Dirac Fermions in Newly Discovered Iron-Based Superconductors

The fourth Dirac Fermion in condensed matters

Takami Tohyama

in collaboration with
Takao Morinari and Eiji Kaneshita

T. Morinari, E. Kaneshita, T.T.,
The first Dirac fermions: GRAPHENE

Nobel Prize in Physics 2010

Andre Geim
Konstantin Novoselov

"for groundbreaking experiments regarding the two-dimensional material graphene"

Single layer Carbon:

- Ig nobel prize in 2000 “to make a frog levitate in a magnetic field"
- Invited speaker of YKIS2007

– the perfect atomic lattice

A thin flake of ordinary carbon, just one atom thick, lies behind this year’s Nobel Prize in Physics. Andre Geim and Konstantin Novoselov have shown that carbon in such a flat form has exceptional properties that originate from the remarkable world of quantum physics.

Dirac fermions
The first Dirac fermions: graphene

linear dispersion

$$E_{\pm}(p) = \pm \hbar v_F p, \quad p = \sqrt{p_x^2 + p_y^2}$$

$$H_p = \hbar v_F \left(p_x \sigma_x + p_y \sigma_y \right) = \hbar v_F \begin{pmatrix} 0 & p_x - ip_y \\ p_x + ip_y & 0 \end{pmatrix}$$

wavefunction

$$\Psi_p^{(e)} = \frac{1}{\sqrt{2}} \begin{pmatrix} +e^{-i\theta/2} \\ e^{i\theta/2} \end{pmatrix}, \quad \Psi_p^{(h)} = \frac{1}{\sqrt{2}} \begin{pmatrix} -e^{-i\theta/2} \\ e^{i\theta/2} \end{pmatrix} \quad \left(\tan \theta = \frac{p_y}{p_x} \right)$$

chirality helicity operator:

$$\hat{h} = \frac{p \cdot \sigma}{p}$$

$$\hat{h}\Psi_p^{(e)} = +\Psi_p^{(e)}, \quad \hat{h}\Psi_p^{(h)} = -\Psi_p^{(h)}$$

Pseudo-spins

A, B sublattices in honeycomb structure

Dirac point = Fermi level
The second Dirac fermions: $\alpha-(\text{BEDT-TTF})_2\text{I}_3$

Tilted Dirac dispersions

Pseudo-spins

A, B sublattices in BEDT-TTF layer

Dirac point = Fermi level
The third Dirac fermions: topological insulator

On the surface of Bi$_2$Se$_3$

Pseudo-spins

Real spins of electrons in surface layer

Dirac point ≠ Fermi level
The fourth Dirac fermions

Antiferromagnetic metallic phase of iron-based high-temperature superconductors

Pseudo-spins

Two orbitals (zx and yz) on Fe

Dirac point \neq Fermi level
Along a symmetric direction in the momentum space, the degeneracy of the two atomic orbitals zx and yz on Fe are lifted.

Y. Ran et al., PRB 79, 014505 (2009)
Complication

Not only *Dirac electrons* but also standard *hole carriers*

New possibility of Dirac physics
Hall Coefficient R_H, Thermoelectric Power S

Small number of electron carriers but small scattering rate due to Dirac electrons