Note on the O(s,t) y-matrix
Taichiro Kuco®
§1. Euclidean Case: SO(d = 2n)

1.1. Clifford algebra C
The Clifford algebra C is generated by v, (u=1,---,2n):
VYo + Vo Vu = 25“,,, ’Y}: = Yu- (1'1)

Define creation and annihilation operators of n = d/2 fermions:

1 .

QL = 5(’)’%—1 + Wzk) Y2k—1 = a,‘; + ag (1,2)
1 . .

ar = 5(Vak—1 — 1Y2x) Yok = (aL —ag)/1

For the case of a single spece of fermion, the creation and annihilation operators a, af are

represented by the Pauli matrices as follows:
{0, 12} = {1+, =) | a'l+) =0, af|-) = |4}
0 1 1 .
(1 190) = (10 19) () = (0 190) 3o+ i

1

a(14), 1-)) = (1), 1-))5(01 — i) (1-3)

2

The representation space in this case is, therefore, given by:

1281 1-sg l-sn
{H:’j:’...,j:)}:{lsl’SZ,...,sn>:a12 a22 ce e p 2 |+’+’...,+>} (1.4)
On this basis, v matrices are represented as (Standard Representation)

M= ®1R®1IR---®11
YT=02®131®---®1&1
B=03R0R®1R---®1®1
Yy=03R0,01®---®1®1

Yon—1 =03RQ03 Q03X -+ Qo3& 0
Yon =03 Q03Q03RQ -+ ®03Q 0y (1-5)
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Then I's = 735,41 is defined by

F5:O'3®0'3®0'3®"'®0'3
=9 "NMY2 Yon = Vont1- (1-6)

1.2. Charge conjugation matriz

C™'C =1, (0 ==1)
ct=¢c, cClc=1. (1-7)

In even dimension, either sign for 1 can be chosen, but it is determined in the odd dimension

d = 2n + 1: indeed, the relatin C'v,C = 77'73 should hold also for p = 2n + 1, so

C ' Yon1C = ()" " g v = (1) " (enton—1 - - 1) "
= ()" (=) (e - ven) T = (1) Y (1-8)
so that
n=(=1)"= (—1)[3] in d = 2n + 1 dimension. (1-9)
Noting
010,01 = +0iT and 0y0;09 = —O'ZT for 1=1,2
010301 = —0s and 09,0309 = —04 | (1-10)

We see that C' is explicitly given by in the Standard Representation:

{C’:al®02®01®--- for ' = +1 (1-11)

C=0yQ001 Q093+ for nf =-1
Egs. (1-10) and (1-6) imply that the last factor of C has to be o5 in the case of odd dimensions,
and this requires again 7' = (—1)", i.e., Eq. (1-9). Note that this explicit C' in the standard

repr. is clearly unitary. The transpose is found to be:

{CT201®—02®01®--- for n' =+1 (112)
CT=-0,001®@ —03®--- for n =-1
so that
+ forn=1 — forn=1
—  f =2 — f =2
CT=0Cx o for n’ = +1 CT=Cx o forn’ = -1
— forn=3 + forn=3
+ forn=4 + forn=4
(1-13)



Thus the sign &' of CT = £/C is given in dimension d = 2n and 2n + 1 by

/ Q0 /2 ™
e’ = cos En—f—n sin o (1-14)

The symmetry property of rank r gamma tensor v, ,...,C can be seen as follows:

7#1#2"1%(7 = Y1 Vpe """ ’Y#TC = (nI)TC7217§2 T VET
= (n,)TEICT7517§2 T fy;fr = (n,)Tgl (’Yﬂr © Ve Y C)T
T z T T r T
=)' () VY 7. C) = () (DB Vo €)' (1:15)

Table I. Possible signs for 7’ and &': C'_l'yNC = n"yE, ct=¢C

dimension (mod 8) 0 1 2 3 4 5 6 7
o + =+ +] ==+ +]+]-]-
¢ +l 4+l +] === |-]-]+|+

Table II. The rank r of v, uy-..u, for which v, yy..., C are symmetric and anti-symmetric matrices.

dimension d | ' | €' | r of Symmetric v, 4,0, C | 7 of Anti-symmetric vy, e, C

1 + | + 0

5 + | + 0,1 2
|- 1,2 0

3 - | = 1 0
+ | - 2,3 0,1,4

4 — |- 1,2 0,3,4

5 + |- 2 0,1

) + | - 2,3,6 0,1,4,5
-+ 0,3,4 1,2,5,6

7 — |+ 0,3 1,2

S + | + 0,1,4,5,8 2,3,6,7
— |+ 0,3,4,7,8 1,2,5,6

9 + |+ 0,1,4 2,3

10 + | + 0,1,4,5,8,9 2,3,6,7,10
— |- 1,2,5,6,9,10 0,3,4,7,8

11 —| - 1,2,5 0,3,4

. + | - 2,3,6,7,10,11 0,1,4,5,8,9,12
|- 1,2,5,6,9,10 0,3,4,7,8,11,12




§2. Clifford REDOEBLIB L0, ¢ D—FEM

FEBORBADTIEF - TEIZL &, ZNA D fermion AT ai, af & K (12) DX D
IENE, ZOTRTOAERBEEFCTHEZLLRE |+, +,---,+) ZXLTERD, Zhdin<
Db HIUT, ERLL THIZIZL TEL, £2OZENEND LT, K (1-4) OESZEM %
T. D base [CEL Tid. mDTHNE. FEHERRD (1:5) TREIND, LoT, BEHE
BCIE, REE |+, 4, -+, H) IF—EBEWTH D, TOFE, base (1-4) IXEERERRTH LMD,
D=8 VITH U BFIEL T,

=00 (2-1)
LET D,

ZOREY, Lo, o, dO—EMNFA D, EBE. —ROKRTRDAATINI T 5 charge

conjugation matrix C' & | fRHERROZN CHE DKL, THENDERL L T

C=vcu” (2-2)

ERY .y, IE, MEBTHKETCHLIENDLND, £/, CH Da2=F IV HENLL C D=4
UL TS,

From the transformation property C' = UC*4UT under the change of the basis, we note
that C' can always be taken to be 1 whenever ¢’ = 1, i.e., C* = C. Indeed, for such cases,
C*Y is symmetric and cntains even number of o, factors. So it is real symmetric matrix and

can be be diagonalized by an orthogonal matrix O. But the eigenvalues are 1 and —1:

1 0 1 0
OcstdoT — =] J
0 -1 0 1

JE(l 0>:JT. (2:3)

0 =

Therefore (JO)C**4(JO)T becomes a unit matrix 1.
The explicit construction of such v matrx representation for which C' becomes unit matrix

is as follows: in 9 dimensions, v matrices have to be symmetric by themselves if C' = 1.

N"1=0301RQ1x1
Y= 1R1x1
YV3=02R03R 1 Q 09
Ya=02801 Q1 R0y
V5 =09 R0y R03R 1
Y6 =02R 0¥ R 1



T =020 18003
T8=0201Q0Q0;
Yo = 02 Q) 09 ¥ 09 K 09
(2-4)

We can go down to 7 dimension, by throwing away the first two gamma matrices 1, v, and
simultaneously the first column of the tensor product. Then the resultant seven -~ matrices
become antisymmetric by losing their first oy factors, being in accord with n’ = —1 in seven
dimension. Clearly these can be repeated for 874 1 dimensions by using these vy; — g blocks

and ®*0y and ®*1 as a building blocks of tensor product.



§3. (General) Minkowski Case: SO(t, s)

3.1. Clifford algebra C
The Clifford algebra C in this SO(t, s) case is:

'Yu’)’v""}/uf)’u = 277/11/7 ymy :dlag(+>"'a+a_a"'a_)
i W forpy=1,---,t
V= . . (3-1)
—Y, forp=t+1,---t+s

The standard representation in this case is simply given by

E
v forp=1,---,t
fyuz{ 8 (3-2)

i_lfyf forp=t+1,---,t+s

by putting 7! to the space components from the previous Euclidean one fy’]f. Since the
change from Euclidean to Minkowskian cases is only the multiplicatin of the non-matriz

factor 7, the same charge conjugation matrix C' as before satisfies
C'C=nv  (nf =%£1) (3-3)

So the signs of 1’ and &’ in Table I and the symmetry properties of gamma matrices in Table

IT are also valid in the general Minkowskian cases.

3.2. B-Conjugation

With a matrix
Io=vv v, FOFJ:L (3'4)

we define the Dirac conjugate field 4 by

b= #’TFoil (35)
and Dirac conjugation by
X)) =33 = =Tl (3:6)
for which we have
FO’Y):FO - (_1)[%]+t+1,y#‘ (37)

For the existence of Majorana(-Weyl) spinor, however, more important than the charge

conjugation matrix C' is the following matrix B:

B 'y,B=nvy,  (n=+1),
BT=¢B, B'B=1. (3-8)



Indeed, we define the charge conjugation by
Ve =Cyt (= CI Y (3-9)
and also write it into the form

Y= By*. (3-10)

Then, comparing the two expressions, we find the relation between B and C' as
B=CIy . (3-11)
Indeed, then, using the unitarity of C' and I, we have the properties Eq. (3-8) of B:

B'B=rfctery = (Ijny)* =1,
BB =1,C"CIy =nIg~, Iy
=1/ (Ig~}1o)" = 0/ (=) (yf o) = ' (=)
BT =ricT =¢Tic =y, ---mC
) Cy - =) Cy - = () Cly )
=&/ (of ) (—1)Hery =< ()(-1)B (3-12)

so that we find
n=n(-1)""  e=@) (-1l = m)i(-1)k!. (3-13)

e is a mod 4 function of t. Examining all cases by using the expression Eq. (1-14), we find

ms—1t . ms—1t
£ = CoS — — 7msin —
2 2 2 2

(3-14)

As the previous Eq. (1-14) does, this applies only to even dimensions d = s+t = 2n for
which (s —t)/2 is an integer. This is again a mod 4 function of (s —t)/2.

We thus obtain the results for the signs  and ¢ as follows:

e=4+1l,np=—-1: s—t=1,2,8 mod8
e=+1,n=41: s—t=6,7,8 mod8
e=-1,np=—-1: s—t=4,5 6, mod8
e=—-1,n=+1: s—t=2,3,4, mod& (3-15)

This is summarized more explicitly in Table III.



Table III. Possible signs for 7 and e: Bilq/HB = n’y:, BT = eB,
together with the signs for ' and ': C~'v,C = n"yE, cT =¢C.

dim d (mod8—| 0O |1| 2 |[3| 4 |5| 6 |7
o v =+l +] == +][-]+]+]-]-

e +l+l+[+][=]--1-]-1-]+]+
ol = [ [ ]
e |+|+|+][+]-|-]-1-]-1-1+]+
o I T ]
e |+ -|+[+]|++]=-][+]-1-1-]-

ol [ [
e | =|-|=-]=]+]+][+[+]+]+]-]-

ol [ [ ]
e | =|+|-]=-]=-1-T+]-]+]+]+]+

Before closing this subsection, we note that the charge conjugation ¢ can also be written

in the form:

e =tryct Iyt = () (—)Eer, - gt (3-16)

Namely,
Pe=rypTCt, = () (-)Bl=g(-)b] (3-17)

We are now in a position to discuss separately when Weyl, Majorana and Majorana-Weyl

spinors can exist.

3.3. Weyl spinor

When the dimension d = s+t is even, we can define I in this general Minkowskian case

as

Ty =i @235y ooy = i 2y g ey
=1 (IT=0n) (3-18)

This I's has the B conjugation property:
BB = (—)¢ 92y (3-19)

(For odd dimension d + 1, 7, and hence ¢ also, is fixed: the anti-hermitian 4., should be
Yg41 = i~ Ty, for which Eq. (3-4) holds with n = —(=)(¢=9/2)



Whenever d is even, we have Weyl spinors: we can construct the chiral projection operator

1

Pe=5 (%15, (3-20)
and Py = 1y gives the Weyl spinors.
3.4. Majorana and Pseudo-Majorana
The Dirac equation is
(1940, — m) = 0 (3:21)

and its hermitian conjugation and multiplication of (—n)B gives
(148, — (—=m)m)By* =0 (322)
So Bi)* satisfies the same equation as 1 if (—n)m = m. If in addition £ = +1, we can equate
Bv* with :
Majorana: By* =1, (if e=+1) (3-23)

This is possible only when e = +1 because Eq. (3-23) implies BB* = 1. If e = —1 and we

have two spinors v; (¢ = 1,2), then we can impose instead an “SU(2) reality” condition
SU(2) Majorana: €ijBi/)*j = (if e=-1) (3-24)

where ¢;; is the SU(2) invariant anti-symmetric tensor. If we have 2N spinors, we can
instead impose USp(2N) reality condition £2;;By* = ; by replacing the SU(2) metric &,
by USp(2N) invariant (real anti-symmetric) metric (2;;. In both cases of Majorana and
USp(2N) Majorana, the condition (—n)m = m means that if n = +1 we must have m = 0.
So we put the term pseudo for n = +1.

Thus we can have the following four types of Majorana spinors for the combination of

the signs of n and e:

Majorana for ¢ =41, n= -1 s—t=1, 2,8 mod8
s—t=6,7,8 mod8
s—t=4,5,6, mod8

s—t=2,3, 4, mod§3-25)

pseudo-Majorana for ¢ =41, n=+1
USp(2N) Majorana for e = -1, n=—1

R

USp(2N) pseudo-Majorana for ¢ =—1, n=+1

3.5. Majorana-Weyl Spinors

The Weyl spinors ¢, = P11 satisfying

Iy = £9s (3-26)



always exist for even dimension d. But this is compatible with the [SU(2)] Majorana condi-
tion, Eq. (3-23) or Eq. (3-24), only if

o=(-1)¢92=1 = s—t=0mod4 (3-27)
This is because we have from the B conjugation property Eq. (3-19) of I5
B 'P.B="P%, (3-28)

with o = (—1)9/2, So, applying the chiral projection P to the Majorana spinor condition
Eq. (3-23), for instance, we would get

$=By* — Pub=PBY
Yy = BPL " = B(¢1,)" (3-29)
We, therefore, see that such a reality condition on Weyl spinors can be a closed condition
only if 0 = +1.

Noting that e = —1 for s — ¢t = 4 mod 8, and € = +1 for s — ¢t = 8 mod 8, we thus find

that we can have

(pseudo-) Majorana-Weyl for s—t¢ =8 mod8
USp(2N) (pseudo-) Majorana-Weyl for s—t¢ =4 mod8 (3-30)
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