Gravitational waves as a probe for dark energy

Atsushi Nishizawa

27 Oct. 2010, lunch seminar @ YITP

Abstracts

Standard candle

Type-la supernova data provide important evidence about cosmic acceleration (dark energy). However, there are various systematic erorrs. A large number of samples are required to constrain the property of dark energy.

Standard siren

Gravitational waves from a binary object are often called standard siren, which can be used to determine the distance to the source and can be an unique tool to measure cosmological expansion.

Supposing a future space-baced GW detector, we show that we can precisely measure the cosmological parameters, EOS of dark energy, and the Hubble parameter at each redshift, H(z), with the GW standard siren.

Introduction

Dark energy

Cosmic microwave background

Curvature is nearly flat

Distant supernovae

Expansion is accelerating

\int

- smooth component with negative pressure (scalar field etc.)
- modification of gravity at large scale
- cosmological constant (vacuum energy)

Constraints on dark energy

but difficult. Less than 10% accuracy is needed to discriminate various theoretical models.

Gravitational waves

- Ripple of spacetime propagating with speed of light, predicted in general relativity.
- Produced by violent change of gravitational field e.g. stellar explosion and merger
- amplitude is expected to be very small.

 $h \sim 10^{-21}$ @ ~100Hz (fractional change of distance)

e.g. for the distance between the earth and the sun, size of displacement is $\sim 10^{-10} m \approx$ radius of hydrogen atom

- Indirect evidence of GWs (Decay of orbital period of binary pulsar, PSR B1913+16)
- Not directly detected yet in GW detectors

GW from inspiraling binary

Post-Newtonian theory is well developed. Given mass, spin parameters etc, the waveform can be calculated analytically.

• frequency and amplitude increase with time.

Amp. $u_{17,22}^{20}$ $u_{17,24}^{20}$ $u_{17,26}^{20}$ $u_{17,26}^{20}$

• (probably) most important target source in observation.

Chirp signal

GW standard siren

Standard siren

[Schutz 1986]

Gravitational waves from a compact binary

chirp mass From observational data, $M_c = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$ h_{+x}, f, f, f redshifted chirp mass $f(t) \propto [(1+z)M_c]^{5/3} f^{11/3},$ $M_z \equiv (1+z)M_c$ GW waveform $h_{+\times}(t) \propto \frac{[(1+z)M_c]^{5/3} f^{2/3}}{D_I},$ luminosity distance D_L

However, z and Mc is degenerated.

The redshift can NOT determined only by GW observation.

Assuming the redshift determined by EM observation of the host galaxy,

 M_c can be determined.

z - dL relation can be obtained.

$\bigcup_{i=1}^{n}$

Measurement of cosmological expansion with GWs

No need of distance ladder. Consistency test of SNe observation.

GWs are powerful tool to probe for dark energy !!

DECIGO

Deci-hertz Interferometer Gravitational wave Observatory

- Launch 2027-
- 4 clusters
- independent
 8 interferometers
- arm length : 1000 km
- targeted sources inflationary GWB, IMBH binaries, NS binaries

NS binaries seen by DECIGO

Measurement accuracy of cosmo. parameters

Using all NS binaies observed. Determine cosmo. Parameters.

Flat universe, Obs. time 3yr

These accuracies are very good, compared with EM observation !!

Measurement of H(z)

Dipole of luminosity distance

[Bonvin+ 2006]

Method was first proposed in the context of a supernova.

Observer is at rest relative to CMB frame. → We see only monopole.

Observer is moving with respect to the CMB frame

Luminosity of a binary is Doppler-shifted.

Dipole of the luminosity Distance is induced.

Measurement of H(z)

monopole
$$d_L^{(0)}(z) = \frac{1}{4\pi} \int d\Omega_{\mathbf{n}} d_L(z, \mathbf{n}) = (1+z) \int_0^z \frac{dz'}{H(z')},$$

dipole $d_L^{(1)}(z) = \frac{3}{4\pi} \int d\Omega_{\mathbf{n}}(\mathbf{n} \cdot \mathbf{e}) d_L(z, \mathbf{n}). = \frac{|\mathbf{v}_0|(1+z)^2}{H(z)},$

If v_0 is known from CMB measurement, H(z) can be directly measured.

Estimate measurement accuracy of cosmological parameters with Fisher information matrix.

fiducial cosmological model ($w_0 = -1, w_a = 0, \Omega_m = 0.3, H_0 = 72 \text{ km/sec/Mpc}$)

Measurement accuracy of H(z)

Solid curves: with lensing error, Dotted curves: no lensing error (somehow subtracted)

Assuming 3yr observation, H(z) can be constrained with 3-10% accuracy up to z=1. GW standard siren is a powerful observational tool to probe for dark energy.

Measurement of dark energy parameters Assuming the EOS of dark energy, we can determine constant w with ~1% accuracy and time varying w with ~10% accuracy.

Measurement of H(z)

From measurement of the dipole of luminosity distance, DECIGO can measure H(z) at 3-10% level below z=1 for 3yr observation.