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String Theory has not yet established as fundamental understanding of Nature. 

However string theory today is very fruitful because of its plenty applications.

String theory has had an impact upon many area of physics and mathematics, 
such as QCD, CMP, integrable system, topology, differential geometry, group 
theory and so forth.

The key idea that bridges the gap between these theories is Duality.

DUALITY : a “magic” that translates a physical system into a completely different    
                   one.

Example : Kramers–Wannier duality of 2D Ising model
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1.  String Theory v.s. Melting Crystal

Today we will study topological string theory, which is a toy model of superstring.

Feynman diagram of a particle
( 1-loop ) 

time time

Feynman diagram of a string
( “1-loop” ) 
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in first quantization



topological strings 

superstring   :   compactification on Minkowski  X  6-dim. internal space  M

M
string

topological string   :   propagates only in the internal space  M

However, this model captures essential dynamics of the compactified superstring 
theory effectiviely.

By using this model, we can omit 
detailed dynamics of the original 
superstring theory.
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Dominant configuration which minimizes the 
energy (=area) is the string wraps minimal 
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free energy of topological strings



topological strings on

No “holes” inside          (i.e. No neck on which string can wrap)

                                                                     configuration vanishes to a point : Area=0
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Only d.o.f is the topological information of the small(vanishing) surface
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of genus g surface
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duality and melting crystal corner<                               >

molten atoms of crystal corner

z1

z2

z3
R6 = C3 melting crystal corner

[Leshetekin-Okounkov-Vafa, `07]



molten atoms of crystal corner
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Z = 1 + q + 3q2 + · · ·
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[Percy MacMahon, 1915] 
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© Okounkov
Z =

�

n=1

(1 − Qqn)n

∼ log Q

Any 6-dim. space is constructed by gluing local patches of

R6

R6

R6

So, the corresponding crystal is a combination of these corners



© Okounkov

(N=2) SU(2) SUSY 
Yang-Mills theory

. . . . .
We can compute complicated stringy partition functions by using statistical models !

The resulting partition function captures the dynamics of gauge theory.

[Iqubal-Kashanipoor, `02]
[Eguchi-Kanno, `03] 
[Iqubal-Kozcaz-Vafa, `07]
[M.T, `07] 
 . . .

Lessons:



z1

z2

z3

R6 = C3 R6It gives a toy model of quantum gravity on
melting crystal  =  foamed geometry

�

melting

classical geometry

[Iqubal-Nekrasov-Okounkov-Vafa, `07]
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ω ∧ ω ∧ ω

ω = dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + dz3 ∧ dz̄3

crystal as a quantum gravity<                           >

stringy Kahler gravity



gauge theory

topological string

melting crystal

super string theory

compactification

2. Summary : Woods of Stringy Dualities

quantum gravity



gauge theory

topological string

melting crystal

AGT

super string theory

2D CFT

. . 
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2. Summary : Woods of Stringy Dualities

dimer

random matrix
Fin

Chern-Simonsblack holes
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