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Buckling of a thin rod
under stress

A ubiguitous phenomena in our daily life
A classical lesson on stability analysis

Euler buckling and Elastica
shape instability of a compressed rod

“Euler and Lagrange are the earliest in the region of
elastic instability” -- from A.E.H. Love, "A Treatise

Leonhard Euler
(1707-1783) on the Mathematical Theory of Elasticity”

Progress in elastic theory of a thin rod

Kirchhoff rod equations

whd ' .l asF . — O, Anallc;gy to L?grangian
. mechanics of a top
Gustav Kirchhott asM + 031' XF—-—m = "Kirchhoff’s kinetic analogue”

(1824-1887)



TW|S1: and IOOp formation: Linking number is invariant:
Geometric aspects Lk = Wr + Tw

“writhe” “twist”

Chiral buckling of a twisted filament
Virtual closing of radius

T — OC

Axial twist is partly converted into centerline windings (writhe)
through buckling

Self-crossing of the curve changes Wr by 2 discontinuously.  violation of topological
(e.g., Dirac’s belt-trick or Feyman’s plate trick) invariance Lk=Wr+Tw.



Theory for a thin elastic rod
--- Variational formulation

Kinematic equation
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Variational relations
change of strain rates
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R. E. Goldstein, T. R. Powers and C H. Wiggins, PRL 80, 5232 (1998).



“dynamical phase” “geometric phase”

(linking number) (writhe)




free end

S

viscous fluid

L

clamped end

Viscous equations of motion for bend and twist
(or = —Afir + CO, [QUOst x I7r)| — 05(ADst),
QﬁtQ = C@?Q + Cr((“?sr X 5’?1‘) y 88(8tr).

Critical frequency for buckling

: . : : Wolgemuth et al. PRL (2000)
Linear stability analysis for a straight rod

A
0(s) = 0 (s - 1) e =8I
CO& = _A34€ + (w00 [(S _ L)[)Qﬂ Post-buckled nonlinear dynamics

Wada et al EPL (2006)



Twist transport and
nonlinear rotational
response

Geometric relation for twist dynamics

0 Q = Ogw — Qt - 05(04r) + (t x Ost) - O5(O41)

twist change  twist change twist change due to
due to axial due to out-of-plane bending
spinning stretching ("writhing”)

Crankshafting motion of the rod centerline O,r = X Z X r(5s)

Geometry provides a local conservation law for twist 0§24+ 057 = 0

“Effective”  j(s) = —w(s) + xcosf(s), cosh =12zt

twist current L .
writhe current

At steady state, current must be constant J (5) = (O) = —Wwp T X
wo = w(s) + x(1 —cosb(s))



Twist transport and

nonlinear rotational “Dynamical transition as a way to
response reduce the power dissipation.”

2.5
purely geometric (“physicsless”)
wo = w(s) + x(1 —cosb(s))

+

Viscous equations of motion
(Kirchhoff rod equations)

2 Linear
response
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Mea:t
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0.5 Buckled

(whirling)
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Nonlinear torque-frequency relationship
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Underlying geometry and
relation to geometric phases

twirling

whirling

Rationalization of the analogy to belt trick
wo =w(L)+ x(1 —cosb(L))

w(L) =0, wo = 2X %wodt — Qfxdt = 47
cos (L) =t(0) - t(L) = —1

change rate Global relation

Topologically equal to a “self-crossing” of a curve (jump of 2 in Wr):
our example is its dynamical realization

Global topological quantities (Wr and Lk) are defined only to closed curves, but
temporal changes in writhe and link are still meaningful in a form of “conservation
law” (dynamical tradeoff) even for open filaments.



