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Lattice Field Theory
~  1st-principle study of Gauge theory ~

Applied to LatticeQCD, Flavor physics, SUSY etc...

◆ Why expensive & What costs most ?

Peta-flops Computer is set now !!

Quark propagator !

RIKEN “KEI” in Kobe

◆ Numerical study based on Monte-Carlo simulation 2

I. INTRODUCTION

SLF =
1

2

∑

n,µ

ψn(ψn+µ − ψn−µ) ∼ i
∑

µ

sin(pµ) (1)

〈πnπm〉 =

∫
DU det D(U) e−SG(U)Tr[γ5D

−1(U)nmγ5D
−1(U)mn]

× Tr[γ5D
−1(U)nn]Tr[γ5D

−1(U)mm] (2)

Since the pioneering work in Ref. [1], the rich phase structure in the lattice Wilson fermion

has been extensively studied [2–6]. As is well-known [7], Wilson fermions bypass the no-go

theorem [8] and produce a single fermionic degree of freedom by breaking the chiral symmetry

explicitly. This leads to an additive mass renormalization and requires fine-tuning of a mass

parameter for a chiral limit. Furthermore at finite lattice spacing, there emerges a parity-

broken phase (Aoki phase) [1]. The full phase diagram reflects the masses possessed by each

of the original doublers. As seen from this fact, the main reason for the emergence of the

parity-broken phase is that the Wilson term gives a species(taste)-sensitive mass to produce

a mass splitting of species as well as breaking the chiral symmetry. The understanding of

the parity-broken phase structure is not only useful for simulations with Wilson fermions,

but also gives practical information for the application of overlap [9, 10] and domain-wall

[11, 12] fermions, both of which are built on the Wilson fermion kernel. Indeed it is shown in

[13] that the domain-wall fermion also possesses a complicated parity broken phase diagram

for a finite size of the extra dimension.

On the other hand, no parity-broken phase structure is observed in staggered fermions

[14–16] with their exact chiral symmetry. However things could be changed if we introduce

a taste-sensitive mass term, which we refer to as a taste-splitting or flavored mass in this

paper. Adams recently established theoretical foundation of the index theorem with stag-

gered fermions [17] and presented a new version of the overlap fermion constructed from the

staggered kernel [18, 19]. He introduced a taste-splitting mass term for the spectral flow to

detect the index correctly. This mass term assigns positive and negative masses to tastes

depending on their flavor-chiralities. After these works the present authors [20] successfully

defined the index in the naive and minimally doubled fermions [21–24] and presented new

versions of overlap fermions by implementing the flavored mass terms [25]. It is natural to

Still takes lots of time......



Fermion doubling problem

◆ Nielsen-Ninomiya’s no-go theorem

Chiral symmetry   v.s.  Absence of doublers    

Fermions emerge with doublers on the lattice.

3 relevant quarks in QCD cannot be described. 

No ideal fermion despite of long struggle

16 species in 
Brillouin zone

◆ How to bypass the no-go theorem
Wilson, Staggered, Minimal-doubled, Domain-wall, Overlap...
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Conventional Solutions
A : break χ-sym and restore it : Wilson term
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B : preserve χ-sym. and reduce species : Staggered

◆ Additive mass renormalization  → Fine-tune (expensive)

◆ Remove 3 doublers  →  Rooting (Non-local)

Dwilson

Species split into different mass
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◆ Ginsparg-Wilson chiral symmetry  →  Overlap (terribly expensive)

Naive fermion decomposed into 4 Staggered

No doubler!

Lower cost!

~O(1/a)
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Naive

Staggered

4 copies

Adams (2010)

3

associated Dirac operator to check the mass splitting of the tastes. Section IV is devoted to

a summary and discussion.

II. WILSON-TYPE FLAVORED MASS

We begin with the lattice action of the d = 4 staggered fermion [8–10] with a usual mass

M and a flavored mass Mf ,

S =
�

n

χ̄n(Dst + M + Mf )χn, (1)

Dst =
1

2
ηµ(Vµ − V−µ) (2)

where χn is a one-component fermionic field with four-dimensional coordinates n =

(n1, n2, n3, n4). ηµ = (−1)n1+...+nµ−1 corresponds to γµ in the naive fermion. The trans-

porter V±µ operates as V±µχn = Un,n+±µχn±µ. The flavored mass Mf generally contains this

transporter. For example, the Adams-type one is given by

Mf = Γ5Γ55 ∼ 1⊗ γ5 + O(a), (3)

with the two kinds of gamma-5 matrices

Γ55 = (−1)n1+n2+n3+n4 , (4)

Γ5 = η1η2η3η4

�

perm

C1C2C3C4, (5)

Cµ =
1

2
(Vµ + V−µ), (6)

where Tµ is the usual transporter in the µ direction. This mass term assigns the positive

mass (m = +1) to two tastes and the negative mass (m = −1) to the other two depending

on ± eigenvalues for Γ5Γ55 which we call the flavor- chirality. By using the staggered kernel

with this mass we obtain the two-flavor overlap fermion since only the tastes with negative

or zero mass remains massless in the overlap formulation as is well-known in the Wilson

case. On the other hand Hoelbling-type flavored mass is given by

Mf = iηµν
Cµν ∼ 1⊗ σµν + O(a), (7)

with

ηµν = (−1)
Pν

i=µ+1 ni for µ < ν, (8)

Cµν =
1

2
(CµCν + CνCµ). (9)
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1. Flavored mass for Staggered
(a) D. H. Adams, PRL104, 101602(2010)

Staggered overlap fermions Philippe de Forcrand
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Figure 5: Spectra of Adams’ operator. Left to right: free field, # = 6.0, # = 6.0 with larger " , # = 5.8.

tridiagonal matrix. Its eigenvalues are representative of those of H , and we replace them by their
sign. The results are presented in Fig. 4, for a free field (top) and a # = 6 configuration (bottom).
The 3 figures in each row show the relative norm of the residual, |r|/|r0|, vs. outer CG iterations
(left), number of matrix-vector multiplications (middle) and CPU time (right).

In the free field case, the CPU time to find the solution for Adams’ operator is almost an order
of magnitude smaller than for Neuberger’s, thanks to a construction of the sign function requiring
fewer matrix-vector multiplications, each with a smaller CPU cost. The inversion of the unitary
operator converges at the same rate, reflecting the similar spectral properties in the infrared.

The situation changes on a # = 6 configuration. The outer CG now converges noticeably faster
in Neuberger’s case (left). This advantage is offset by the cost of the sign function, which still is
cheaper in Adams’ case (middle). Finally, the CPU time per matrix-vector multiplication is a factor
O(2) smaller in Adams’ case (Adam’s matrix is one quarter the size of Neuberger’s, with each site
connected to (8+16) neighbours, instead of 8 with 2 Dirac components). In total, the CPU time to
find the solution is only O(2) times smaller in Adams’ case.

This loss of efficiency can be traced to changes in the spectrum of Adams’ kernel DA in the
presence of gauge field fluctuations, as illustrated in Fig. 5. While the free spectrum (left) is
remarkably close to the unit circle, it is quite different at # = 6 (2nd panel). The splitting of the 4
tastes into 2 pairs is markedly reduced. The reason is that the taste-dependence of the mass operator
$%5 is achieved via 4-link transporters: fluctuations in the gauge links are raised to the 4th power.
It is the same reason for which the chirality 〈&†%5&〉 of near-zero modes of the ordinary staggered
operator is so small [10]. Here, one may attempt to restore the mass splitting of the pairs of tastes,
by increasing the mass parameter m0, called " in Adams’ Ref. [2]. The effect of such increase is
shown Fig. 5 (3rd panel). The gap in the spectrum, which was the complete unit disk in the free
case, and which shrank to a small but disk-like shape at # = 6 for m0 = 1, now becomes a very
narrow band. Unitary projection of the operator becomes more difficult, and after unitarization
many modes are present near the origin, which makes inversion more difficult as well.
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2. Classification & Index theorem

(b) Creutz, Kimura & Misumi, JHEP1012,041(2010)

3. Aoki phase & Continuum in St.Wilson
Creutz, Kimura & Misumi (2011)

4. Numerical tests 
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FIG. 1. Spectrum of various kernel operators with r = 1 in the free field case on a 324 lattice.

Additionally, M1 has two crucial properties: it is hermitian and commutes with η. Both of

these follow straightforwardly from the definitions.

Using these properties, we can immediately see that the modified staggered operator 1

DA(m0) = Dst + r (1 +M1) +m0 (5)

with the Wilson-like parameter r fulfills a γ5-hermiticity like condition DA(m)η = ηD†
A(m).

Consequently, its non-real eigenvalues appear in complex conjugate pairs. Due to its spin-

flavor structure (4), the addition of M1 in (5) will spread out the spectrum in the real

direction, giving modes a mass term according to their approximate flavor chirality (cf.

fig. 1(a)). It was demonstrated in [1] that this operator is a suitable overlap kernel. The

resulting overlap operator obeys an index theorem with two fermion flavors [1, 6].

The fact that one is left with two fermion flavors originates in the dimension two of the

positive and negative flavor chirality subspaces in four space-time dimensions. In order to lift

this remaining degeneracy, an additional operator is needed, which differentiates between

flavors of the same chirality. In the flavor Clifford algebra, the natural candidates are

the matrices σµν = iξνξµ. The σµν commute with ξ5 and can therefore simultaneously be

diagonalized. Furthermore, σµν has one eigenvalue 1 and one −1 in both the positive and

negative chirality subspace. Therefore, one can choose a common diagonal basis where

ξ5 = diag(1, 1,−1,−1) σµν = diag(1,−1,−1, 1) (6)

1 Note that we have also added a mass term r +m0 in order to shift the physical part of the spectrum to

the correct position.

P. de Forcrand, et. al. (2011)
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FIG. 3: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 1,

δ = 0.25 background configuration on a 16 × 16 lattice. Two single crossings with positive slopes

are seen in (a), which means the index is −2. Two doubled crossings with positive slopes are seen

in (b), which means the index is −4.

FIG. 4: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 2,

δ = 0.2 background configuration on a 16 × 16 lattice. Six single crossings with positive slopes

and two single crossings with negative slopes are seen in (a), which means the index is −4. Six

doubled crossings with positive slopes and two doubled crossings with negative slopes are seen in

(b), which means the index is −8.

which contains a factor 2 reflecting two species. This relation is also satisfied by cases with

other topological charges, as shown in Fig. 4(a) for the case for Q = 2. Here the net number

of crossings counted with ± depending on the slopes is 4. It means the corresponding index

is −4, which is consistent with (31). We also emphasize that there is a clear separation

between low- and high-lying crossings in Fig. 3(a) where low-lying ones are localized about

(a) Creutz & Misumi, PRD82,074502(2010)
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FIG. 4: Aoki phase structure for the staggered fermion with the Adams-type flavored mass Γ5Γ55.

The left and right cusps correspond to one of two tastes with m = 1 and the other with m = −1.

A stands for a parity symmetric phase and B for Aoki phase.

qualitatively similar to our result for the d = 2 Gross-Neveu model except the number of

species associated with each cusp. In the four dimension, four tastes in the staggered fermion

with the Adams-type flavored mass split into two with positive mass and the other two with

negative mass depending on their flavor-chiralities. Thus each of the cusps in the phase

diagram will correspond to two tastes. If we consider another type of the flavored mass term

proposed in [19], the four tastes are split into one with positive mass, two with zero mass

and the other with negative mass. If we can take the chirally symmetric continuum limit

around the cusps, we obtain the two- or one-flavor staggered fermions with only the mass

parameter being fine-tuned, which will be numerically faster than Wilson fermion. Thus

the question here is whether we can take the massless continuum limit. We will discuss this

point in the next section with starting with the case of the naive fermion.

IV. CONTINUUM LIMIT

In this section we discuss the continuum limit of the naive and staggered Gross-Neveu

models with the flavored masses discussed in Sec. II and Sec. III. This analysis gives us

important informations on the continuum limit of the d = 4 QCD with these fermions. As

is well-known, the chiral symmetry is realized in the effective potential of the Gross-Neveu

model as the O(2) rotational symmetry about σ0 and π0. The purpose here is to figure out

the fine-tuned values of the mass and couplings to recover this symmetry for a → 0. We note
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What is special
1. Staggered Wilson & Overlap can make
    QCD simulation cheaper and faster.
    It will be a standard fermion in the future.

2. Staggered Overlap is another example of 
    GW fermion, namely the pure theoretical 
    solution for Doubling problem.
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associated Dirac operator to check the mass splitting of the tastes. Section IV is devoted to

a summary and discussion.

II. WILSON-TYPE FLAVORED MASS

We begin with the lattice action of the d = 4 staggered fermion [8–10] with a usual mass

M and a flavored mass Mf ,

S =
�

n

χ̄n(Dst + M + Mf )χn, (1)

Dst =
1

2
ηµ(Vµ − V−µ) (2)

where χn is a one-component fermionic field with four-dimensional coordinates n =

(n1, n2, n3, n4). ηµ = (−1)n1+...+nµ−1 corresponds to γµ in the naive fermion. The trans-

porter V±µ operates as V±µχn = Un,n+±µχn±µ. The flavored mass Mf generally contains this

transporter. For example, the Adams-type one is given by

Mf = Γ5Γ55 ∼ 1⊗ γ5 + O(a), (3)

with the two kinds of gamma-5 matrices

Γ55 = (−1)n1+n2+n3+n4 , (4)

Γ5 = η1η2η3η4

�

perm

C1C2C3C4, (5)

Cµ =
1

2
(Vµ + V−µ), (6)

where Tµ is the usual transporter in the µ direction. This mass term assigns the positive

mass (m = +1) to two tastes and the negative mass (m = −1) to the other two depending

on ± eigenvalues for Γ5Γ55 which we call the flavor- chirality. By using the staggered kernel

with this mass we obtain the two-flavor overlap fermion since only the tastes with negative

or zero mass remains massless in the overlap formulation as is well-known in the Wilson

case. On the other hand Hoelbling-type flavored mass is given by

Mf = iηµν
Cµν ∼ 1⊗ σµν + O(a), (7)

with

ηµν = (−1)
Pν

i=µ+1 ni for µ < ν, (8)

Cµν =
1

2
(CµCν + CνCµ). (9)

2

I. INTRODUCTION

SLF =
1

2

∑

n,µ

ψn(ψn+µ − ψn−µ) ∼ i
∑

µ

sin(pµ) (1)

〈πnπm〉 =

∫
DU det D(U) e−SG(U)Tr[γ5D

−1(U)nmγ5D
−1(U)mn]

× Tr[γ5D
−1(U)nn]Tr[γ5D

−1(U)mm] (2)

1

2
ψn(ψn+µ + ψn−µ − 2ψn) ∼ (1 − cos pµ) (3)

Since the pioneering work in Ref. [1], the rich phase structure in the lattice Wilson fermion

has been extensively studied [2–6]. As is well-known [7], Wilson fermions bypass the no-go

theorem [8] and produce a single fermionic degree of freedom by breaking the chiral symmetry

explicitly. This leads to an additive mass renormalization and requires fine-tuning of a mass

parameter for a chiral limit. Furthermore at finite lattice spacing, there emerges a parity-

broken phase (Aoki phase) [1]. The full phase diagram reflects the masses possessed by each

of the original doublers. As seen from this fact, the main reason for the emergence of the

parity-broken phase is that the Wilson term gives a species(taste)-sensitive mass to produce

a mass splitting of species as well as breaking the chiral symmetry. The understanding of

the parity-broken phase structure is not only useful for simulations with Wilson fermions,

but also gives practical information for the application of overlap [9, 10] and domain-wall

[11, 12] fermions, both of which are built on the Wilson fermion kernel. Indeed it is shown in

[13] that the domain-wall fermion also possesses a complicated parity broken phase diagram

for a finite size of the extra dimension.

On the other hand, no parity-broken phase structure is observed in staggered fermions

[14–16] with their exact chiral symmetry. However things could be changed if we introduce

a taste-sensitive mass term, which we refer to as a taste-splitting or flavored mass in this

paper. Adams recently established theoretical foundation of the index theorem with stag-

gered fermions [17] and presented a new version of the overlap fermion constructed from the

staggered kernel [18, 19]. He introduced a taste-splitting mass term for the spectral flow to

detect the index correctly. This mass term assigns positive and negative masses to tastes


