Spectral Problem in N=4 Super Yang-Mills Theory and Integrable Spin-Chains

Yasuyuki Hatsuda (YITP)

N=4 SYM

- Interesting field theory
- The main motivation is that it plays an important role in gauge/string duality (AdS/CFT correspondence)
- Maximally supersymmetric field theory in 4D
- Conformally invariant even at quantum level
- Conformal dimensions are fundamental quantities

$$
\left\langle\mathcal{O}_{n}(x) \mathcal{O}_{m}(y)\right\rangle=\frac{c_{n} \delta_{n m}}{|x-y|^{2\left(\Delta_{n}\right)}} \text { conformal dim. }
$$

- Integrable structure appears in computing conformal dimensions (today's talk)
- Action

$$
(\mu, \nu=1, \ldots, 4 ; i, j=1, \ldots, 6)
$$

$$
\begin{aligned}
S=\frac{1}{2 g_{\mathrm{YM}}^{2}} \int d^{4} x \operatorname{Tr}[& -\frac{1}{2}\left(F_{\mu \nu}\right)^{2}+\left(D_{\mu} \Phi_{i}\right)^{2}+\frac{1}{2}\left[\Phi_{i}, \Phi_{j}\right]^{2} \\
& \left.+i \bar{\psi} \Gamma^{\mu} D_{\mu} \psi+\bar{\psi} \Gamma^{i}\left[\Phi_{i}, \psi\right]\right]
\end{aligned}
$$

- All appearing fields belong to the ajoint representation of the gauge group $\mathrm{SU}(N)$
- The large N limit is taken: $N \rightarrow \infty$ with $\lambda \equiv g_{\mathrm{YM}}^{2} N$ fixed \Rightarrow Only planar diagrams contribute ${ }_{\text {'t }}$ Hooft coupling
- Conformal dims. are eigenvalues of the dilatation operator
- The dilatation operator is expanded in λ perturbatively

$$
D=D_{0}+g^{2} D_{1}+g^{4} D_{2}+g^{6} D_{3}+\cdots, \quad(g \equiv \sqrt{\lambda} / 4 \pi)
$$

- Generic gauge inv. op. is not an eigenstate of D (operator mixing problem)
- We have to diagonalize it to know conformal dimensions

Integrable Spin-Chain

- Minahan and Zarembo found that the one-loop dilatation operator is identified with the Hamiltonian of certain integrable spin-chain

Minahan, Zarembo '02

$$
D_{1}=2 \sum_{k=1}^{L}\left(I_{k, k+1}-P_{k, k+1}\right) \leftarrow \text { Hamiltonian of } \mathbf{X X X} \mathbf{X}_{1 / 2} \text { spin-chain }
$$

- Operator-state mapping $\begin{aligned} Z & =\Phi_{1}+i \Phi_{2} \\ W & =\Phi_{3}+i \Phi_{4}\end{aligned}$
$\operatorname{Tr}(Z Z Z Z W Z Z W W Z Z Z W Z Z Z W Z Z W)$

- This Hamiltonian is diagonalized by the Bethe ansatz method

$$
\begin{array}{rr}
e^{i p_{j} L}=\prod_{k(\neq j)}^{M} \frac{u\left(p_{j}\right)-u\left(p_{k}\right)-i}{u\left(p_{j}\right)-u\left(p_{k}\right)+i} & \Delta=L+\sum_{j=}^{M} \\
& \quad \begin{aligned}
& \text { two-body S-matrix } \\
& u(p) \equiv \frac{1}{2} \cot \left(\frac{p}{2}\right)
\end{aligned}
\end{array}
$$

- Dilatation operators at higher loops are also mapped to integrable spin-chains with long-range interactions

$$
\begin{aligned}
D_{2}= & -8\{ \}+12\{1\}-2(\{1,2\}+\{2,1\}), \\
D_{3}= & 60\left\}-104\{1\}+4\{1,3\}+24(\{1,2\}+\{2,1\})-4 i \epsilon_{2}(\{1,3,2\}-\{2,1,3\})\right. \\
& -4(\{1,2,3\}+\{3,2,1\}), \quad\{a, b, c, \ldots\} \equiv \sum_{r=0}^{L-1} P_{a+r, a+r+1} P_{b+r, b+r+1} P_{c+r, c+r+1} \cdots
\end{aligned}
$$

- Higher-loop operators have very complicated form, so it is very hard (but possible in principle) to compute them
- If we assume that these operators are also diagonalized by Bethe ansatz method, the problem is to determine the exact S-matrix and dispersion relation

$$
e^{i p_{j} L}=\prod_{k(\neq j)}^{M} S\left(p_{j}, p_{k} ; \lambda\right) \quad \Delta=L-M+\sum_{j=1}^{M} \varepsilon\left(p_{j} ; \lambda\right)
$$

- This problem has been solved

Finite-Size Problem (Wrapping Problem)

- Recall that higher-loop dilatation ops. contain long-range int.
- If (loop order) > (length of spin-chain), interactions 'wrap' the spin-chain
- In this situation, we cannot define asymptotic states and S-matrix
\Rightarrow cannot use Bethe ansatz method (wrapping problem)

- We need a new approach to resolve this problem
- Recently a resolution was proposed by using AdS/CFT Gromov, Kazakov, Vieira 00
\Rightarrow AdS/CFT Y-system

Good Example: Konishi Operator

- Shortest operator with the non-trivial anomolous dim.

$$
\mathcal{O}_{\mathrm{K}} \equiv \operatorname{Tr}\left(Z^{2} W^{2}-Z W Z W\right)
$$

- Konishi operator has length four, so BA gives correct conformal dimension up to three loop order

$$
\Delta_{\mathrm{K}}=\underbrace{4+12 g^{2}-48 g^{4}+336 g^{6}}_{\mathrm{BA}}+\underbrace{\Delta^{(0)}}_{\text {(4) } g^{8}+\Delta^{(5)} g^{10}+\ldots}
$$

$\Delta^{(4)}=-2496+576 \zeta(3)-1440 \zeta(5) \quad \begin{aligned} & \text { via AdS/CFT Bajnok, Janik }{ }^{\text { }} \text { 08 } \\ & \text { Diagrammatic computations }\end{aligned}$
Fiamberti, Santambrogio, Sieg, Zanon '07
Velizhanin '08
$\Delta^{(5)}=15168+6912 \zeta(3)-5184 \zeta(3)^{2}-8640 \zeta(5)+30240 \zeta(7)$ via AdS/CFT Bajnok, Janik, Hegedus, Lukowski '09 No field theoretical computations

Konishi Dimension at Any Coupling

- One result using AdS/CFT

Gromov, Kazakov, Vieira, arXiv:0906.4240 [hep-th]

Figure 1: Numerical solution of exact finite size integral Ysystem equations for the Konishi dimension $\Delta_{K}(\lambda)$ in a wide range of 't Hooft couplings λ, compared to the asymptotic Bethe ansatz curve and to the predicted large λ asymptotics $\Delta_{K}(\lambda) \simeq 2 \lambda^{1 / 4}+2 / \lambda^{1 / 4}$ obtained by fit.

Summary

- The dilatation operator is mapped to that of certain spinchain Hamiltonian
- For long operators (or spin-chains), the conformal dims. are given by the Bethe ansatz method
- The Bethe ansatz method breaks down for finite-size ops.
- A resolution was proposed by using AdS/CFT
- Open problems
- Derivation of Y-system purely in field theoretical framework (not using AdS/CFT)
- Exact dimension for the Konishi operator?

