for η' can be chosen, but it is determined in the odd dimension d=2n+1: indeed, the relatin $C^{-1}\gamma_{\mu}C=\eta'\gamma_{\mu}^{T}$ should hold also for $\mu=2n+1$, so

$$C^{-1}\gamma_{2n+1}C = (\eta')^{2n}i^{-n}\gamma_1^{\mathrm{T}}\gamma_2^{\mathrm{T}}\cdots\gamma_{2n}^{\mathrm{T}} = (\eta')^{2n}i^{-n}(\gamma_{2n}\gamma_{2n-1}\cdots\gamma_1)^{\mathrm{T}}$$
$$= (\eta')^{2n}i^{-n}(-1)^{n(2n-1)}(\gamma_1\gamma_2\cdots\gamma_{2n})^{\mathrm{T}} = (-1)^n\gamma_{2n+1}^{\mathrm{T}}$$
(1.8)

so that

$$\eta' = (-1)^n = (-1)^{\left[\frac{d}{2}\right]}$$
 in $d = 2n + 1$ dimension. (1.9)

Noting

$$\sigma_1 \sigma_i \sigma_1 = +\sigma_i^{\mathrm{T}} \quad \text{and} \quad \sigma_2 \sigma_i \sigma_2 = -\sigma_i^{\mathrm{T}} \quad \text{for} \quad i = 1, 2$$

$$\sigma_1 \sigma_3 \sigma_1 = -\sigma_3^{\mathrm{T}} \quad \text{and} \quad \sigma_2 \sigma_3 \sigma_2 = -\sigma_3^{\mathrm{T}} , \qquad (1.10)$$

We see that C is explicitly given by in the Standard Representation:

$$\begin{cases}
C = \sigma_1 \otimes \sigma_2 \otimes \sigma_1 \otimes \cdots & \text{for } \eta' = +1 \\
C = \sigma_2 \otimes \sigma_1 \otimes \sigma_2 \otimes \cdots & \text{for } \eta' = -1
\end{cases}$$
(1.11)

Eqs. (1·10) and (1·6) imply that the last factor of C has to be σ_2 in the case of odd dimensions, and this requires again $\eta' = (-1)^n$, i.e., Eq. (1·9). Note that this explicit C in the standard repr. is clearly *unitary*. The transpose is found to be:

$$\begin{cases}
C^{T} = \sigma_{1} \otimes -\sigma_{2} \otimes \sigma_{1} \otimes \cdots & \text{for } \eta' = +1 \\
C^{T} = -\sigma_{2} \otimes \sigma_{1} \otimes -\sigma_{2} \otimes \cdots & \text{for } \eta' = -1
\end{cases}$$
(1·12)

so that

$$C^{T} = C \times \begin{cases} + & \text{for } n = 1 \\ - & \text{for } n = 2 \\ - & \text{for } n = 3 \\ + & \text{for } n = 4 \end{cases} \quad \text{for } \eta' = +1 \qquad C^{T} = C \times \begin{cases} - & \text{for } n = 1 \\ - & \text{for } n = 2 \\ + & \text{for } n = 3 \\ + & \text{for } n = 4 \end{cases} \quad \text{for } \eta' = -1$$

$$(1.13)$$

Thus the sign ε' of $C^{\mathrm{T}} = \varepsilon' C$ is given in dimension d = 2n and 2n + 1 by

$$\varepsilon' = \cos\frac{\pi}{2}n + \eta'\sin\frac{\pi}{2}n \ . \tag{1.14}$$

The symmetry property of rank r gamma tensor $\gamma_{\mu_1\mu_2\cdots\mu_r}C$ can be seen as follows:

$$\gamma_{\mu_{1}\mu_{2}\cdots\mu_{r}}C = \gamma_{\mu_{1}}\gamma_{\mu_{2}}\cdots\gamma_{\mu_{r}}C = (\eta')^{r}C\gamma_{\mu_{1}}^{T}\gamma_{\mu_{2}}^{T}\cdots\gamma_{\mu_{r}}^{T}
= (\eta')^{r}\varepsilon'C^{T}\gamma_{\mu_{1}}^{T}\gamma_{\mu_{2}}^{T}\cdots\gamma_{\mu_{r}}^{T} = (\eta')^{r}\varepsilon'(\gamma_{\mu_{r}}\cdots\gamma_{\mu_{2}}\gamma_{\mu_{1}}C)^{T}
= (\eta')^{r}\varepsilon'(-)^{\left[\frac{r}{2}\right]}(\gamma_{\mu_{1}}\gamma_{\mu_{2}}\cdots\gamma_{\mu_{r}}C)^{T} = (\eta')^{r}\varepsilon'(-)^{\left[\frac{r}{2}\right]}(\gamma_{\mu_{1}\mu_{2}\cdots\mu_{r}}C)^{T}$$
(1·15)

Table I. Possible signs for η' and ε' : $C^{-1}\gamma_{\mu}C = \eta'\gamma_{\mu}^{T}$, $C^{T} = \varepsilon'C$

dimension (mod 8)	0		1	2		3	4		5	6		7
η'	+	_	+	+	_	_	+	ı	+	+	ı	
ε'	+	+	+	+	_	_	_	_	_	_	+	+

Table II. The rank r of $\gamma_{\mu_1\mu_2\cdots\mu_r}$ for which $\gamma_{\mu_1\mu_2\cdots\mu_r}C$ are symmetric and anti-symmetric matrices.

$\overline{\text{dimension } d}$	η'	ε'	r of Symmetric $\gamma_{\mu_1\mu_2\cdots\mu_r}C$	r of Anti-symmetric $\gamma_{\mu_1\mu_2\cdots\mu_r}C$
1	+	+	0	
2	+	+	0, 1	2
2	_		1, 2	0
3	_		1	0
4	+	1	2,3	0, 1, 4
4	_	1	1, 2	0, 3, 4
5	+	1	2	0, 1
6	+	1	2, 3, 6	0, 1, 4, 5
U	_	+	0, 3, 4	1, 2, 5, 6
7	_	+	0, 3	1, 2
8	+	+	0, 1, 4, 5, 8	2, 3, 6, 7
	_	+	0, 3, 4, 7, 8	1, 2, 5, 6
9	+	+	0, 1, 4	2,3
10	+	+	0, 1, 4, 5, 8, 9	2, 3, 6, 7, 10
10	_	1	1, 2, 5, 6, 9, 10	0, 3, 4, 7, 8
11	_		1, 2, 5	0, 3, 4
12	+		2, 3, 6, 7, 10, 11	0, 1, 4, 5, 8, 9, 12
12	-	_	1, 2, 5, 6, 9, 10	0, 3, 4, 7, 8, 11, 12

$\S 2$. Clifford 代数の表現および η' , ε' の一意性

任意の表現の γ 行列を持ってきたとき、それから fermion 演算子 a_k , a_k^\dagger を 式 $(1\cdot 2)$ のように作れば、そのすべての生成演算子で消える状態 $|+,+,+,\cdots,+\rangle$ を必ず作れる。これがいくつもあれば、直交化して独立にしておく。そのそれぞれの上で、式 $(1\cdot 4)$ の部分空間を作れて、その base に関しては、元の γ 行列は、標準表示の $(1\cdot 5)$ で表現される。よって、既約表現では、状態 $|+,+,\cdots,+\rangle$ は一意的である。この時、base $(1\cdot 4)$ は正規直交系であるから、あるユニタリ行列 U が存在して、

$$\gamma_{\mu}^{\text{std}} = U^{-1} \gamma_{\mu} U \tag{2.1}$$

と書ける。

この式より、また、 η' 、 ε' の一意性が言える。実際、一般の表示の γ 行列に対する、charge conjugation matrix C と、標準表示のそれ $C^{\rm std}$ との関係は、それぞれの定義を比較して

$$C = UC^{\text{std}}U^{\text{T}} \tag{2.2}$$

となり、 η' 、 ε' は、両者で共通である事がわかる。また、 C^{std} のユニタリ性から C のユニタリ性もでる。

From the transformation property $C = UC^{\text{std}}U^{\text{T}}$ under the change of the basis, we note that C can always be taken to be 1 whenever $\varepsilon' = 1$, i.e., $C^{\text{T}} = C$. Indeed, for such cases, C^{std} is symmetric and cutains even number of σ_2 factors. So it is real symmetric matrix and can be be diagonalized by an orthogonal matrix O. But the eigenvalues are 1 and -1:

$$OC^{\text{std}}O^{T} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = J \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} J$$
$$J \equiv \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} = J^{T} . \tag{2.3}$$

Therefore $(JO)C^{\text{std}}(JO)^{\text{T}}$ becomes a unit matrix 1.

The explicit construction of such γ matrix representation for which C becomes unit matrix is as follows: in 9 dimensions, γ matrices have to be symmetric by themselves if C = 1.

$$\gamma_1 = \sigma_3 \otimes 1 \otimes 1 \otimes 1
\gamma_2 = \sigma_1 \otimes 1 \otimes 1 \otimes 1
\gamma_3 = \sigma_2 \otimes \sigma_3 \otimes 1 \otimes \sigma_2
\gamma_4 = \sigma_2 \otimes \sigma_1 \otimes 1 \otimes \sigma_2
\gamma_5 = \sigma_2 \otimes \sigma_2 \otimes \sigma_3 \otimes 1
\gamma_6 = \sigma_2 \otimes \sigma_2 \otimes \sigma_1 \otimes 1$$

$$\gamma_7 = \sigma_2 \otimes 1 \otimes \sigma_2 \otimes \sigma_3
\gamma_8 = \sigma_2 \otimes 1 \otimes \sigma_2 \otimes \sigma_1
\gamma_9 = \sigma_2 \otimes \sigma_2 \otimes \sigma_2 \otimes \sigma_2
(2.4)$$

We can go down to 7 dimension, by throwing away the first two gamma matrices γ_1 , γ_2 and simultaneously the first column of the tensor product. Then the resultant seven γ matrices become antisymmetric by losing their first σ_2 factors, being in accord with $\eta' = -1$ in seven dimension. Clearly these can be repeated for 8n+1 dimensions by using these $\gamma_1 - \gamma_8$ blocks and $\otimes^4 \sigma_2$ and $\otimes^4 1$ as a building blocks of tensor product.

§3. (General) Minkowski Case: SO(t, s)

3.1. Clifford algebra C

The Clifford algebra \mathcal{C} in this SO(t,s) case is:

$$\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu} = 2\eta_{\mu\nu}, \qquad \eta_{\mu\nu} = \operatorname{diag}(\underbrace{+, \cdots, +}_{t}, \underbrace{-, \cdots, -}_{s})$$

$$\gamma_{\mu}^{\dagger} = \begin{cases} \gamma_{\mu} & \text{for } \mu = 1, \cdots, t \\ -\gamma_{\mu} & \text{for } \mu = t + 1, \cdots, t + s \end{cases}$$

$$(3.1)$$

The standard representation in this case is simply given by

$$\gamma_{\mu} \equiv \begin{cases} \gamma_{\mu}^{\mathcal{E}} & \text{for } \mu = 1, \dots, t \\ i^{-1} \gamma_{\mu}^{\mathcal{E}} & \text{for } \mu = t + 1, \dots, t + s \end{cases}$$
 (3.2)

by putting i^{-1} to the space components from the previous Euclidean one γ_{μ}^{E} . Since the change from Euclidean to Minkowskian cases is only the multiplicatin of the *non-matrix* factor i, the *same* charge conjugation matrix C as before satisfies

$$C^{-1}\gamma_{\mu}C = \eta'\gamma_{\mu}^{\mathrm{T}} \qquad (\eta' = \pm 1).$$
 (3.3)

So the signs of η' and ε' in Table I and the symmetry properties of gamma matrices in Table II are also valid in the general Minkowskian cases.

3.2. B-Conjugation

With a matrix

$$\Gamma_0 \equiv \gamma_1 \gamma_2 \cdots \gamma_t, \qquad \Gamma_0 \Gamma_0^{\dagger} = 1.$$
(3.4)

we define the Dirac conjugate field $\bar{\psi}$ by

$$\bar{\psi} = \psi^{\dagger} \Gamma_0^{-1} \tag{3.5}$$

and Dirac conjugation by

$$(\bar{\psi}\gamma_{\mu}\chi)^{\dagger} \equiv \bar{\chi}\bar{\gamma}_{\mu}\psi \quad \Rightarrow \quad \bar{\gamma}_{\mu} = \Gamma_{0}\gamma_{\mu}^{\dagger}\Gamma_{0} \tag{3.6}$$

for which we have

$$\Gamma_0 \gamma_\mu^{\dagger} \Gamma_0 = (-1)^{\left[\frac{t}{2}\right] + t + 1} \gamma_\mu.$$
 (3.7)

For the existence of Majorana(-Weyl) spinor, however, more important than the charge conjugation matrix C is the following matrix B:

$$B^{-1}\gamma_{\mu}B = \eta\gamma_{\mu}^{*} \qquad (\eta = \pm 1),$$

$$B^{T} = \varepsilon B, \qquad B^{\dagger}B = 1.$$
(3.8)

Indeed, we define the charge conjugation by

$$\psi^c = C\bar{\psi}^{\mathrm{T}} \ (= C\Gamma_0^* \psi^*) \tag{3.9}$$

and also write it into the form

$$\psi^c = B\psi^* \ . \tag{3.10}$$

Then, comparing the two expressions, we find the relation between B and C as

$$B = C\Gamma_0^* . (3.11)$$

Indeed, then, using the unitarity of C and Γ_0 , we have the properties Eq. (3.8) of B:

$$B^{\dagger}B = \Gamma_0^{\mathrm{T}}C^{\dagger}C\Gamma_0^* = (\Gamma_0^{\dagger}\Gamma_0)^* = 1,$$

$$B^{-1}\gamma_{\mu}B = \Gamma_0^{\mathrm{T}}C^{-1}\gamma_{\mu}C\Gamma_0^* = \eta'\Gamma_0^{\mathrm{T}}\gamma_{\mu}^{\mathrm{T}}\Gamma_0^*$$

$$= \eta'(\Gamma_0^{\dagger}\gamma_{\mu}^{\dagger}\Gamma_0)^* = \eta'(-1)^{\left[\frac{t}{2}\right]}(\Gamma_0\gamma_{\mu}^{\dagger}\Gamma_0)^* = \eta'(-1)^{t+1}\gamma_{\mu}^*,$$

$$B^{\mathrm{T}} = \Gamma_0^{\dagger}C^{\mathrm{T}} = \varepsilon'\Gamma_0^{\dagger}C = \varepsilon'\gamma_t \cdots \gamma_1 C$$

$$= \varepsilon'(\eta')^tC\gamma_t^{\mathrm{T}}\cdots\gamma_1^{\mathrm{T}} = \varepsilon'(\eta')^tC\gamma_t^*\cdots\gamma_1^* = \varepsilon'(\eta')^tC(\gamma_t \cdots \gamma_1)^*$$

$$= \varepsilon'(\eta')^t(-1)^{\left[\frac{t}{2}\right]}C\Gamma_0^* = \varepsilon'(\eta')^t(-1)^{\left[\frac{t}{2}\right]}B$$

$$(3.12)$$

so that we find

$$\eta = \eta'(-1)^{t+1}, \qquad \varepsilon = \varepsilon'(\eta')^t(-1)^{\left[\frac{t}{2}\right]} = \varepsilon'(\eta)^t(-1)^{\left[\frac{t}{2}\right]}. \tag{3.13}$$

 ε is a mod 4 function of t. Examining all cases by using the expression Eq. (1.14), we find

$$\varepsilon = \cos \frac{\pi}{2} \frac{s-t}{2} - \eta \sin \frac{\pi}{2} \frac{s-t}{2} . \tag{3.14}$$

As the previous Eq. (1·14) does, this applies only to even dimensions d = s + t = 2n for which (s - t)/2 is an integer. This is again a mod 4 function of (s - t)/2.

We thus obtain the results for the signs η and ε as follows:

$$\begin{split} \varepsilon &= +1, \ \eta = -1: \quad s - t = 1, \, 2, \, 8, \, \text{mod} \, 8 \\ \varepsilon &= +1, \ \eta = +1: \quad s - t = 6, \, 7, \, 8, \, \text{mod} \, 8 \\ \varepsilon &= -1, \ \eta = -1: \quad s - t = 4, \, 5, \, 6, \, \text{mod} \, 8 \\ \varepsilon &= -1, \ \eta = +1: \quad s - t = 2, \, 3, \, 4, \, \text{mod} \, 8 \end{split} \tag{3.15}$$

This is summarized more explicitly in Table III.

Table III. Possible signs for η and ε : $B^{-1}\gamma_{\mu}B = \eta\gamma_{\mu}^{*}$, $B^{T} = \varepsilon B$, together with the signs for η' and ε' : $C^{-1}\gamma_{\mu}C = \eta'\gamma_{\mu}^{T}$, $C^{T} = \varepsilon'C$.

$\dim d \pmod{8} \rightarrow$		0		1	2		3	4		5	6		7
η'		+	_	+	+	_	_	+	_	+	+	_	_
ε'		+	+	+	+	_	_	_	_	_	_	+	+
t = 0	η	_	+	_	_	+	+	_	+	_	_	+	+
	ε	+	+	+	+	_	_	_	_	_	_	+	+
t = 1	η	+	_	+	+	_	_	+	_	+	+	_	_
	ε	+	_	+	+	+	+	_	+	_	_	_	_
t=2	η	_	+		_	+	+	_	+			+	+
	ε	_	_	_	_	+	+	+	+	+	+	_	_
t = 3	η	+	_	+	+	_	_	+	_	+	+	_	_
	ε	_	+	_	_	_	_	+	_	+	+	+	+

Before closing this subsection, we note that the charge conjugation ψ^c can also be written in the form:

$$\bar{\psi}^c = \psi^{\mathrm{T}} \Gamma_0^{\mathrm{T}} C^{\dagger} \cdot \Gamma_0^{-1} = (\eta')^t (-)^{\left[\frac{t}{2}\right]} C^{-1} \Gamma_0 \cdot \Gamma_0^{-1} . \tag{3.16}$$

Namely,

$$\bar{\psi}^c = \tau \psi^{\mathrm{T}} C^{-1} , \qquad \tau \equiv (\eta')^t (-)^{\left[\frac{t}{2}\right]} = \eta^t (-)^{\left[\frac{t}{2}\right]} .$$
 (3.17)

We are now in a position to discuss separately when Weyl, Majorana and Majorana-Weyl spinors can exist.

3.3. Weyl spinor

When the dimension d = s + t is even, we can define Γ_5 in this general Minkowskian case as

$$\Gamma_5 = i^{-(d/2)} i^s \gamma_1 \gamma_2 \cdots \gamma_d = i^{(s-t)/2} \gamma_1 \gamma_2 \cdots \gamma_d ,$$

$$\Gamma_5^2 = 1 \qquad (\Gamma_5^{\dagger} = \Gamma_5)$$
(3.18)

This Γ_5 has the B conjugation property:

$$B^{-1}\Gamma_5 B = (-)^{(s-t)/2} \Gamma_5^* \tag{3.19}$$

(For odd dimension d+1, η , and hence ε also, is fixed: the anti-hermitian γ_{d+1} should be $\gamma_{d+1}=i^{-1}\Gamma_5$, for which Eq. (3·4) holds with $\eta=-(-)^{(s-t)/2}$.)

Whenever d is even, we have Weyl spinors: we can construct the chiral projection operator

$$\mathcal{P}_{\pm} = \frac{1}{2} \left(1 \pm \Gamma_5 \right) , \qquad (3.20)$$

and $\mathcal{P}_{\pm}\psi \equiv \psi_{\pm}$ gives the Weyl spinors.

3.4. Majorana and Pseudo-Majorana

The Dirac equation is

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0 \tag{3.21}$$

and its hermitian conjugation and multiplication of $(-\eta)B$ gives

$$\left(i\gamma^{\mu}\partial_{\mu} - (-\eta)m\right)B\psi^* = 0 \tag{3.22}$$

So $B\psi^*$ satisfies the same equation as ψ if $(-\eta)m = m$. If in addition $\varepsilon = +1$, we can equate $B\psi^*$ with ψ :

Majorana:
$$B\psi^* = \psi$$
, (if $\varepsilon = +1$) (3.23)

This is possible only when $\varepsilon = +1$ because Eq. (3·23) implies $BB^* = 1$. If $\varepsilon = -1$ and we have two spinors ψ_i (i = 1, 2), then we can impose instead an "SU(2) reality" condition

SU(2) Majorana:
$$\varepsilon_{ij}B\psi^{*j}=\psi_i$$
 (if $\varepsilon=-1$) (3.24)

where ε_{ij} is the SU(2) invariant anti-symmetric tensor. If we have 2N spinors, we can instead impose USp(2N) reality condition $\Omega_{ij}B\psi^{*j}=\psi_i$ by replacing the SU(2) metric ε_{ij} by USp(2N) invariant (real anti-symmetric) metric Ω_{ij} . In both cases of Majorana and USp(2N) Majorana, the condition $(-\eta)m=m$ means that if $\eta=+1$ we must have m=0. So we put the term pseudo for $\eta=+1$.

Thus we can have the following four types of Majorana spinors for the combination of the signs of η and ε :

Majorana for
$$\varepsilon=+1,\ \eta=-1 \leftrightarrow s-t=1,\ 2,\ 8,\ \mathrm{mod}\ 8$$
 pseudo-Majorana for $\varepsilon=+1,\ \eta=+1 \leftrightarrow s-t=6,\ 7,\ 8,\ \mathrm{mod}\ 8$ USp(2N) Majorana for $\varepsilon=-1,\ \eta=-1 \leftrightarrow s-t=4,\ 5,\ 6,\ \mathrm{mod}\ 8$ USp(2N) pseudo-Majorana for $\varepsilon=-1,\ \eta=+1 \leftrightarrow s-t=2,\ 3,\ 4,\ \mathrm{mod}\ 8(3\cdot25)$

3.5. Majorana-Weyl Spinors

The Weyl spinors $\psi_{\pm} \equiv \mathcal{P}_{\pm} \psi$ satisfying

$$\Gamma_5 \psi_+ = \pm \psi_+ \tag{3.26}$$

always exist for even dimension d. But this is compatible with the [SU(2)] Majorana condition, Eq. (3·23) or Eq. (3·24), only if

$$\sigma \equiv (-1)^{(s-t)/2} = 1 \implies s - t = 0 \mod 4 \tag{3.27}$$

This is because we have from the B conjugation property Eq. (3.19) of Γ_5

$$B^{-1}\mathcal{P}_{\pm}B = \mathcal{P}_{\pm\sigma}^* \tag{3.28}$$

with $\sigma = (-1)^{(s-t)/2}$. So, applying the chiral projection \mathcal{P}_{\pm} to the Majorana spinor condition Eq. (3·23), for instance, we would get

$$\psi = B\psi^* \longrightarrow \mathcal{P}_{\pm}\psi = \mathcal{P}_{\pm}B\psi^*$$

$$\psi_{\pm} = B\mathcal{P}_{\pm\sigma}^*\psi^* = B(\psi_{\pm\sigma})^*$$
(3.29)

We, therefore, see that such a reality condition on Weyl spinors can be a closed condition only if $\sigma = +1$.

Noting that $\varepsilon = -1$ for $s-t = 4 \mod 8$, and $\varepsilon = +1$ for $s-t = 8 \mod 8$, we thus find that we can have

(pseudo-) Majorana-Weyl for
$$s-t=8 \mod 8$$

 USp(2N) (pseudo-) Majorana-Weyl for $s-t=4 \mod 8$ (3.30)