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In 1986 Robert C. Myers and M. J. Perry presented the
first examples of black hole solutions with angular
momentum in more than four dimensions.
≈ 989 citations.

Perhaps the most striking discoveries of these results
were:

I For a fixed mass, solutions may exist which have
arbitrary large angular momentum. c.f. Kerr M > a.

I bD−1
2 c rotation parameters are required to describe

the rotation, where D is the total spacetime
dimension.
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The reason for more than one angular momentum
parameter can be seen as follows:

Far away from the MP black hole the metric is flat, we can
then group the D− 1 spatial coordinates into pairs
(x1, x2), . . . , (xi, xi+1), . . . .
If D is odd the last pair will be (xD−2, xD−1);
otherwise if D is even the xD−1 coordinate will be
unpaired.
Therefore there are bD−1

2 c such pairs.
Writing each pair (xi, xi+1) in polar coordinates (ri, φi) we
see there is a rotation associated with each of the ∂φi
vectors.
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The MP metric(s)

Even D; ds2 = −dt2 + r2dα2 +
d

∑
i=1

(
r2 + a2

i

) (
dµ2

i + µ2
i dφ2

i

)
+

2Mr
ΠF

(
dt +

d

∑
i=1

aiµ
2
i dφi

)2

+
ΠF

Π− 2Mr
dr2,

Odd D; ds2 = −dt2 +
d

∑
i=1

(
r2 + a2

i

) (
dµ2

i + µ2
i dφ2

i

)
+

2Mr2

ΠF

(
dt +

d

∑
i=1

aiµ
2
i dφi

)2

+
ΠF

Π− 2Mr2 dr2,

F = 1−
d

∑
i=1

a2
i µ2

i
r2 + a2

i
, Π =

d

∏
i=1

(r2 + a2
i ), d =

{
D−2

2 , D even
D−1

2 , D odd.
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The full MP metric is complicated and in analysing the
solutions it is common to set all but one angular
momentum parameter to zero, this is known as the simply
rotating black hole.

This can be loosely
justified in brane
world scenario’s,
where colliding
particle momentum
will be confined to a
brane and therefore
any black hole created
on this brane would
only spin in this
direction.
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However, if the brane
is thick then there is
also the potential for
angular momentum to
occur in other
directions. ����
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Furthermore, one could imagine planck-scale processes
not confined to the brane (i.e., gravitons/strings etc)
creating black holes in the bulk spacetime with arbitrary
angular momentum. We are thus motivated to explore the
solutions with more than one angular momentum
parameter.
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Angular momentum
constraints
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Horizons hide singularities from outside observers.

Even in four dimensions for certain values of M and a the
Kerr solution can admit solutions without any horizon.
This occurs when:

∆ = r2 + a2 − 2Mr > 0

or
M < a

D > 4? For simply rotating black holes (⇒ only one a)
D = 5 is the only case where the angular momentum is
constrained. In particular it is known that M > a2/2.
Why is D = 5 special?
To “explain” this we calculate the angular momentum
constraints in higher dimensions in general with all
angular momentum parameters.
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In D-even dimensions the condition for the location of the
horizon is:

∆ = Π− 2Mr = 0, Π =
d

∏
i=1

(r2 + a2
i ).

There are only three possibilities for the number of
horizons:

r�
r

D

Let r̃ be the unique minima of ∆ for positive r.
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Then the black hole will be free of naked singularities
(that is to say a horizon exists) if:

∆(r̃) ≤ 0, r̃ > 0.

The inequality is saturated when ∆(r̃) = 0, equality
occurs iff r̃ is also an r-intercept. Therefore,

M ≥ Π(r̃h)

2r̃h
,

where r̃h is a solution to the simultaneous set of equations

∆(r̃h) = 0, ∂r∆(r̃h) = 0.

Or:
0 = r̃h∂rΠ(r̃h)−Π(r̃h)
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Using the product expansion:

j

∏
i=1

(r2 + a2
i ) =

j

∑
i=0

r2iAj−i
j ,

with the coefficients conveniently defined as

Ak
n = ∑

ν1<ν2<...νk

a2
ν1

a2
ν2

. . . a2
νk

,

where vk are summed over [1, n], 0 ≤ k ≤ n and
A0

k ≡ 1,

we can write

P2(r̃h) =
d

∑
i=0

(2i− 1)r̃2i
h Ad−i

d = 0.

d ≤ 4→ D− 2
2
≤ 4→ D ≤ 10
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In the D-odd case the location of the horizon is found by
the equation:

∆ = Π(l)− 2Ml = 0, Π =
d

∏
i=1

(l + a2
i ).

where l = r2.

Performing the same analysis again we find
that:

l̃h∂lΠ(l̃h)−Π(l̃h) = 0, M ≥ Π(l̃h)
2l̃h

and the polynomial for the odd case is:

P1(l̃h) =
d

∑
i=0

(i− 1)l̃ihAd−i
d = 0.

d ≤ 4→ D− 1
2
≤ 4→ D ≤ 9
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D=7 an example:

The polynomial is:

2l̃3h + l̃2h(a
2
1 + a2

2 + a2
3)− a2

1a2
2a2

3 = 0

and the solution can be written in closed form:

l̃h =
1
6

(
−(a2

1 + a2
2 + a2

3) +
1
p
(a2

1 + a2
2 + a2

3)
2 + p

)
,

p3 = −(a2
1 + a2

2 + a2
3)

3 + 54a2
1a2

2a2
3 + 6

√
3

×
√
−(a2

1 + a2
2 + a2

3)
3a2

1a2
2a2

3 + 27(a4
1a4

2a4
3),

and the constraint reads:

M ≥
(l̃h + a2

1)(l̃h + a2
2)(l̃h + a2

3)

2l̃h
.
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Results. M = 1.

(left) D = 5. (right) D = 6.
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Results. M = 1.

(left) D = 7. (right) D = 8.
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D All ai non-zero a1 = 0
4 M ≥ a1 M ≥ 0

5 2M ≥ a2
1 + a2

2 + |a1a2| M >
a2

2
2

6 M ≥ (r̃2
h+a2

1)(r̃
2
h+a2

2)
2r̃h

;
3r̃4

h + (a2
1 + a2

2)r̃
2
h − a2

1a2
2 = 0

M ≥ 0

7 M ≥ (l̃h+a2
1)(l̃h+a2

2)(l̃h+a2
3)

2l̃h
;

2l̃3h + l̃2h(a
2
1 + a2

2 + a2
3)− a2

1a2
2a2

3 = 0
M >

a2
1a2

2
2

8
M ≥ (r̃2

h+a2
1)(r̃

2
h+a2

2)(r̃
2
h+a2

3)
2r̃h

;
5r̃6

h + 3(a2
1 + a2

2 + a2
3)r̃

4
h

(a2
1a2

2 + a2
1a2

3 + a2
2a2

3)r̃
2
h − a2

1a2
2a2

3 = 0
M ≥ 0

...
...

...
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Conclusion
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I It is not only theoretically interesting to study black
holes with angular momentum in higher dimensions,
but there are also good physical reasons one should
consider beyond single rotation MP solutions.

I I derived the mass/angular momentum constraints
that apply to MP- black holes.

I In particular, it was shown that exact closed form
expressions could be obtained for dimensions less
than or equal to ten.

I These results can be used to show that none of the
MP black holes can be spun into naked singularities
using the Wald type gedanken experiment
generalised into D dimensions.

I It is worth mentioning that even if a black hole
satisfies the constraints presented it may not be
stable; classical instabilities of the Gregory-Laflamme
type are known to arise in the ultra spinning regimes.

19/32



I It is not only theoretically interesting to study black
holes with angular momentum in higher dimensions,
but there are also good physical reasons one should
consider beyond single rotation MP solutions.

I I derived the mass/angular momentum constraints
that apply to MP- black holes.

I In particular, it was shown that exact closed form
expressions could be obtained for dimensions less
than or equal to ten.

I These results can be used to show that none of the
MP black holes can be spun into naked singularities
using the Wald type gedanken experiment
generalised into D dimensions.

I It is worth mentioning that even if a black hole
satisfies the constraints presented it may not be
stable; classical instabilities of the Gregory-Laflamme
type are known to arise in the ultra spinning regimes.

19/32



I It is not only theoretically interesting to study black
holes with angular momentum in higher dimensions,
but there are also good physical reasons one should
consider beyond single rotation MP solutions.

I I derived the mass/angular momentum constraints
that apply to MP- black holes.

I In particular, it was shown that exact closed form
expressions could be obtained for dimensions less
than or equal to ten.

I These results can be used to show that none of the
MP black holes can be spun into naked singularities
using the Wald type gedanken experiment
generalised into D dimensions.

I It is worth mentioning that even if a black hole
satisfies the constraints presented it may not be
stable; classical instabilities of the Gregory-Laflamme
type are known to arise in the ultra spinning regimes.

19/32



I It is not only theoretically interesting to study black
holes with angular momentum in higher dimensions,
but there are also good physical reasons one should
consider beyond single rotation MP solutions.

I I derived the mass/angular momentum constraints
that apply to MP- black holes.

I In particular, it was shown that exact closed form
expressions could be obtained for dimensions less
than or equal to ten.

I These results can be used to show that none of the
MP black holes can be spun into naked singularities
using the Wald type gedanken experiment
generalised into D dimensions.

I It is worth mentioning that even if a black hole
satisfies the constraints presented it may not be
stable; classical instabilities of the Gregory-Laflamme
type are known to arise in the ultra spinning regimes.

19/32



I It is not only theoretically interesting to study black
holes with angular momentum in higher dimensions,
but there are also good physical reasons one should
consider beyond single rotation MP solutions.

I I derived the mass/angular momentum constraints
that apply to MP- black holes.

I In particular, it was shown that exact closed form
expressions could be obtained for dimensions less
than or equal to ten.

I These results can be used to show that none of the
MP black holes can be spun into naked singularities
using the Wald type gedanken experiment
generalised into D dimensions.

I It is worth mentioning that even if a black hole
satisfies the constraints presented it may not be
stable; classical instabilities of the Gregory-Laflamme
type are known to arise in the ultra spinning regimes.

19/32



If you are interested in these results please see my paper:

arXiv:1009.6118
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Questions
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