Supersymmetry

g T =B O] O convention IXHED
Table I. Wess-Bagger & D

Ours Wess-Bagger

p*, a0, same p*, ¥, O,
N =N = diag(+1, -1, -1, —1) A
chvpo 0125 +1 same eHvPo

Ve same o, 7
£ = ¢ = g, same %8, g8
Eap = E4p = 102 —EaBs —E4p

Tps Y same o, Y

PIRE P TT—

V5 5

Oy O 2004, 210,

thus, OJ, o"0,,0c"0, -0, —o"0,,—0c"0,

Standard spinor index position:

4-component Majorana ¥

_<. w,“. ) U=y = (> 9y)=vTC.

P& = 4 (Yg)*

2-component Weyl spinors

at right-end: Yo, P,

at left-end: P, e,
so that
1/@ = ¢a¢a7 1/;& = &dq@(a
1/)0;1(5 = wa(a#)a[f&ﬁv 7/;5u¢ = &d(a—u)dﬂ(bﬁv
¢Uuu¢ = wa(guv)aﬁ¢ﬂv 'QZ_J&;WQ_S = /(/_}d(a—uv)dgﬂ_sﬂ-
Formulas:

(Uu)aé = 50[7566(”#%5 = (5UM5T)QB = (6u)ﬁa~
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Yats = —5Eas(V0) + Viadp), w%—lww@+w%®
¥o” = =3 (19) + 00V, Pady = 3e45(06) + Viady)- (5)
Ordering change
vo =y, Yo =gy,
1/)0’#55 = _()56—;41/}7
¢U[L5V¢ = ¢Uu5/1w7 1/;6'/10'7/(5 = anllaﬂq/;ﬂ
U’Uﬂuﬁﬁ = —¢UW¢7 72}6—;w95 = _éﬁuud_k (6)
hermitian conjugation
(We)' = o0,
(wau(g)T = 45%1/37 (djf}u(b)T = <13<'m¢7
(7/)%5u¢)T = an'ya'ul/;,
(1/10W¢)T = ¢_55W1/_)~ (7)
Fierz (4-components)
(01 W) (Fy) = —i{ (01 10,) (W51W5) + (V17594 ) (P3752)
( “%)(sz%%) (%7“75504)(@3%75%)
+3 (00" Wy) (30, 0s) } (8)
This yields 2-component Fierz formulas:
(@1735!1’2)@37’1;%) = —é{ (@173?!?4)@3771;%)
%(@17350#@4)(@3735 o) } . )
(PP 1) = =3 (PP ) Py | (10
e.g.,
(90)(06) = 00)(60) = =3[ 09)(00) + 0o D) 0m,0)| = ~S(00)00),
(80,0)(00:0) = —(00,0)(6520) = +5(00) (90r0,0) = 5(06) (mrpd0> — i6TA1),
(00 )(é&) = —5(00"0)(60,0)) = +5(60"0) (V0,6 (11)




Vector multiplet field:

V=][C, x, M, N, Vs A, D]
=C +ifyx — %é(]\f — s M — V)0
—~i(06)075[\ — 57"9,x] + 1(00)(86)[D — 31C)
= C +ifx — ify — 5(00)H — S(OO)H + (65"8)V,,

+i(00)0[N — 559,x] — i(08)0[\ — S0, %] + 5(06)(88)[D — S0,

where

H=N—iM, H=N+iM.

Chiral multiplet field ¢: constrained by Dg¢ = 0
¢ = exp(—i090)[p + 0V2¢ + 0.F]
=+ 0V2¢ + 00F + (05"0)(—id,p)
+i(00)0]— 56" 9,V/20] + 5(00)(08) [~ 5]
= [807 _Z\/ﬁpr7 _ZF7 _]:7 _iaugpu 07 O}

Anti-chiral multiplet field ¢:
6 =¢", iV2PLY, iF", —F", i0u¢", 0, 0]
(real) Linear multiplet field:

L: constrained by DDL=DDL =0
=C +ify —ifx + (0*0)V,,
+i(09)0156"0,x] — i(00)0[500, %] + 5(00)(09) 301 ¢]
=[C, x, 0, 0, Vi, iv"9ux, OC]

with V,, constrained by 0V = 0, which is solved as

vpo
VH =e"P70,a,,,

§ay, = —3a
auu - 72010-;1,1175)(

(16)

Supersymmetry transformation law:

Vector multiplet: in 4-component notation

0C = iarysy,
ox = (=iy"Vy, = 0.0y + M +iysN)ay,
OM = aX —iay"0,x,
ON =idaysA + avsy"oux,
0V, = iay, A+ ad,Xx,
N = —Lo"a(9,V, — 8,V,) + i Da,
D = a7y oL, (18)

This reads, in 2-component notation,

oC = iy — iy,
5 X - —Z'O'H(VM — iaﬂc’)d +iHa
X B 71'5-/‘(‘/“ + Z'a;,‘C)a N ir}:[O_[ 5
6H = —2ia\ — 2a6"0, X,
57‘2 = 2ia\ + 20(0—”8;1)21
(SVH = 7;(060#5\ + 5[5'#/\) + (aaux + dau)Z)7
s = —50"a(9,V, — ,V,) + iDa
A —50"a(0,V, = 9,V,) —iDa )’
6D = actd,\ — as"d,\. 19)

Noting the embedding formula of chiral and antichiral into vector:

chiral anti-chiral
C=¢, C=¢,
X =—ivV2y, X =+iV20y,
H=—-2F,  H=-2F,
V, = —id,, Vi = +i0,9",
other compts. = 0 other compts. = 0, (20)
the vector susy transformation law leads to
3 = V2a), " = V2a1),
8 = —iv2Ppa + V2 Fa, 5 = —ivV2Pp a + V2F*a, - (21)
OF = —iN2adip, OF* = —in/2adi),




Multiplication law:

Function of vector multiplet fields @(V;)
In 4-component notation,

Cp = B(Cy),
Xo = X'P(Cy),
Mq) [/ M’ 1 Z75
Nqs = N/ — Z)ZI 1 Xl ¢(02)7
Vau L V,: Vs

Ao = [N+ 5 (V' +irs M’ — 959"V, +idC")X — 1 (VX)) 8(Cy)

Dy = |D' + 5(N'N'+ M'M' + V"V, + 9*C'9,C") — Ny + SX'ipy/

IV (N + i M =y VX + 15 (XX ) (X)) | 2(C) (22)

In 2-component notation, this reads

Ce = &(0),
()= ()
Xo Xi
Heo =HD; — %Xin@j
Ho = HiDi — %Xz‘)zj@ij
Vou = Viu®i + %Xﬂyf{j‘ﬁzj
(/\4>> _ <)\ >¢ 41 (HlXJ (Vi _Z:auc)i‘_f”Xj> b
)\45 )\1 Hl)(] (VH + Zauc)iO'HX]'
7% <Xi(Xij)) Dy
Xi(X5Xk)
Dy = D;®; + [; (Hﬂ-l]- + (VF—id"C)y(V,, + 10, C)J)

—(Nixs + X)) + 3 (aidx; + xii@x]-)} D;

+[ i(xzx])m )M+ (xiaﬂxjmﬂ} B
1
8

Function of chiral multiplet fields W (¢;)

Yw = W(‘Pz‘)7
dw = VW (p) = W,
Fw = {}—, - %WW] W(g;) = FW' — %wii/’jwij(%) (24)

By the help of chiral-to-vector embedding formulas, the general function formula @(V;)
for vector multiplets leads to the following formula for K (¢;, ¢’):

CK ZK(SO,SO*) EK7

YK = —iV2KY, Xk = +iV2PK;,
Hx —2F K"+ hinh K
Hy | = —2F K + V"I Ky ;
Vicu —i0,pi K"+ i0,0" K; + Y30, K

(AK> - < V2 [(F9 + i K — %@ U)K )
M) \=iV2[WF; + i) K — 5 () K]
5Dic = (9000 + 5(biic" O + Pio ) + FiF V) K]

+3 (10" " 0:) 0 — (i) F™*) K

+3 (i) D0 — (W) Fi) K

+ (Vi) (G K (25)




Super Yang-Mills
gauge transformation:

R

4 i _iAt
2V — €+1A62V6 iA )

¢ — ¢ =,

_ _oy’ GAT —i
e 2V4)€ 2V :€+LA e 2V€ z/l’ 6ZV e

In Wess-Zumino gauge:

V = (00"0)V, +i(06)0 — i(69)0)\ + 5(06)(86) D

W, = =DD(e*V Dye )

OOM—‘

= e*ﬁ@é {Z>\a - eaD + 35 (UNVQ) 1224 + (60) (OJLD A)a}’

“ 4l i 1 v ; g 1
w Wa‘ﬂﬂ =€ 0@‘92(90) |:)\ZlZ)/\ - Z(FM/FM + ZFH,VFH ) + 2D2:|

where
Duj‘ = auj‘ - i[Vua 5\]7
F., =0V, -0V, —iV,, V)]
72V¢‘<90 aw) =) (60) D" Dyp + ic" Dy + F*F
+V2i[(YA)p — ¢ (\)] + tot.der.|
where
Dy =0, —iVyp, Dup" =0,0" +ip"V,,
D, = 0,0 — iV,
Formula

(0"0)a(00"0) = +5(00)(0"5"0).,
(0"6)a(ON) = —5(06)(c" V)«
0, (0X)(058) = +1(00)(80)(c# )

(26)

(32)

Table II. Kugo-Uehara & O #

Kugo-Uehara Ours
T = (Tg, T4) (xF, it) — write 2* or -z,
Om = (Ok, O4) (Og, —10) — write 0, or —O*
OO = —9,0m = —
Omn N
Y = (Y, Ya) (—iv*, 7%) — write —iv* or iv,
VmOm = @ —717“8# = _i@
YmBm = B —iy"(=V,) = +iY
U iy,
75 Vs
O = (1/4) [ym, 7] (L/)[=ir", —in"] = (i/2)0"
C, 2, H, K, B, A, D C, x, N, -M, =V,, A, D
A, Prx, F @, V2, F
;- (Y A
(YR, L), (¢L> (¥, 1), <1/)>
Pn, A, D, Q Pu/i, Ali, Dfi, (1/2)Q/i
Mo, Koy S -M,, /i, =K, /i, —(1/2)S/i (negative signs!)
Ty — T*Or —, DIE XM Z 723 % space DIV —)V T
Emnrs —iEupen —iEMP7 (EBHE —4 )

super ZZ#1 parameter ¢ 2a

§1. Superconformal group SU(2,2|1)

4D Conformal Group: SO(4,2) = SU(2,2)
If the system has only massless particles, the energy momentum tensor ©,, can be can

be chosen to be symmetric and traceless:
0”0, =0, 6, =6,, 6,=0. (33)
Then we can have the following conserved currents and charges:
Ouw: — PFP,= /de@uo
My =2,0,, —2,0,,: — M, = / d?’x/\/l,wo

D,=1"0,,: — D= / &2 D,




K = 20,270, — 120, 1 — K, = / Pk o. (34)

(Note that this K, has opposite sign to that of van Nieuwenhuizen.) They satisfy the

following 4D conformal algebra:

s Mpo| = —=i(0upMoo — MMy — Mo Moy + Mo Myp),
Py, Myw] = i(puP — 0o Pu),
Ky, M) = i(npu Ky — 0o Ky),
D, M,,| =[P, P,] = [K,, K,|] =0,
, D] =1iP,, [K,, D|=—iK,,

(M,
[
[
[
[
[P K] = 2i(1w D — My,). (35)

SR

This 4D conformal group is in fact identical with the extended Lorentz group SO(4,2) in 6

dimensions with metric

umx
Nab = -1 3 (36)
+1
for which the generators M, = —My, (a,b=10,1,---,5) satisfy
[Mabu Mcd] = 7i(7]achd - nbcMad - nadec + nbdMac)- (37)

This is easily seen if we identify the Lorentz generators in the extra dimensions labeled by 4
and 5 as
My =

1=3(B—K,), Mu=3(P+K,), Msy=D. (38)

By considering the spinor representation, this algebra is also seen to be isomorphic with
SU(2,2). The generators I'* of the Clifford algebra for SO(4,2), satisfying

rerd 4 rére = opeb, (39)

can be represented, for instance, by the following 8 x 8 matrices:

0 ©
F”—v”®01—< fy>7
yH

0
0 i
F4_Z.")/5®0'1_<' Z'Y5>7
s 0
0 i1
P=lLo) = ") (40)
—Z14 0
The “chirality” matrix (analogous to 5 in 4 dimension) is given by
S0 L 2 3 d 5 Lo 0
I =T IeI°Ie I =1, Q oy = 0 N (41)
—14

The Lorentz generators My, of SO(4,2) are then represented by

i 1{0w 0

Oa=pb=v = Opvs  Opd = VYuV5, Ous = Y, 054 =175

a-a:u,bzu = Ouv, 6-;/,4 = YuV5, 5-u5 = V> 054 = 7275 (42)

()

the invariant spinor inner-product is given by ¥d = ¥ AP with a metric matrix
70
0 A°

For the 8 component Dirac spinor

A=il’r’r, = %®12< > Al=A=A"1 (44)

Indeed, I, are hermitian under this metric, ITA = AT, so are the SO(4, 2) generators My
A_lMgbA =M, ie., ’yoa:gbvo = Ogb- (45)

Clearly the 4-component Weyl spinor ¢ (or ¢) gives an irreducible representation of the
Lorentz group SO(4,2), for which the Lorentz group element A = eXp(%&“bMab) is repre-
sented by

exp( e 0u). (46)

These 4 x 4 matrices belong to SU(2,2) since o, are traceless and hermitian under the
metric a = #9975 (which has two +1 and two —1 eigenvalues). Moreover, Since 6 x 5/2 = 15
oqp exist and give a complete set for such traceless and hermitian 4 x 4 matrices, any SU (2, 2)
matrix is expressed in the form Eq. (46) (at least in the neighborhood of the identity) and
so we have the isomorphism of the algebra SO(4,2) ~ SU(2,2).

With this isomorphism SO(4,2) ~ SU(2,2), we thus find a simple 4 dimensional repre-

sentation for the 4D conformal group:

M, = %UW,
Po=7Pr,  (Pa=31(1+9))
Ku=wPe  (Po=3(1-%))
D= %Ws- (47)

We have seen that the 4D conformal algebra SO(4,2) ~ SU(2,2) can be represented
by traceless 4 x 4 matrices My, = %O’ab acting on a 4-component spinor ©. Then it is
clear that it can be extended to the superconformal algebra SU(2,2|1) acting on a (4+41)-

component super-spinor (¢, ¢) by adding another single component ¢ (which should have

10




opposite statistics to the original component ). SU(2,2|1) is defined to be a supergroup

consisting of 5 x 5 matrices (of unimodular superdeterminant) which leave the innerproduct

Plrots + Pl (48)

invariant. Clearly, there are 24 independent generators as a whole, which we can take, for

Oab 0 1 14 0

Ma:l ) A=—35 )

’ 2(0 0) 4(0 4
0, 0 _ 0, 62

=2 . ose=o ), (49)
50 0 0

Note that a diagonal (supertraceless) matrix A appears here. This gives the defining repre-

instance,

sentation of SU(2,2|1) algebra. From this we can easily find the following albebra written

in 6 dimensional notation:

(2, M) = 20uZ, 2, Ma] = —3Z0®
[, Al=+3%,  [£,4=-32 [Ma, A =0,
(2,2} ={2, 2}y=0, (X, 2} = 0" M,, — 4A. (50)

(The U(1) charge A is defined to coincide with van Nieuwenhuizen and A = %R for Sohnius’s
charge R.) where, in confirming the last relation {¥, £} = 0%M,;, — 4A, we need the
completeness relation
a0 (o) +6.76] = 6,6/ 51
42(‘7 )i’ (Oab)); + 0;76); i O - (51)
This shows that X is an SU(2,2) ~ SO(4, 2) spinor generator and X' charge is its conjugate,
so that they can be decomposed into two 2-component Weyl spinors in 4-dimension as follows:
Qn e
T={g)  E=I=(5 Q) (52)
Clearly, these 15+4+4+1 = 24 matrices again span a complete set of 5x 5 (supertraceless)
matrices and give the whole generators of SU(2, 2|1) superconformal algebra. The SU(2,2|1)
group acts on the 5 component super spinor as
expi (507 My, + 0A + 55 + Te) (1/)) (53)
¥
(where 9 is an SU(2,2) spinor field and ¢ a single component field and they should be
fermion and boson (or vice versa), respectively, since the spinor transformation parameter e

is Grassmann odd) with & = £74°, which leaves invariant the innerproduct with metric

o= (”“ 1). (54)

11

Indeed, the generators in the exponent
B _ 0 €
X+ Ze=2_ (55)
g 0
satisfies the hermitisity under this metric a:
(X + Xe)la = a(eX + X¢). (56)

Rewriting Eq. (50) into 4 dimensional notation, we find the following algebra in addition

to the SO(4,2) ~ SU(2,2) subalgebra:
Q Q
[<S> ) A] = %75 (_S) )

[<§> , My,) = %U,w <§>

[Q7 PM]:07 [Qv KM]:,Yﬂsv [<Q> D}Z’Ll< Q )
[S, PM] = 'YMQ: [S, K/A] =0, ’ S)’ 2 -S)’
[Av M;W] = [Av P;J = [A» KM] = [Av D] =0,
{Q? Q} = QWHPLH {57 ‘g} = QV;LK/M
{S, Q} =2iD + 0" M,, + 44, ({Q, S} = —2iD + 0" M, — 4y;A).
(57)
§2. Yang-Mills theory of superalgebra
Consider a superalgebra whose generators (devided by ¢), X4 = T4 /i satisfying
[Xa, Xp} = fABCXC~ (58)

For definiteness, we here mean by X4 always a certain matriz representation acting a super-

multiplet matter field @, for which the infinitesimal transformation is given by

0(e)® = e, e =Xy, (59)
where e are the transformation parameters. Introduce the gauge field by
hy = by Xa. (60)
The covariant derivative
D,® = (0, — h,)P (61)
is defined by a property
o(e)(D,P) =e(D,P), (62)

12




from which follows
5(e)hy, = due +[ehy),  —  8()h] = 0, + PN fu. (63)
The curvature tensor (field strength) is defined by

R, = [D,, D)) = 0,h, — 0uhy — [y, by,
— R, =0,k — 0.h) — hIhS fuc (64)
The curvature tensor is covariant as usual:
(e)Ry = [e, Ruw], — 5(5)R;‘V = EBRS,,fBCA. (65)
Note that the present definitions of the matter gauge transformation and the gauge field are

opposite in the signs compared to the conventional Yang-Mills one:

i) = eAX 4P = —icATy®, de)p = +ieA Ty, (66)
D,® = (0, — hﬁXA)q5 =(0,+ ih;‘TA)Q, D,p=(0,— iA;‘TA)cp,

By this reason, the signs of the curvatures R/f,, have been taken to be opposite to the con-

ventional YM case, so that they coincide with the usual field strengths.

[Pos M) = i(MpuPy — 0w Bp),

[P, DI =iP,,  {Q, Q} =29"P,,

(M, Mpo] = —i(upMyo — MpMpus — Mo Mup + Nve Myp),

[P;u Ku] = Zi(me - MNV):

{8, Q} =2iD+ 0" M, + 4754, ({Q, S} = =2iD + 0" My, — 435A).
(K, M) = i(npu Ky — 1 K1),

[, D] = —iK,,  {S, S} = 29K,

Q. M) = 30wQ,  ([Q, M) = —5Q0,),

Q. D] =i3Q,  [Q Al=5%Q [, P ="7Q
([0, D1 =i5Q, (@, Al=7Qu, S PJ=—-Qu),

1 o 1lga
(S, M) = 530S, ([S, M) = —350),

[S, D] = —i38,  [S.Al=-3%5,  [Q K. ="5
(IS, D) = —i3S, (8, A]=-3S%,  [Q K. =-5) (67)
Calculate
[ha, h1] = [W X, h§ Xc] = h{hS fae Xa. (68)
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Note that
[0(22), 8(e1)] = [P X, €5 Xo| = ePel[Xp, Xo} = ePe§ fpc Xa, (69)

since
(5(62)6(51)@ = (5(52) El'X@ = 61’X6(52)¢ = El'X EQ'X P. (70)

X4=iPn, Q, My, D, A, S, K,,))
=(P,., Q, M,, D A S K,),
Xy = €M Py +2Q + SN My + pD + 0A + (S + LK,
hAX4 = " Py + 0,Q + 30, My + b,D + A, A+ 3,8 + [ K.

(71)
[e-P, 5w M +bD] = (e, + €"b) Py,
[1Q, Qubs] = (—2i1y" ) P,
[%Wl’Ma %WZ'M} = %(W;nlwmn — wilwy™) My,
[e-P, f-K] =2 fD — 3[2(™ f" — " f™) My,
[0Q, S¢] = —20pD + 5(—2it00™"0) My, + 4ith50A,
([S, QU] = +2¢¢:D + 5(=2ip0™" ) My, — 4ipys00 A),
[f K, 3w-M +bD] = (f,0™ — f"0) K,
(218, Sia] = (—2ip17"2) Ko,
[0Q, 1w M +bD + AA] = Y(—Lo-w + 3b - 3in54)Q,
(5w-M +bD + AA, QU] = Q(— 0w — 5b + Jins A)),
¢S, e-P] = —ig1me™Q,  ([e-P, S¢] = —iQume™p),
S, 30-M +bD + AA] = g(~Lo-w — 3o+ 2ins4)8,
(I5w-M +bD + AA, S¢] = §(— 50w+ 5b— 2insA)g),
[0Q, f-K] =iy f"S, ([f-K, QU] =—iSy.f™v),
(72)

Curvatures:

R, (P) = 20,67, — 20, €0y, + 20", + 205,710,

v

R, ™ (M) =20,w,™ — 2w, w, " +4(fe", — ") + dih,a™ p,,

v v

R (D) = 20,b, + 4" ey + 4b,0,

14




R (A) = 20,4, — 8it, 50,
RW’”(K) = 28,,f[[‘ — 2w, fop — 2b,,f7Z + 210, P,
MV(Q) = 2D‘;12}u + bu"/ju -

R %iA,ﬂZ,ﬁs + 20, Yme™,,
R#,,(S) = QD;)SZ’;L - bu@p +

3. _ LT
52141/@#75 + 2“1}1/’)/771]”37
with
DSJJN = 81/1/;# - iwumnd_),uo'mm
D;d}u = 1/1/);/, + iwymnamnwu7

(and the same for ¢,,,) where antisymmetrization w.r.t. p <> v like

RMV(A) = (261“’4# - 8i&u75¢p)anti-symm
= aVAu - aMAV - 47;('(;1/75@/1 - 12)#75@1/)

ZZ A

e = 0™ + A ey, — w6 — pe + b — 2iE ™y,

8w, ™™ = A 4 2N, " — 2(ERe", — Eke™) + 2(fTEm — frE™)
—2ig0™"p,, — 2i1),0™"C,

0by = 0up — 265ceny + 21" En — 280, + 200,¢

§A, = 0,0 + digvsp, — dith,ysC

0 f ™ = OuER AN s — w0, Ekcn + pfT = DR — 200" P,

5, = Dye+ iAm"QZHUmn - %p&# + %buéJr %i@zﬁ,{yg, — %iAué%
—iCme™, + i@ ms™),

(0 = Di2e — ANty — 5t + 5bue + Si0751, — FiA,nse
+ie™ ’ymC — zg’”'ymcp,L>

3@, = DEC+ AN @00 + 5By — 50,C — 20,75 + 1AL
—i&%m [y + 1Y€

(00 = D¢ = SA™ Cmnipu + 5000 — 304G — Ji00u 75 + 514,075
Hi f e — R m )

For inverse vierbein,

de, ' = —ete,(de",)
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(73)

(75)

(76)

= 76’”,”87”5" - el m + w'm lfl + pem, bmé‘“ + ZZE_’Vme

Curvature @ group ZH#iHl| §
h? % R), CEEHMANIEL,

§3. Deformation of the SU(2,2|1) algebra

Sac(Eh] = 9,60 hy + € 0zhy,
= Du(EMh3) + € (0ahyy — Duhy)
= [Du(&- M) + 'Ry,
= 0(&n) by + E Ry,
The last equality is because
5(5)hf = (DME)A
(&gt = 9(&-h™) + (&-h)Ph fpc™.

Note that

8(&-h) =dp(E™) + Y Sa(Eh™),
Al(#P)
£ g)\e A
&Y = = emhl

Therefore, we have a key relation:

3p(E€™)hy) = dac(€hi 253/ (€-h% )by —E Ry

=05(8™)
Now, we deform the SU(2,2|1) algebra by making a replacement

p(€™) = O5(E™) = dac(€) 253/ -h?).

(77)

RA, & LD gauge Y DZHIN 607 T, 9,6 ZFET, &TD

(82)

First we note that, among the commutators [d 4/, dp/] for A’, B’ # P, the only one yielding

dp in the RHS is [0g(£2), dg(e1)] = dp(—2i&17™es). So we require first that
[0q(e2), dq(e1)] = 05(&™),  with €™ = —2ie1y"es,

holds on any independent gauge fields, and find constraints necessary for that.
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3.1. On e,

On e",, we originary have

[0g(e2), do(e1)]e”), = p(E™)e,,

= 05(EM)e", — ERL"(P). (84)

So it is necessary and sufficient to impose the constraint:

0=R,"(P)|=20,€" — 2w, " en, + 2b,€", + 20,7/, (85)

v

This can be solved by the M gauge field w,™" and yields

w,™ =w,™ (e,1,b), (86)

so that w,™" is no longer an independent gauge field. However, since the constraint RW"’(P) =
0 is invariant under My, D, A, S, K, w,™" still keeps the same transformation law as the
original group transformation under M,,,,, D, A, S, K,, transformations. On the other hand,
the constraint R,"(P) = 0 is not invariant under @ transformation, the @ transformation

of w,™" becomes different from the original group transformation law:
do(e)w, (e, b) = 05°™ (e)w,™™ + 0 (e)w,™. (87)

The difference can be easily found by noting that the constraint R,"(P) = 0 is of course an

identity and (-invariant if w,™" there is replaced by w,]””(a 1, b), so that we have
0=105""(e)R,"(P) + dg(e)w,”, — dp(e)w,™,
= —2iE7" R, (Q) + 0 (e)w,", — 0 (e)w,”,- (88)
77]17
and receive no changes in the Q-transformation laws.) Solving this (in a similar way to solve

Note that we are anticipating that e ., 0, will remain to be independent gauge fields
s O

Christoffel symbol in terms of g, ), we find

51@(5)“}#771” = ié(’YuRmn(Q) + VmR/m(Q) - "/nRum(Q)) = igRumn(Q)- (89)
3.2. Onv,
Noting
8(€)0 = (B + 40, Gy + 3, — Sins A, )e (90)

and that w,™" now receives an extra () transformation dg,(¢) in addition to the original group

transformation 0g*""(¢), we find that the [dq, do] commutator on ¢, now reads

[Ba(z2), (et = 05 (22), 65" (e0)by + § (Fo(E2)wy-oe1 — (145 2))
= 05()1n — € Rum(Q) +  (Fo(e2)wpromr — (142 2)). (1)
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So we see that the condition

1((8Ryma(@)) ™1 = (1 & 2)) = =2i(E17"e2) Rum(Q) (92)

is necessary and sufficient for the [0g, dg] algebra Eq. (83) hold on %,. Applying Fierz,
and noting then that only (£17°e5) and (£10"7¢2) terms appear by the antisymmetry under
1+ 2, we find the LHS to be
2 = AP mn 1.2 po mn
— 1 1 E22)0 ™ Y Ryumn Q) + 5(61077E2) 0™ 0 Ryuonn(Q)] (93)

so that the condition is rewritten into

O_'mn,pr”"ln(Q) = 161R’up(Q)
O'anpJRumn(Q) =0. (94)

mn

Multiplying the first equation by 7* and using 7”c"™"~, = 0, we immediately find a constraint

’YpRup(Q) =0. (95)
Once this holds, various identities for Ry, (Q) follows:

1 MMy, R (Q) = 0 (
2. Rumn(Q) =27, Run(Q) (
3. " (@) = 8iR,,(Q) (98
4 00 R (Q) =0 (

Proof)

1. Emnrs m . Trs _( mrnr_. S ms T‘)]

Yo X 7" = [V = (T =™y
2. Rumn(Q) = 1R (Q) + Y Ry (Q) — 1 Rum (Q)
= 2%uBnn(Q) = 29m Ryun(@Q) (b identity 1.)
3. 0" Y Bnn (Q) = (=17 ) Y Binu(Q) = —17" (=27) Bnpe(Q)
= 427" (7n) Rup(Q) = +8iR,,,(Q)
4. 0,7, = linear combi. of v, (7 = p,o, 1) and 57,

while 0™". Rpn(Q) = 0 (100)

Now by the identities 2. — 4., both the conditions in Eq. (94) are seen to be satisfied, so

that the constraint v*R,,,(Q) = 0 in Eq. (95) alone is necessary and sufficient condition for
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the [0g, d¢] algebra Eq. (83) hold on ,. By the identity 2., the extra ) transformation for

w,™" now takes a simple form:
0w = 20, Rnn(Q) |(= ~2iRn(Q)48). (101)

The constraint (95), v*R,,,(Q) = 0, is solved by the S-gauge field ¢,

0=7"Ru(Q) = 7“{(3 + w0+ b, — Sins A — (1o 2)] — iV (VuPr — Vu)
= ¢u=pule, ¥, 0, A). (102)

So ¢, now become dependent gauge field. Since the constraint v R,,,(Q) = 0is M,,,, D, A, S, K,

invariant but not invariant under @), the Q-transformation of ¢, is modified:

0 = 30(e) (1" Ru(Q)) = 706" (&) Run(Q) + (Ba(e)e)1" Buu(Q)
@), ™o mnthy — (145 )] = i(40% =" 1)0p() 0 (103)

where
dq(e)en = 21e7" b,
rou; 3 1 3 .
05" () Ry (Q) = (§Ruw(M)-0 + 3Ry (D) = Jims R (4) )2 (104)
Using Eq. (101), we find (1 <> v) term (95 (e)w,™ )V 0mnib, vanishes by the identity:
Yo" (Vey, Ry (Q)) = 0. (105)
Indeed,
=, VI %% 1 =7A o —mn
(R mn( @67 0™ ) = =[S (€M) (67" 0™ Lau Ronn(Q))] (106)
A

whereas I’y = 1, 75 terms vanish by y#o™"y, = 0, I'a = 7,, 7,7 terms vanish by the
identity 3. in Eq. (99) since 7*0™" 7,7, Rmn(Q) = ¥ - 8iR,,(Q) = 0, and I’y = 0,, term
vanish by the identity 4.

By Fierzing similarly, we find

POt T(),™) = (67 Orth) (R )
= - 1 (J}uo—mn’yﬂgb) (mu mn)
[Z(ipu FAlemn)(gpA’YN@}

S\HS\H

[ 0™ 3 Rmn ) (EY°Y6) + (P 0" %5 Rrmn ) (€957776)
— S————
= 16iR,,(Q) —16i75R,(Q)

= i[(07"778) (0uRup(Q)) = (67"77752) (75 R (Q))] (107)
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(37" By ( Q) Ga(E)e) = (67" By Q)27 ) = —2i(37" Ry (Q) 1)
= 20 ) [ (6" T4 iy Ta Ry Q)]

A
[(¢77n7p5 (&m ’Y”ryp R/W(Q)) + ((E'Ym’YSprg)(qZ}m 7”’7/7 ’y5R[LV(Q))
—— ~——
= [ 7,] = 208 — 264
+%(¢’ymaab8)(1ﬁm ’Y’Lo'u.b R/U/(Q))}
V", oa) = 2i(357 — 07a)
= z’[(&vmw%) (G B (Q)) + (6777957°2) (m 5 R (Q))
+5 (670" €) (30 R (Q) — 7B (Q))]

1
2

’YVRab(Q)
—i {(q}ymfypg)(’l/;m up(Q)) - (q}ym,\/p,}%e) (@m’YSRVp(Q))]
(W" ) (Pm Y Rab(Q)) (108)

The first two terms just cancel the (¢ 0pmnt,)(05(e)w,™) in Eq. (107), we thus find
Eq. (103) leads to
—i(405 — H,)0g(e)pu = iy“amnaRMUmn(M) + %’Y“ERW,(D) — %iv“%gRW(A)

=570 B @) (109

In the last term, the factor 1,7, Rma(Q) can be replaced by 1,7, Run(Q) — U7 Rumn(Q)
owing to the identity Eq. (105), v*o™"Vn(Vey, Ryn(Q)) = 0. Then, defining covariantized
R, (M) by

R ™ (M) = R, (M) + 2i(0,0R™(Q) — oy B™ (@), (110)

the last term can be absorbed into the R, m, (M) term and we obtain:

i v 1 v Z 1
5&?(5)9% = 75@# — 6 JR.e = *E(Ru - g’Y;L’Y"R)a

Ry = Ey#a™ RS (M) + 247¢R,, (D) — 3iv"y5e R, (A). (111)

py mn

This quantity (R, — %vﬂ'yf/%)s can be much simplified if we use the Bianchi identity.
The Bianchi identity is

0=¢e""[D,, Ryy] =" (a Ryo — [hys Rm])'
— &7 (0, Ry, — RS, foé) = 0. (112)
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This reads for A = P,

0 = ghvro (81/Rpgm(P) —w™R n(P) 4 6n7/Rpgmn(M)

v n*lpo

+ bR, (P) = €7 Ry (D) + 20,7 Rpo Q). (113)

Again, the last term can be absorbed into the RS"™"(M) term, and using the constraint
R, ™(P) =0, we have an identity

po
chvpo (R;{o:’/m(M) + e”}/RPU(D)) =0, (114)
or, equivalently,
E;wpaRlc;vl;m(M) — —QR“D‘(D). (115)

where tilde is generally defined by

R" = %e“”””Rpg, (note that R = —R") (116)
Writing Eq. (114) into the form
R (M) + (cyclic in rsn) + Rys(D)npy + (cyclic in rsn) = 0, (117)

and adding the same form term with the indices s, m interchanged, we have

R[C:Zﬁm] (M) + Rff’l\r]i,ns] (M) == (R(D)n)rs mn-+snmr+rm sn+mn sr+2nr ms (1 18)
with
f;);,nm] (M) = Rf‘g\;Lm(M) - R:L(;:’]LTS(M) (119)

Then adding to Eq. (118) the same identity with indices r, s,n replaced by n,r, s and sub-
tracting the one replaced by by s,n,r, we find

R([:OV' (M) = nrmRsn(D) - nstrn(D) - nTnRsm(D) + nS”er(D) (120)

rs,mn|

Contracting by €**™ and using the identity Eq. (115), we obtain

£, R, (M) = —2R, (D). (121)

nabc

Contraction with n™ gives yet another identity

COV. _1 COV. COV.
Ruy (M)|antisyan part — i(Rl“/ (M) - Ryu (M)) = 7R,uu(D)7 (122)
where
Ry(M) = R (M)e,, e (123)
21

Using these identities Egs. (115), (121) and (122), as well as
7H07nn = ’L(éﬁn’yn - 55’7m) - E”mm"yrfy& (124)
we can compute (R, — %’yu’y-R)E into the following form

1 m 1 cov. 1 peov. 15
(R — 6'7#7'72)5 =7¢€ ( - ﬁemuR (M)ﬁ + §Rum (M) + ZRum(A))
+7"958 5 Ry (A) (125)

Thus the extra @ transformation dg ()¢, is given by

i 1
5&2(@@# =—-(Ru— 67/17’72)5

2
7 m 1 COV. 1 peov. 15
= 75[7 e ( — 15 mp (M) + 5 R (M) + ZRum(A))
+iy™ 56 3 Ryum(A)] (126)

3.3. On A, and b,

Noting

0g(e)A, = digvsp,
do(e)b, = —28p,, (127)

and that ¢, now receives an extra () transformation (5’Q(5) in addition to the original group

transformation §g°" (), we find that the [dg, dg] commutator on A, and b, now reads

[da(e2), Sa(e1)] A = [65°"™ (e2), 05"P(e1)] Ay + 4i(£175(Sg(e2) ) — (1 4> 2))
= 05(6) Ay — €™ Rym(A) + 4i((—3) (E17517™1582) 5 Rum(A) — (1 ¢ 2))
= 05(6) Ay — €™ B (A) + 4i(=5)€™ 5 Rum(A) = 65(¢) A, OK!
[Ba(e2), Sa(en)]bu = [057™ (c2), 05" (e1)]by — 2(&1(Fp(e2)p) — (1 4> 2))
= 05()by — £ Rym (D)
—2(—3) x 2(E17"e2) ( — fyemu R (M)} + SR (M) + § Rym(A))
= 05()by — £ Rym (D)

m 1 COV. 1 peov. 15
—€"( = T emu B (MY + §R (M) + { Ryum(A)) (128)
Thus, the [dg, dg] commutator on A, requires no constraint but that on b, requires a con-
dition
1 COV. 1 peov. 15
,EemMR (M)ﬁ + iR/Lm (M) + ZR‘””(A) = 7Rum(D) (129)
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which leads, by separating the symmetric and antisymmetric parts and using Eq. (122), to

RZ(;:L'(MNsymm. part — 07
1 15
4 Ryun(D) + L Ryp(4) = ~Ry(D). (130)
The latter condition is rewritten into
15 oS 1
Rym(D) = =5 Rym(A) or =  Rpn(D) = +5Rum(A). (131)
If Eq. (122) is used, these two conditions can be rewritten into a constraint

cov. 15
RE (M) + LR, (4) = 0. (132)

This is the necessary and sufficient condition for the [d¢, d¢] algebra Eq. (83) to hold on b,.
Then the extra @ transformation Eq. (126) of ¢, is simplified into

! i m_1p5 - m 1
So(E)pu = ) [7 € 5 Rum(A) + iy vse §Rum(A)]

0o (e)pu = —%7’" (Rum(A) + i35 Rum(A) ). (133)

The constraint Eq. (132) can be solved by the K, gauge field [, which now becomes a
dependent field:
= [(e, 1,0, A). (134)
Since the constraint Eq. (132) is not Q-invariant and so J7, also receives an extra Q-

transformation, which can be derived in the same way as above:

So(e)f = —s( ™ RE(S) + €™ RS (S))). (135)

v v

3.4. Resultant modified SU(2,2|1) algebra

Now that the M, S and K,, gauge fields w,™", ¢, and f", have become dependent
fields, there no longer remain other independent gauge fields. Thus the desired [dg, dg]
algebra (83)

[0g(e2), 0g(e1)] = 05(E™), with €™ = —2ig1y™ey (136)
already holds on all the independent gauge fields "}, ¥, A, and b,.
This implies that

Proposition: For all the transformations other than B, transformation, (which we
denote by primed index X' henceforth, X' € {Q, My, D, A, S, K,,}), the commutators

2505 ¥ fX’Y’ ) (137)

[By:(e"), 6x:(e
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of the same form as the original SU(2,2|1) algebra, still hold. Note that when P,, appears
in the C' sum, it is always understood to stand for 15,,”.

Proof) For the case X' = Q and Y’ = @, we have already seen that [dg(e2), do(e1)] =
d5(£™) holds and so the Proposition holds. So it is enough to prove it for the other cases in
which either X’ or Y” is not equal to Q. We assume X' # Q without loss of generality.

Since the M,,,, D, A, S, K,, transformations are the same as the original group trans-

foramtions even for the dependent gauge fields, we clearly have

By ("), ox(e¥) A Z(Sgroup (e ey’ )hyy + DS 5X15,Q(5Y1)h5/fx'zp
Z'=M,8,K
(138)

on any independent gauge fields hfj. The second extra @) transformation terms may exist only
when Y’ = () and only for the dependent gauge fields hf/ with Z' € {M, S, K}. However
we show that this term is in fact absent. Consider the Weyl weights of the generators.
The generator G for the independent gauge fields is one of P, @, D, A carrying weights
1, 1/2, 0, 0, respectively. The sum of the weights of the generators X' and 7/, w(X') +
w(Z'"), should be w(G) in order for the structure constant fy.,“ to be non-zero. But, since
w(G) > 0, w(X') <0 (recall X' # Q) and w(Z’) < 0, the only possibility satisfying this
condition is w(G) = w(X') = w(Z’') = 0, which corresponds to the cases G € {D, A},
X' e {M, D, A} and Z' = M. But, the commutators [X’, Z'] for such cases can yield only
M since [{M, D, A}, M] < M, so that fy,,© = 0 for G € {D, A}. Therefore the group
law holds. q.e.d.

Proposition:

™), 6ae™)) = Y o5 e fap®) +65 > dp(mon(e™)hE)|  (139)

B all B'=M,S,K

Proof) Straightforward calculation using
Ip(E™) = dac (& = €M, Z(SB’ ¢-h?) (140)
leads to the above result. First, using
Sac(E)hy = 0,6-hy + E0hy,, (141)
we derive, for field-independent £* case,
[Bac(€), 6ar(e™)] = —6a(E200e™). (142)
For the field-dependent case, we derive

Bao(& = €7e,), Sar(e™)] = —64(£0ae™) = dac(§m0a (M)e,) (143)
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where

a(e®)e,t = —eret (Oa(e™)en,) = = hS fac™e (144)
Next we have
(=05 (€™hpy ), Sar (™)) = =D 00(e™ €1 farp®) + 0 (€75 a (™) R (145)
C

where

O (e iy = ou(e™) (e, )

= =W fac " hE 4+ 650" + MRS fac® + 0304(eM)hE . (146)

Using these we can show the Proposition. g.e.d.

Proposition:
[05(6): 05(6)] = D0l G R+ Y S (&) h” — (&) -h")
A B'=M,S,K
(147)
or, equivalently,
[05(61), 05(&2)] = D da(El & Ripy ™) (148)
A
Proof) Straightforward calculation. First show, for field-independent £* case,
[0cc(€5), dac(€))] = dac((&1-0)& — (§2-0)&7) (149)
(05 (6505, Sac(€)] = o ((€1-065)hE)) (150)
Next, for the field-dependent case, we derive
oo (&5e.), dac(€e,)] = o (6765 (Dne, — Ome,))) (151)

[0 (S5'hE), dac(&-e)] = dp ((&1-0€5)RE ) — Z5Gc(§2 W) (&) fpe'™e)  (152)

Using these, we derive
[05(€2), dac(€1-€)] = dac(€€5 (One, — Ome,)) — %;53'((51'35?%5)
3 Sac((&-h™)(&-h) fpe™e,) (153)
Using the previous Proposition, we have

[05(82), 253'(51%3/)] = > 60((51%3/) Pep)+ Y. o (Erdp(& )Rl

B’,C(all) B'=M,S,K

+3 0w (& 05(E) ) (154)
B,
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where
Erop(&)hl = &P (&-0)h — & ZéA/ (&-h)RE
=&"(& O, + Z { & hY)(&-h) fac ™0l = 65 (61-0) (&™)
—(&-h™) (&) Fac™ — 03,0p(&-h™ )R] . (155)

Using these we can show the Proposition. q.e.d.

Also note

Rev® = Rih,, — (0 (wn) it — 0 ($m) i) (156)

§4. N =1 Superconformal Tensor Calculus

4.1. Matter multiplets

The general, or so-called vector, (complex, unconstrained) superconformal multiplet V

corresponding to the superfield

V(x,0) = C + il 2 — SON — insM —157"V,)0
—i(08)875[A — 1479,2] + L(86)(90)[D - 101 (157)

in the rigid supersymmetry case, is now denoted by V = [C, Z, N/, M, V,,, A, D]. (Real vector
multiplet is denoted as V = [C, Z, N, M, V,,,, \, D], by using the corresponding roman letters.)
The basic quantum numbers of the superconformal matter multiplet are Weyl weight w and

chiral weight n, which are defined through the transformation law of the first component C:
[00(p) +34(0)] C(x) = (wp + 5inb) C(). (158)

This vector multiplet V exists for any Weyl and chiral weights w, n (and even V4 with arbi-
trary external Lorentz index A = (ay, -, ap; 817 e ,Bm). On the contrary, the constrained
type multiplets can exist only for particular values of (w, n) (and for particular external
Lorentz indices A). For instance, the chiral multiplets exist only when they carry the same
values of Weyl and chiral weights, w = n (and only with purely undotted spinor indices
A= (o, ,q)).

Here we do not give the transformation laws for the vector multiplet V), but give those
for the chiral multiplet ¢ = [z, x, h] possessing no external Lorentz index, which is embedded

into the vector multiplet as follows:

V(p) =[ 2, —ixr, —h, ih, iD5z, 0, 0]. (159)
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The chiral multiplet transforms under @, S, D and A as

Sospaz = (3g(c) + 35(C) + dp(p) + 0a(0)) 2 = 3erxw + (wp + Jiwh)2

SaspaXr = Pz - er + her + 2wz(r + [(w + D)p +i(kw — 3))xn

Sospah = 22D xr + (1 — w)irxr + [(w + 1p + i(3w — 3)0)n, (160)

and inert under K,,, where D¢, denotes conformal covariant derivative:
D¢ z = (0 — wb — Liwa )zfl@
mec = 'm m 2 m 2 RXR
c w 1 .1 3
Dy xr = (Dm —(w+ 3)bpn —i(Fw — Z)Am>XR
—(D°2 - Yrm + htbrm) — 2w2QRMm (161)

with local Lorentz covariant derivative D .

4.2. Invariant action formula

F-term formula: applicable to chiral multiplet with weight w = n = 3, Gu=n=3
= [2=3(A+iB), xr, h=1(F+iG)]

Ir = /d4$ {Qﬁ(w:n:.‘i)}l, = /d4$ e [h + %'J}Lm'meR + YL 2 Yy + h~C-]
- / d'z e [F + 50my™X + 5m0™ (A — i B)] (162)

The next action formula can be derived from this. Since the chiral projection (analogue of
DDV) of real vector multiplet V with Weyl weight w = 2 gives a chiral multiplet [TV with

weight w =n = 3:
IV = [2(H —iK), iD*Zy + Ar, —3(D +0°C +iD5, B™)] (163)

We can apply the above F-term formula to this chiral multiplet ITV and obtain
D-term formula: applicable to real vector multiplet V = [C, Z, H, K, B,,, A\, D] with
weight w =2 n =0:

Ip= /d4x [szz,n:o)][) = /d41’ [~V
= /d4$ e{D — %@m’ymi%/\ — PmY "V Z + %C (R + 6711[}“}20
+ ™ ety (B — AC = 3,Z)] (164)
where

R=R,™(M)eyel,  R'= ey, D4, . (165)
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43. N =1 SUGRA Lagrangian

One may have wondered in the above why we consider such a superconformal frame-
work possessing rather large local symmetry while we want supergravity which has only
local Poincaré invariance. We can now answer to this question. All the possible theories of
Poincaré supergravity can be obtained from our superconformal framework simply fixing the
gauges for the extraneous gauge symmetries, dilatation D, chiral A, conformal supersym-
metry S and special conformal K, symmetries. Then, we need special matter multiplet(s)
called compensator, whose component fields are used to fix those extraneous gauges. Choos-
ing different type of multiplet as the compensator yields a different formulation of Poincaré
supergravity: namely, chiral multiplet compensator leads to (old) minimal formulation, (real)
linear multiplet compensator to new-minimal formulation and complex linear multiplet com-
pensator to Breitenlohner formulation. One of the virtue of the superconformal framework
is that all those different formulations of Poincaré supergravity can be dreived in a unified
way from this unique framework. There is another and more important advantage in the
superconformal tensor calculus actually, which we explain shortly.

We explain only the (old) minimal formulation of Poincaré supergravity. Pure (Poincaré)

supergravity Lagrangian is given by
Lyure SUGRA = [ZE]D (166)

where X' is a chiral multiplet with weight w = n = 1, the compensator of the (old) min-
imal formulation. Denoting the components of this compensator as X = [A, ¥r, F], the

extraneous D, A, S, K,, gauges are fixed by the following conditions:

D: Red=+3, A: ImA=0,
S: p=0, Kpn: b,=0, (167)

where the last b, is the Weyl (D) gauge field. Then, writing F = %(S —iP) and A, =
—%Ai‘“‘, XX takes the form

m m

UE=[3,0, =25, 2P, —2A%%, 0, —5(S? + P? — A2x?)] (168)

Substituting this components expression into Eq. (166) and applying the D-term formula,

we actually obtain the following action of pure supergravity:
Epure SUGRA = G{R + 671’(/;/1R# - %(SQ + P2 - AEIXZ)} . (169)

S, P and A3™ constitute the well-known minimal set of auxiliarly fields, hence the name of

minimal Poincaré supergravity.
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If one considers more general matter coupled system, the Lagrangian would take the form
L=[22d(s,0)|, +[TW(©e), (170)

omitting the possible gauge fields. Here ¢ denotes a set of matter multiplets { ¢; }. Now we
can explain another virtue of our superconformal tensor calculus, as promised above.

First, we note that we can eliminate the superpotential term by redefining the com-
pensator as W'/ 3(p)Y — X, and rewrite the Lagrangian into the following form using
o=/ W

L=[22e(,9)|,+ [, (171)
In this matter coupled system, the multiplet 55 &(¢, ¢) = V in the D-term has the following

first two components:

CV) = |A]? &(z,2%)
L2(V) =i | AP (®ix, — D' xri) + i (Adhy, — A™Yg) (172)

with notation ¢ = 9®(z, 2*)/0z;, ®; = 0P(z,2*)/0z*". Therefore, to obtain the canonical
form of Einstein-Hilbert as well as Rarita-Schwinger action R + e’lzﬁuR’ﬁ it would be best

to take the gauge conditions for the extraneous gauges D, A, S, K,, as’

D: ReA=+v36"12 A: ImA=0,
S: Yp=—-AP'P'xp;,  Kp: b,=0. (173)

Indeed, in this superconformal gauge, we have C'(V) = 3 and Z(V') = 0, yielding the desired
canonical Einstein-Hilbert and Rarita-Schwinger action R+ e‘lfgzuR“ from the beginning, as
is seen from the D-term action formula. Note that this is really the power of superconformal
tensor calculus. In the Poincaré tensor calculus, there is no freedom of choosing those gauges!
From the superconformal viewpoint, the Poincaré tensor calculus is just the tensor calculus
obtained from the superconformal one by choosing the Poincaré gauge fixing conditions
Eq. (167). It is a good gauge conditions for pure supergravity system, but is ridiculous
one for the matter coupled system. There is, however, no other way in the Poincaré tensor
calculus, since there are no extraneous gauge freedom. Compare this simplification with
the big calculation performed by Cremmer, Ferrara, Girardello and Van Proeyen’ using the
Poincaré tensor calculus. The first thing the latter authors had to do was 1) Weyl rescaling
of the vierbein and other fields, 2) chiral rotations of the fermion fields, and 3) recombination
of @ and the superpotential W into the Kahler potential %K = In(d/ |W|2/3). The first and
second tasks are simply bypassed here by the above D and A gauge conditions and the third

was the task performed in one line already in Eq. (171).
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