The Uses of Instantons in String Theory

Hirotaka Irie

Yukawa Institute for Theoretical Physics, Kyoto Univ.

June 20th 2012 @ YITP Lunch Seminar

Based on collaborations with Chuan-Tsung Chan (THU) and Chi-Hsien Yeh (NTU)

7. The uses of instantons (1977), by Sidney Coleman

This article generally discusses the basic roles of instantons in QM and QFT

it should be also applied to string theory

The first use: Instantons

$$S[X(t)] = \frac{1}{g^2} \int dt \left[\frac{1}{2} (\dot{X})^2 - V(X) \right]$$
Hamiltonian:

$$H = \frac{1}{2} (\dot{X})^2 + V(X)$$

$$H|1\rangle = E_{pert}|1\rangle$$

$$H|2\rangle = E_{pert}|2\rangle$$

$$I1\rangle$$

$$I2\rangle$$

$$X$$

$$I1\rangle$$

$$I2\rangle$$

$$I1\rangle$$

$$I2\rangle$$

$$I1\rangle$$

$$I2\rangle$$

The first use: Instantons

The second use: *Bounce* $S[X(t)] = \frac{1}{a^2} \int dt \left[\frac{1}{2} (\dot{X})^2 - V(X) \right] \langle$ $H = \frac{1}{2}(\dot{X})^2 + V(X)$ Hamiltonian: $\langle 1|H|1\rangle = E_{pert} + \frac{\pm i}{2}e^{-\mathcal{S}_{bounce}}$ Decay rate instability is caused by $\left|2 ight angle$ $\frac{\langle 2|2\rangle}{\langle 1|1\rangle} \sim e^{\beta(E_2 - E_1)} \to \infty$ $(\beta \to \infty)$ $|1\rangle$

Free-energy and chemical potentials

Free energy:
$$\mathcal{F} \equiv \frac{1}{\beta} \ln \mathcal{Z}, \quad \mathcal{Z} = \sum_{a} e^{-\beta E_{a}}$$

1) Instanton corrections:

$$\mathcal{F} \simeq E_{pert} - e^{-\mathcal{S}_{inst}} \quad (\beta \to \infty)$$

2) Bounce corrections:

$$\mathcal{F} \simeq E_{pert} + \frac{\pm i}{2} e^{-\mathcal{S}_{bounce}} \quad (\beta \to \infty)$$

Therefore, the non-perturbative effects have universal structure:

$$\mathcal{F} \simeq \mathcal{F}_{pert.} + \sum_{I} \theta_{I} \times e^{\mathcal{F}_{inst.}^{(I)}} + \cdots$$
Use of instantons \implies To know the Instanton Chemical Potential

However, they are invisible from Perturbation theory!

What happens in String Theory?

Then how about instanton corrections?

 $\sum \theta_I \times e^{\mathcal{F}_{inst.}^{(I)}} + \cdots$

However, we cannot extract any vacuum structure of string theory, unless we know something about the chemical potentials θ_I . We cannot know anything about the string theory landscape!

Non-perturbative completion program

$$\mathcal{F} \simeq \mathcal{F}_{pert} + \sum_{I} \theta_{I} \times \exp\left[g^{-a_{I}} \sum_{n=0}^{\infty} g^{n} \mathcal{F}_{n}^{(I)}\right] + \cdots$$

How to know the chemical potentials θ_I which define String Theory?

(cf. QM and QFT has path-integral!)

 \sim

Additional Principle for Non-perturbatively Complete String Theory [Chan-Irie-Yeh '10 ~]

- 1. There are many ways to non-perturbatively complete the above asymptotic expansions (almost for arbitrary θ_I)
- 2. Most of them are *not* "physically acceptable"
- 3. But, what is "physically acceptable?" \Leftrightarrow Additional Principle

Matrix Models

non-perturbative (solvable) formulation of String Theory

$$\mathcal{Z} = \int dM e^{N \mathrm{tr} V(M)} \Leftrightarrow$$
 2D (Non-critical) String Theory

With matrix models, we can know "physical value for θ_I " [Hanada-Hayakawa-Ishibashi-Kawai-Kuroki-Matsuo-Tada '04]

We should learn/extract the information from matrix models!

For, example, we succeeded:

- formulation of physical constraints in terms of Stokes phenomena (almost complete in non-critical string theory) [CIY2 '10] [CIY4 '12]
- We found Quantum Integrability (T-systems) in the physical constraint [CIY3 '11

What can we say about the string theory landscape?

Most of minimal string theory (tachyonless) is meta-stable [CIY4 '12]

$$\mathcal{F} \simeq \mathcal{F}_{pert} + \sum_{I} \theta_{I} \times \exp\left[g^{-a_{I}} \sum_{n=0}^{\infty} g^{n} \mathcal{F}_{n}^{(I)}\right] + \cdots$$
1. D-instanton: $a_{I} = 1, \quad \mathcal{F}_{0}^{(I)} < 0$
ghost D-instanton: $a_{I} = 1, \quad \mathcal{F}_{0}^{(I)} > 0 \quad \left(|B_{gh}\rangle \equiv -|B\rangle\right)$
[Okuda-Takayanagi '06]

Exponentially large \rightarrow Instability / break down of perturb. theory However, one has claimed that we can turn them off by spelling "it contradicts with perturbation theory!"

- Actually, minimal string theory *cannot avoid these branes* due to the physical consistency with matrix models [CIY4 '12]
- 3. Also, most of D-instantons in the worldsheet theory cannot appear!

Also with our constraints, we are now able to calculate

- 1. "which non-critical string theory is (un)stable"
- 2. "decay rate" of string theory [identify bounce solutions]
- 3. "true vacuum" of string theory [universal vacuum]
- 4. "the string-theory landscape" in this string theory

Why our physical constraints are special? \rightarrow Future investigation!

Summary

- The **instanton chemical potentials** in string theory are a key information for non-perturbative completion of string theory
- It is like path-integral formulation in QM and QFT. They are responsible for **analytic structure** of the string theory landscape
- With this information, we actually calculate "nonperturbative instability/decay rate/true vacuum" of string theory. They are quite universal.
- More fundamental understanding of *"why the matrix model is special"* is missing and remained for future investigations.