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Perturbative computation of scattering amplitudes:
theoretically possible up to any desired order, but ...

Gluon scattering amplitudes in N =4 U(N) super Yang-Mills
(N — o0)
* the “simplest” gauge theory in four dimensions

* useful testing ground for perturbative QCD calculations

Significant progress has been made in recent years

by making use of

® iterative structure in MHV amplitudes

(Bern, Dixon, Kosower, Smirnoyv; ...)

® dual superconformal symmetry

(Drummond, Henn, Korchemsky, Smirnov, Sokatchey, ...)



* BDS conjecture for MHV amplitudes ®ern-Dixon-Smirnov’os)
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n = 4,5 : confirmed (assuming the dual conformal symmetry)

n > 6 : there appears deviation called “remainder function”
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(Goal: to determine the remainder function

as a function of gluon momenta and the coupling

=

* It is useful to know the strong coupling behavior of gluon
scattering amplitudes by using the AdS/CFT correspondence



AdS/CFT Correspondence (Maldacena’97)
10d IIB Superstrings on

4d )N =4 U(N)
super Yang-Mills

* Strong-weak correspondence
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gluon scattering amplitude Wilson loop
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ko (Drummond, Henn, Korchemsky, Sokatchev ’07)
(Brandhuber-Heslop-Travaglini ’07)

A dS /CFT @ (Rey-Yee '98)

(Maldacena ’98)

[Alday—Maldacena proposal]

(Alday-Maldacena ’07)

* At strong coupling,
the amplitude is given by

the area of minimal surface in AdS s

with a null polygonal boundary

A, ~ e—zigA(kl,...,kn)



String theory description of the gluon scattering (aiday Maldacena o)

* Scattering of gluons is realized by that of open strings

<>
T-duality

(fermionic)

(Berkovits-Maldacena "08)
k1 (Beisert-Ricci-Tseytlin-Wolf ’08)




AdS, in the global coordinates
X X =
S(XTH? = (X0)? 4 (X1)? 4 (X2 4 (XP)? 4 (X*)? = —

Worldsheet coordinates z = (s +it), z = 3(s — it)
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Equations for classical strings in AdS, (minimal surfaces)
Equations of motion Virasoro constraints
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The simplest 4-cusp solution
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However, general n(> 4)-cusp solutions (' = X*/X1)

cannot be expressed in terms of
any known special functions.

On the other hand, the equations are classically integrable.



4 . .. : : , )
EOM and Virasoro conditions of classical strings in AdS,
90X — (80X -8X)X =0 X -9X =9X -0X =0
N J
<>
" Hitchin equations A b, b, A,, A5 :
D.®. =0, D.:®, =0 4x4 matirices
) L expresse
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_ X and derivatives
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/Auxiliary linear problem )
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There are 4 linearly independent solutions 1=
to the auxiliary linear problem.

In each angular sector Wk, one can define
the small solution sk (z; Z; ¢)
which shows the fastest decay for |2| — o©

Small solutions form an overcomplete basis of
the space of solutions to the auxiliary linear problem

s5(z,2) = —s1(2,2) + a282(2,2) + bzsz(z,2) + ca84(2, 2)

The coefficients a; (<), b:(¢), ci(¢)

characterize the minimal surface

Functional relations satisfied by the coefhcients

—=> Thermodynamic Bethe ansatz (TBA) equations !
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TBA equations (AdS, case) (¢ = €Y

/273 do’ vl
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(Alday-Maldacena-Sever-Vieira '10)
(Hatsuda-Ito-K.S.-Satoh ’10)

The regularized area is essentially given by

the free energy of the TBA system. (Alday-Gaiotto-Maldacena '09)
(Alday-Maldacena-Sever-Vieira '10)

n/2—3

do
—F = Z /g|ma| cosh 6 log(1 4 e <=(9)
a=1

The cross ratios of the gluon momenta are given by
the pseudo energies €.(0) evaluated at special values
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Underlying integrable model (Hatsuda-Tto-K S.-Satoh '10)

TBA equations for the AdS, case is identified with
that of the SU(N), homogeneous sine-Gordon model.

(Fernandez-Pousa-Gallas-Hollowood-Miramontes ’96, ’97)

(N =17-2)

CFT limit (high temperature limit)

boundary of the surface => regular polygon
TBA equations => algebraic equations

free energy = => central charge
o AdS, case:

homogeneous generalized SU(N)2
sine-Gordon model parafermion CFT U(1)N-1
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One can also compute the area of minimal surfaces
with a general polygonal boundary
by using conformal perturbation theory:.

(Hatsuda-Ito-K.S.-Satoh ’10)

* Conformal perturbation of the free energy

The free energy at temperature 1/L

= Ground state energy of the system with circumference L
(Al. Zamolodchikov ’90)
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Outline

gluon scattering amplitudes

minimal surfaces

in4d N'=4SYM in AdS,
—e Z —o—
»d CFT - - 2d Hitchin
system

1 2...n_5

TBA system
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Comparison with two-loop results

® Rescaled remainder function (Brandhuber-Heslop-Khoze-Travaglini ’09)

R2n — RZn,reg

R2n « —
R2n,reg — (n — 2)R6,reg

D, S V 101 N/ ipo |2
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(Y@)(Ml, Ma) = Y7._, Ci;NI}/° 1/ 5)

—Ltan T 4 20 cos*(2%) — 44/5 cos*(2T) log(2 cos T)

Cstrong ~ —0.0441916
5 5= glog2(2 cos g)

F2loop _ — 35 + 24 cos? % log(2 cos %) . 0.0449039
8 T 2 T ~ M
5 28+/5 cos® = log“(2cos %)
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Rescaled remainder functions at finite [
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Summary

Gluon scattering amplitudes in N =4 U(N) SYM
at strong coupling are described by TBA equations.

We identified the TBA equations in the AdS; case
with those of the homogeneous sine-Gordon models.
We developed the conformal perturbation theory for
the TBA system and obtained analytic perturbative

expansions of the amplitudes around the CFT point.

The rescaled remainder functions at strong coupling
and at two-loop show very similar structures.
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Prospects

* n(>10)-point amplitudes

* Higher order corrections

o AdS A and AdS s

The full Y-system possesses an irregular structure.

* (Quantum corrections

The novel operator product expansion may be useful.

(Alday-Gaiotto-Maldacena-Sever-Vieira ’10)

e Form factors (Maldacena-Zhiboedov ’10)
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