Constrain alternative theories of gravity by gravitational wave observations

Norihiro Tanahashi (YITP \rightarrow UC Davis from Sep.)

Kent Yagi (Kyoto Univ.) Takahiro Tanaka (YITP)

Gravitational wave observations

Gravitational wave observations

- Binary and Gravitational wave
 - Quadrupole formula for gravitational wave emission

$$\left(\text{GW power} \right) = \frac{1}{5} \left\langle \ddot{Q}_{ij} \ddot{Q}_{ij} \right\rangle$$
$$\left(Q_{ij} = \int d^3x \ \rho \left(x^i x^j - \frac{1}{3} r^2 \delta^{ij} \right) \quad : \text{mass quadrupole moment} \right)$$

Gravitational wave observations

- Binary parameters : $\theta \in (M, J, ...)$
- GW wave form : $h = h(f, \theta)$
- signal : $s = h(f, \theta) + n(f)$
- Parameters *θ* can be read out from signal *s* by taking correlation with theoretical wave form *h*.
 - -(signal-to-noise ratio) $\approx \int h \cdot s \, df$
 - Estimated $\theta = \theta$ that maximizes SNR
 - Estimation error = degeneracy of *h* around θ $\approx \int (\partial h / \partial \theta)^2 df$

Braneworld model

- 4D brane in higher-dimensional spacetime (bulk)
- Only gravity can propagate in the bulk

6

- Randall-Sundrum II (RS-II) model
 - 5D AdS bulk / flat 4D spacetime on the brane
 - Weak gravitation on the brane mimics 4D gravity

$$V(r) = \frac{Gm_1m_2}{r} \left(1 + \frac{2l^2}{3r^2}\right) \text{ 5D correction}$$

July 14, 2010

• **5D BH** in RS-II model \approx Rapidly evaporating 4D BH

[Tanaka, 2002; Emparan et al., 2002]

Constrain *l* by DECIGO/BBO

[Yagi, NT & Tanaka, in prep.]

- Strong Hawking radiation from BH modulates GW.
- Larger $l \rightarrow$ stronger rad. \rightarrow larger GW modulation
- If we observe GW that is consistent with pure GR, we can constrain l up to estimation error $\int (\partial h / \partial \theta)^2 df$.

\square	BBO (4 clusters), (1.4+10)M _☉ , statistical anlysis of 10 ⁴ binaries			
	Obs. time	Upper bound on l		10 time better
	1yr	9.62 (µ m)		than table-top
	Зуr	3.73 (μm)		experiments!
	5yr	2.62 (<i>µ</i> m)		$(l \leq 50 \mu m)$

Summary

- GW observation may be useful to constrain alternative theories of gravity.
- In the RS-II braneworld model, we may observe the extradimension scale *l* via observations of astrophysical black holes.
 - Observation of the effect of strong radiation from BH encoded in GW modulation
- GW observation by DECIGO/BBO

 \rightarrow can make the upperbound **10** times stronger.