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Introduction
• Relativistic hydrodynamics for a perfect fluid is widely and successfully 

used in the RHIC phenomenology. T. Hirano,  D.Teaney,  …
.
• A growing interest in dissipative hydrodynamics.         

hadron corona (rarefied states); Hirano et al …
Generically, an analysis using dissipative hydrodynamics is needed 
even to show the dissipative effects are small.

A.Muronga and D. Rischke; A. K. Chaudhuri and U. Heinz,; R. Baier,
P. Romatschke and U. A. Wiedemann; R. Baier and P. Romatschke (2007)
and the references cited in the last paper. 

is the theory of relativistic hydrodynamics  for a viscous fluid
fully established?

However,

The answer is
No!

unfortunately.



Fundamental problems with relativistic hydro-dynamical 
equations for viscous fluid 

a. Ambiguities in the form of the equation, even in the same frame and equally
derived from Boltzmann equation:  Landau frame; unique,  
Eckart frame; Eckart eq. v.s. Grad-Marle-Stewart eq.; Muronga v.s. R. Baier et al

b. Instability of the equilibrium state in the eq.’s in the Eckart frame, which affects 
even the solutions of the causal equations, say,  by Israel-Stewart.
W. A. Hiscock and L. Lindblom (’85, ’87); R. Baier et al (’06, ’07) 

c. Usual 1st-order equations are acausal as the diffusion eq. is, except for
Israel-Stewart and  those based on the extended thermodynamics with relaxation
times,   but the form of  causal equations is still controversial.

---- The purpose of the present talk  ---
For analyzing the problems a and b first,
we derive hydrodynaical equations for a viscous fluid from Boltzmann equation
on the basis of a mechanical reduction theory (so called the RG method) and a 
natural ansatz on the origin of dissipation.
We also show that the new equation in the Eckart frame is stable.
We emphasize that the definition of the flow and the physical nature of the
respective local rest frame is not trivial as is taken for granted in the literature,
which is also true even in the second-order equations.



Contents
• Introduction
• Basics about rel. hydro. for a viscous fluid
• Fundamental problems with rel. hydrodynamics 

for a viscous fluid
• RG method for reduction of dynamical systems
• RG derivation of 1st order rel. hydro. 
• Stable or unstable sound modes in particle 

frame
• RG derivation of 2nd order rel. hydro.
• Brief summary



References
• D. H. Rischke, nucl-th/9809044
• P. Romatschke, arXiv:0902.3636v3[hep-ph]
• J. M. Stewart, ``Non-Equilibrium Relativistic Kinetic 

Theory”, Lecture Notes in Physics 10 (Springer-Verlag), 
1971

• S. R. de Groot, W.A. van Leeuwen and Ch. G. van 
Weert, ``Relativistic Kinetic Theory”, North-Holland 
(1980)

• C. Cercignani and G. M. Kremer, ``The Relativistic 
Boltzmann Equation: Theory and Applications”, PMP22, 
(Birkhaeuser, 2002)

The basics of rel. fluid dynamics
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The distribution function is
Lorentz-invariant!

2ds g dx dxμ ν
μν=

0( , )x ct xμ = = x

diag(1,-1,-1,-1)g μν =

Linear transformations of space-time
which keep any inner products with this metric 
tensor are Lorentz transformation.



Basics
1. The fluid dynamic equations as conservation (balance)  equations

local conservation of charges
local conservation of  energy-mom.

2.Tensor decomposition and choice of frame
u μ ; arbitrary normalized time-like vector

Def.

; net density of charge i in the Local Rest Frame
; net flow in LRF

; energy density in LRF ; isotropic pressure in LRF

; heat flow in LRF

; stress tensor in LRF

space-like vector
space-like projection

space-like traceless
tensor



A. Particle frame (Eckart frame)

Define u μ so that it has a physical meaning.

B. Energy frame (Landau-Lifshitz frame)

; flow of the energy-momentum density

; parallel to particle current of i

0q μ =

space-like

0 i iN μ μ
μν ν= Δ =

T u u qμ ν μ μ
ν ε= +



Ideal fluid dynamics 

Constraints:
00

(0)
T ε=

(0)

ij ijT pδ=

energy density in LRF

P. Romatschke, arXiv:0902.3636v3[hep-ph]



Typical hydrodynamic equations for a viscous fluid 

Fluid dynamics = a system of balance equations

Eckart
 

eq.Eckart
 

eq.

energy-momentum：energy-momentum： number：number：

Landau-LifshitsLandau-Lifshits

no dissipation in the number flow;

no dissipation in energy flow

Describing the flow of matter

describing the energy flow.

with transport coefficients:
ς

Dissipative part

with

--- Involving time-like derivative ---.

--- Involving only space-like derivatives ---

; Bulk viscocity,

;Heat conductivity

; Shear viscocity

--- Choice of the frame and ambiguities in the form ---

0,T uμν
νδ =

0u N μ
μδ =

No dissipative
energy-density
nor energy-flow
No dissipative
particle density 



The explicit form of Eckart equation

0

Then

0≥

put

The dissipative part of the energy-momentum tensor may be determined
from the local form of the second law of thermodynamics.



Non-relativistic limit

ρ ;the mass density

(Navier-Stokes eq.)

( ) /w TS nμ = −

( ) ( )w S dPd Td
n n n

= +

w Pε= +
Enthalpy density

Y.Minami, T.K., K.Tsumura(2010);
frame-independence

See also, Landau-Lifshitz.

+ =0



Acausality problem
Fluctuations around the equilibrium:

Linearized equation;

0

Diffusion equation!

The signal runs with an infinite speed.

P. Romatschke, arXiv:0902.3636v3[hep-ph]



Non-local thermodynamics (Maxwell-Cattaneo)

Telegrapher’s equation

Mueller-Israel-Stewart
P. Romatschke, arXiv:0902.3636v3[hep-ph]



Compatibility of the definition of the flow and the LRF

In the kinetic approach, one needs a matching condition.

Seemingly plausible ansatz are;

Distribution function in LRF:

Non-local distribution function;

Is this always correct, irrespective of the frames?

Particle frame is the same local equilibrium state as the energy frame?
Note that the entropy density S(x) and the pressure P(x) etc can be quite
Different from those in the equilibrium. Eg.    the bulk viscosity∃

Local equilibrium No dissipation!

D. H. Rischke, nucl-th/9809044



/ /
v
C T t q x∂ ∂ = −∂ ∂

Fourier’s law; /q T xλ= − ∂ ∂

Then 2/
v
C T t Tλ∂ ∂ = ∇

Causality is broken; the signal propagate with an infinite
speed.

Modification;

Nonlocal
thermodynamics

Memory effects; i.e., non-Markovian
Derivation(Israel-Stewart)： Grad’s 14-moments method

+ ansats so that Landau/Eckart eq.’s are derived.
Problematic

The problem of causality:

Extended thermodynamics



The problems:

Foundation of Grad’s 14 moments method
ad-hoc constraints on            and             consistent with
the underlying dynamics?

T μνδ N μδ

The purpose of the present work:

(1) The renormalization group method is applied to derive rel. 
hydrodynamic equations as a construction of  an invariant manifold of 
the Boltzmann equation as a dynamical system.

(2) Our generic equations include the Landau equation in the energy 
frame, but is different from the Eckart in the particle frame and

stable, even in the first order.

(3) Apply dissipative rel. hydro. to obetain the spetral function of density
fluctuations and discuss critical phenomena around QCD critical point.



The problem with the constraint in particle  frame:

=

= with
i.e.,

Grad-Marle-Stewart
constraints

K. Tsumura, K.Ohnishi, T.K. Phys. Lett. B646 (2007) 134-140

still employed by I-S  and Betz et al.

trivial

trivial

0,T uμν
νδ =

Landau

c.f.



Phenomenological Derivation

particle frame

energy frame

Generic form of energy-momentum tensor and flow velocity:

with

Notice;

natural choice and parametrization



From

In particle frame;

With the choice,

we have f_e, f_n can be finite,
not in contradiction with
the fundamental laws!  



Energy frame:

coincide with the Landau equation with f_e=f_n=0.

Microscopic derivation gives the explicit form of f_e and f_n in each frame:

particle frame;
energy frame;



Relativistic Boltzmann
 

equation

Conservation law of the particle number and the energy-momentum

H-theorem.

The collision invariants, the system is local equilibrium

Maxwell distribution (N.R.)
Juettner distribution (Rel.)

S.R. de Groot et al, ``Relativistic Kinetic
Theory; Principles and Applications”
(North-Holland, 1980),
C. Cercignani and G.M. Kremer, 
``The Relativistic Boltzmann Equation:

Theory and Applications” (Birkhaeuser, 2002)

For single classical gas,

where



The separation of scales 
in the relativistic heavy-ion collisions

Liouville Boltzmann                   Fluid dyn.
Hamiltonian

Slower dynamics

on the basis of the RG method; Chen-Goldenfeld-Oono(’95),T.K.(’95)

C.f. Y. Hatta and T.K. (’02) ,    K.Tsumura and TK (’05); 
Tsumura, Ohnishi, T.K. (’07)

Navier-Stokes eq.Navier-Stokes eq.

（Reduction of dynamical
Systems)



Geometrical image of reduction 
of dynamics

nR
∞

t X

M

∞

dim M m n= <

dim X n=

( )ts

O dim m=s

Invariant and attractive manifold

( )d
dt

=
X F X

( )d
dt

=
s G s

M={ ( )}=X X X s

eg.

1 2 1 2, ,..., ) ( , ,..., )n mg g g s s s≡ →X = ( g s =In Field theory,
renormalizable ∃ Invariant manifold M dim M m n= < ≤ ∞

n-dimensional dynamical system:



Y.Kuramoto(’89)

( )ts
0G (s)

X
G(s)

M

0M

( )ρ s

Geometrical image of
perturbative reduction
of dynamics

Perturbative reduction
of dynamics

O



A geometrical interpretation: 
construction of the envelope of the perturbative solutions

: ( , , , ( )) 0C F x yτ τ τ =C
The envelope of CτE:

?

The envelop equation:
the solution is inserted to F with the condition

0 0xτ =
( , ) ( , , ( ))G x y F x y x= C

the tangent point

RG eq.0/ 0dF dτ =

T.K. (’95)

G=0

0( ) 0F τ = 0( ') 0F τ =

x0x

0y



A simple example:resummation 
and extracting slowdynamics T.K. (’95)

a secular term appears, invalidating P.T.

the damped oscillator!



; parameterized by the functions,
0 0 0 0( ), ( ) ( )A t t t tφ θ≡ +

: 

Secular terms appear again!

With I.C.:

The secular terms invalidate the pert. theory,
like the log-divergence in QFT! 



; parameterized by the functions,
0 0 0 0( ), ( ) ( )A t t t tφ θ≡ +

: 

Secular terms appear again!

With I.C.:

Let us try to construct the envelope function
of the set of locally divergent functions,
Parameterized by  t0 !



The envelop function an approximate but

global solution in contrast to the pertubative solutions

which have secular terms and valid only in 
local domains.
Notice also the resummed nature!

c.f. Chen et al (’95)



More generic example S.Ei, K. Fujii & T.K.(’00)



Def. P the projection onto the kernel

1P Q+ =
ker A



Parameterized with    variables,
Instead of    !

m
n

The would-be rapidly changing terms can be eliminated by the
choice;

Then, the secular term appears only the P space;
a deformation of
the manifold

0M

ρ



Deformed (invariant) slow manifold:

The RG/E equation
00/ t tt =∂ ∂ =u 0 gives the envelope, which is

The global solution (the invariant manifod):

We have derived the invariant manifold and the slow dynamics
on the manifold by the RG method.

Extension; A(a) Is not semi-simple.  (2) Higher orders.

A set of locally divergent functions parameterized by
!0t

globally valid:

(Ei,Fujii and T.K.
Ann.Phys.(’00))Layered pulse dynamics for TDGL and NLS.



The RG/E equation
00/ t tt =∂ ∂ =u 0

gives the envelope, which is

The global solution (the invariant manifod):

globally valid:

[ ]W C0

0[ ]Pε W C

M

0M

( )ρ C

u

0[ ]W C ( )ρ C



Geometrical image of reduction 
of dynamics

nR
∞

t X

M

∞

dim M m n= ≤

dim X n=

( )ts

O dim m=s

Invariant and attractive manifold

( )d
dt

=
X F X

( )d
dt

=
s G s

M={ ( )}=X X X s

( , )f=X r p ; distribution function in the phase space (infinite dimensions)

{ , , }u T nμ=s ; the hydrodinamic quantities (5 dimensions), conserved quantities.

eg.



Previous attempts to derive the dissipative 
hydrodynamics as a reduction of the dynamics

N.G. van Kampen, J. Stat. Phys. 46(1987), 709 
unique but non-covariant form and hence not 
Landau either Eckart!

Here,

In the covariant formalism,
in a unified way and systematically
derive dissipative rel. hydrodynamics at once!  

Cf. Chapman-Enskog method to
derive Landau and Eckart eq.’s;
see,  eg, de Groot et al (‘80)



perturbationperturbation

Ansatz of the origin of the dissipation= the spatial inhomogeneity,
leading to Navier-Stokes in the non-rel. case .

would become a macro flow-velocity

Derivation of the relativistic hydrodynamic equation 
from the rel. Boltzmann eq. --- an RG-reduction of the dynamics
K. Tsumura, T.K. K. Ohnishi; Phys. Lett. B646 (2007) 134-140

c.f. Non-rel.  Y.Hatta and T.K., Ann. Phys. 298 (’02), 24; T.K. and K. Tsumura, J.Phys. A:39 (2006), 8089

time-like derivative space-like derivative

Rewrite the Boltzmann equation as,

Only spatial inhomogeneity leads to dissipation.

Coarse graining of space-time

RG gives a resummed distribution function, from which and are obtained.
Chen-Goldenfeld-Oono(’95),T.K.(’95), S.-I. Ei, K. Fujii and T.K. (2000)

2 2

1 ( )p p
p p p

p p

a a
a a g a

a a

μ ν
μ μ ν μν μ μ

ν ν τ∂ = ∂ + − ∂ ≡ ∂ +∇

≡

2
p p

p

a a
g

a

μ ν
μν μνΔ ≡ −



Solution by the perturbation theory
0th0th

0th
 

invariant manifold

“slow”“slow”

Five conserved quantities

m = 5m = 5

Local equilibrium

reduced degrees of freedom

written in terms of the hydrodynamic variables.
Asymptotically, the solution can be written solely
in terms of the hydrodynamic variables.



1st1st

Evolution op.：
inhomogeneous：

The lin. op.    has good properties:

Collision operatorCollision operator

1.1. Self-adjointSelf-adjoint

2.2. Semi-negative

 
definiteSemi-negative

 
definite

3.3.

has 5 zero modes、other eigenvalues
 

are negative.

Def. inner product: 



1. Proof of self-adjointness

2. Semi-negativeness of the L 

3.Zero modes

1 2 3p p p pϕ ϕ ϕ ϕ+ = +

Collision invariants!
or conserved quantities.

en-mom.

Particle #



metricmetric

fast motion
to be avoided

fast motion
to be avoidedThe initial value yet not determinedThe initial value yet not determined

Modification of the manifold：

Def.  Projection operators:

eliminated by the choice



fast motionfast motion
The initial value not yet determinedThe initial value not yet determined

Second order solutions

with

Modification of the invariant 
manifold in the 2nd order;

eliminated by the choice



Application of RG/E equation to derive slow dynamics

Collecting all the terms, we have;

Invariant  manifold (hydro dynamical coordinates) as the initial value:

The perturbative solution with secular terms:

found to be the coarse graining condition

Choice of the flow 

RG/E equation

The meaning of

The novel feature in the relativistic case;
; eg.



The distribution function;

produce the dissipative terms!

Notice that the distribution function as  the solution is represented
solely by the hydrodynamic quantities! 



A generic form of the flow vector

：a parameter：a parameter

1 2
2 3

Pμνρσ μρ νσ μσ νσ μν ρσ⎛ ⎞≡ Δ Δ + Δ Δ − Δ Δ⎜ ⎟
⎝ ⎠

P P Pμναβ ρσ μνρσ
αβ =

μ ρν μν
ρΔ Δ = Δ

Projection op. onto space-like traceless second-rank tensor;



Landau frame
and Landau eq.!

Landau frame
and Landau eq.!

Examples

T μν =

satisfies the Landau constraints

0, 0u u T u Tμν μν
μ ν μ σνδ δ= Δ =

0u N μ
μδ =



Bulk viscosity

Heat conductivity

Shear viscosity

C.f.  Bulk viscosity may play a role in determining the acceleration
of the expansion of the universe, and hence the dark energy!

-independentpθ
c.f.

( )p pa μ μθ=In a Kubo-type form;

with the microscopic expressions for the transport coefficients;



Eckart (particle-flow)  frame:
Setting 

=

= with

(ii) Notice that only the space-like derivative is incorporated.
(iii) This form is different from Eckart’s and Grad-Marle-Stewart’s, 

both of which involve the time-like derivative.

c.f. Grad-Marle-Stewart equation;

(i) This satisfies the GMS constraints but  not the Eckart’s.

i.e.,

Grad-Marle-Stewart
constraints

Landau equation:



Which equation is better, Stewart et al’s or ours?

The linear stability analysis around the thermal equilibrium state.

c.f. Ladau equation is stable. (Hiscock and Lindblom (’85))

K.Tsumura and T.K. ;
Phys. Lett. B 668, 425 (2008).

The stability of the equations in the “Eckart(particle)” frame

Y. Minami and T.K.,
Prog. Theor. Phys.122, 881 (2010)



Linear Stability Analysis
Def. and

with

Actually, we will put           .

and
Equation of Motion:

Ansatz for the solution; plane-wave solution

0( , )M M k kαβ αβ=
K

where

Dispersion relation; 0 0 ( )k k kϖ ≡ = (generically complex.)

The stability condition: 0Im( ( )) 0k k ≤

det 0Mαβ =

k∀

0 0u =

5x5 determinant

K.Tsumura and T.K. ;PLB 668, 425 (2008).



det 0Mαβ =



Transverse mode:

Dispersion relations

0k =

Longitudinal modes:

The condition for having all the roots in the left half plane of ϖ
(Routh-Hurwitz theorem)

However,

>0



(i) The Eckart and Grad-Marle-Stewart equations gives an instability, which  has been
known, and is now   found to be attributed to the fluctuation-induced dissipation,
proportional to      .

(ii) Our equation (TKO equation) seems to be stable, being dependent on the values of 
the transport coefficients and the EOS.

K.Tsumura and T.K. ;PLB 668, 425 (2008).
The stability of the solutions in the “Eckart (particle)” frame:

Duμ

The numerical analysis shows that, the solution to our equation is stable 
at least for  rarefied gasses.



In the rest frame of the fluid,

Inserting them into , and taking the linear approx.

etc

The spectral function of the sound modes:

Rel. effects

・Linearized Landau equation (Lin. Hydro in the energy frame);

Solving as an initial value problem using Laplace transformation, we obtain
, in terms of the initial correlation.

with

Y. Minami and T.K.,
Prog. Theor. Phys.122, 881 (2010)



Spectral function of density fluctuations in the Landau frame

In the long-wave length limit, k→0

� i
/

p n
c c t γ αγ − += = → ∞

Long. kinetic viscosity ：：specific heat
ratio

：sound velocity

thermal diffusivity：

Rel. effects appear
only in the sound mode. 

Rel. effects appear only in the width of the peaks.

:Isobaric thermal expansivity

Notice:
As approaching the critical point, the ratio of specific heats diverges!

P
α

The strength of the sound modes vanishes out at the critical point.

enthalpy

sound modesthermal mode

2

0 0

1
( / 2 )

2 s P
c T wκ χα+ −



Eq. of State of ideal
Massless particles

[MeV]

[1/fm]

[1/fm]

[MeV]

Relativistic effects appear only in the peak height and width of the Brillouin 
peaks.

Rayleigh peak

Brillouin

 
peak Brillouin
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Landau
Navier-Stokes

Spectral function of density fluctuations in the Landau frame



Particle frame; Tsumura-Kunihiro-Ohnishi equation



Spectral function from I-S eq.

No contribution in the long-wave length limit k→0.

For

Conversely speaking, the first-order hydro. equations have no problem to 
describe the hydrodynamic modes with long wave length, as it should.  

cf. Eckart equation;

Not damping!



Compatibility with the underlying 
kinetic equations? 

Eckart constraints are not compatible with the Boltzmann 
equation, as proved 

in K.Tsumura, T.K. and K.Ohnishi;PLB646  (’06), 134.



Collision operatorCollision operator

has
 

5 zero modes:

Proof that the Eckart equation constraints can not be compatible with the Boltzmann eq.

Preliminaries:

The dissipative part; = 

with

where

due to the Q operator.



The orthogonality condition due to the projection operator exactly corresponds to the
constraints for the dissipative part of the energy-momentum tensor and the particle
current!

i.e., Landau frame,

i.e., the Eckart frame,

4,

(C) 
Constraints 2, 3
Constraint 1

Contradiction!

Matching condition!

p u p uμ μ=i



Israel-Stewart equations from 
Kinetic equation on the basis of 

the RG method

K. Tsumura and T.K., arXiv:0906.0079[hep-ph]



Geometrical image of reduction 
of dynamics

nR
∞

t X

M

∞

dim M m n= ≤

dim X n=

( )ts

O dim m=s

Invariant and attractive manifold

( )d
dt

=
X F X

( )d
dt

=
s G s

M={ ( )}=X X X s

( , )f=X r p ; distribution function in the phase space (infinite dimensions)

{ , , }u T nμ=s ; the hydrodinamic quantities (5 dimensions), conserved quantities.

eg.



Five integral const’s；

zero mode

pseudo zero mode sol.

Init. value

Constraints;
Orthogonality condition with the 
zero modes

zero mode pseudo zero mode

Eq. governing the pseudo zero mode;

collision invariants

eq
qpq

eq
ppq fAfL 1−=Lin. Operator;

and



with the initial cond.;

Def.

Projection to the pseudo zero modes；

Thus,



Up to 1st order;

Initial condition；
（Invariant manifold）

RG/E equation

Slow dynamics (Hydro dynamics）

Include relaxation equations



Explicitly；

Specifically,

Def.

New!

For the veｌocity field,

0θ = ; Landau, / 2θ π= ;Eckart

Integrals given in terms
of the distribution function



The viscocities are frame-independent, in accordance with 
Lin. Res. Theory.

However, the relaxation times and legths are frame-dependent.

The form is totally different from the previous ones like I-S’s,
And contains many additional terms.

contains a zero mode of the linearized
collision operator. 2p p mμ

μ =

Conformal non-inv.
gives the ambiguity.

0μ
μτ =

0u uμν
μ ντ =



Energy frame]



Frame dependence of the relaxation times

Calculated for relativistic ideal gas with

; frame independent



Summary

• The (dynamical) RG method is applied to 
derive generic second-order hydrodynamic 
equations, giving new constraints in the 
particle frame, consistent with  a general 
phenomenological derivation.

• There are so many terms in the relaxation 
terms which are absent in the previous works, 
especially due to the conformal non-invariance, 
which gives rise to an ambiguity in the 
separation in the first order and the second 
order terms (matching condition)



References on the RG/E method:
• T.K. Prog. Theor. Phys. 94 (’95), 503; 95(’97), 179
• T.K.,Jpn. J. Ind. Appl. Math. 14 (’97), 51
• T.K.,Phys. Rev. D57 (’98),R2035
• T.K. and J. Matsukidaira, Phys. Rev. E57 (’98), 4817
• S.-I. Ei, K. Fujii and T.K., Ann. Phys. 280 (2000), 236
• Y. Hatta and T. Kunihiro, Ann. Phys. 298 (2002), 24
• T.K. and K. Tsumura, J. Phys. A: Math. Gen. 39 (2006), 

8089 (hep-th/0512108)
• K. Tsumura, K. Ohnishi and T.K., Phys. Lett. B646 (2007), 

134

L.Y.Chen, N. Goldenfeld and  Y.Oono,
PRL.72(’95),376; Phys. Rev. E54 (’96),376.

C.f.


	RG derivation of relativistic fluid　dynamic equations �for� a viscous fluid 
	Introduction
	スライド番号 3
	Contents
	References
	Special relativity
	Basics
	スライド番号 8
	Ideal fluid dynamics 
	スライド番号 10
	The explicit form of Eckart equation
	Non-relativistic limit
	Acausality problem
	スライド番号 14
	Compatibility of the definition of the flow and the LRF
	スライド番号 16
	スライド番号 17
	スライド番号 18
	Phenomenological Derivation
	スライド番号 20
	スライド番号 21
	スライド番号 22
	The separation of scales �in the relativistic heavy-ion collisions
	Geometrical image of reduction�of dynamics
	スライド番号 25
	A geometrical interpretation:�construction of the envelope of the perturbative solutions
	A simple example:resummation� and extracting slowdynamics�
	スライド番号 28
	スライド番号 29
	スライド番号 30
	More generic example
	スライド番号 32
	スライド番号 33
	スライド番号 34
	スライド番号 35
	Geometrical image of reduction�of dynamics
	Previous attempts to derive the dissipative hydrodynamics as a reduction of the dynamics
	スライド番号 38
	スライド番号 39
	スライド番号 40
	スライド番号 41
	スライド番号 42
	スライド番号 43
	スライド番号 44
	スライド番号 45
	スライド番号 46
	スライド番号 47
	スライド番号 48
	スライド番号 49
	Which equation is better, Stewart et al’s or ours?
	スライド番号 51
	スライド番号 52
	スライド番号 53
	スライド番号 54
	スライド番号 55
	スライド番号 56
	スライド番号 57
	Particle frame; Tsumura-Kunihiro-Ohnishi equation
	スライド番号 59
	Compatibility with the underlying kinetic equations? 
	スライド番号 61
	スライド番号 62
	Israel-Stewart equations from�Kinetic equation on the basis of �the RG method
	Geometrical image of reduction�of dynamics
	スライド番号 65
	スライド番号 66
	スライド番号 67
	スライド番号 68
	スライド番号 69
	スライド番号 70
	スライド番号 71
	Summary
	References on the RG/E method:

