On "Universe" from canonical tensor model

Naoki Sasakura

Quantum gravity An idea - emergent space Space is dynamically generated, not fundamental.

The challenge: Discrete degree's of freedom Infrared Space Classical 3dim J Local b Gravily, mallers

TEASOT MADDLEL

Matrix model Mab

2dim quantum gravity String theory - Irie's Lunch talk Susy theories Statistical systems

Tensor model (Rank-three) Mabc Quantum gravity in D>2 Loop quantum gravity

Interpretations

· Feynman diagrams <-> simplicial manifolds

dependent on D

· Rank-three tensor model Mabc

 $f_a \cdot f_b = M_{ab} \, {}^c f_c$ Fuzzy space - universal for any D

Local Lime

How can time be introduced to tensor models?

(1) Global lime $M_{abc}(t)$

Problems: hard to believe, need God Lorentz symmetry easily broken

(2) Local time for each index $M_{(at_a)}(bt_b)(ct_c)$ Problem: multiple time integrals in Lagrangian

(3) Hamilton formalism with local time Dynamical evolution = time Kill unphysical modes automatically

Consistency of local Lime evolution

Time Evolution

Initial config

 $[H_a, H_b] = gauge transformation$ o(N)N : number of "points"

Local Hamillonian 1st surprise

$H_a = P_{a(bc)} P_{bde} M_{cde}$ (): symmetrization

 $\{M_{abc}, P_{def}\} = \delta_{abc, def}$

There exists one and only one on physically reasonable assumptions

Assumptions

(i) A Hamiltonian constraint has one index.
(ii) The kinematical symmetry is given by an orthogonal group.

(iii) A consistent first class constraint algebra is formed by a Hamiltonian constraint and the generators of the kinematical symmetry. (iv) A Hamiltonian constraint is invariant under time reversal transformation. (v) A Hamiltonian constraint is an at most cubic polynomial function of canonical variables. (vi) There are no disconnected terms in a constraint algebra.

First class constraint algebra $\{H(T_1), H(T_2)\} = D([\tilde{T}_1, \tilde{T}_2])$ $\{D(V), H(T)\} = H(VT)$ $\{D(V_1), D(V_2)\} = D([V_1, V_2])$ $H(T) = T^a H_a, \ D(V) = V^{ab} D_{ab}$ $D_{ab} = P_{cd[a}M_{b]cd}$: o(N) generators $\tilde{T}_{bc} = T^a P_{a(bc)}$ Open algebra - closes only on constraints

Localized Limit 2nd surprise

Formally replacing a->x and assuming local configurations,

 $M_{xyz}, P_{xyz} \approx 0$, unless $x \sim y \sim z$

reproduces the Dewitt algebra of GR $\{H(T_1), H(T_2)\} = D(T_1\partial^i T_2 - T_2\partial^i T_1)$ $\{D(V^i), H(T)\} = H(V^i\partial_i T)$ $\{D(V_1^i), D(V_2^i)\} = D(V_1^i\partial_i V_2^j - V_2^i\partial_i V_1^j)$ $H(T) = \int dx T(x) H(x), D(V^i) = \int dx V^i(x) H_i(x)$

Quantization (preliminary)

No space -> not a field theory Basically a quantum mechanical system

Quantization can be done by methods in Literatures.

Faddeev 1969

 $\int DPDM \, \delta(H_a) \delta(D_{ab}) \delta(\chi_a) \delta(\chi_{ab}) \text{Det}(\{HD,\chi\}) e^{i \int dt P\dot{M}}$ $\chi_a, \chi_{ab}: \text{gauge fixing condition}$

Example of gauge fixing condition $\chi_a = P_{abb} - t = 0 \qquad \text{cf. York time}$ $\chi_{ab} = P_{abb} - P_{aab} = 0$ By solving constraints and gauge fixing conditions

$$\int dt P\dot{M} = \int dt P^* \dot{M^*} - H^*(P^*, M^*)$$

Shrödinger equation

 $i \frac{\partial \psi}{\partial t} = H^* \psi$

Wave function dynamics N=2 "Universe" consisting of two "points"

Emergence of classicality

NES

Altractor Locality emerges M_{aab} M_{aaa} 6 $M_{abc} = 0$ 3rd surprise

Summary

 (1) Canonical tensor model with consistent local time is proposed.
(2) Contains some surprises.
(3) Interesting rich quantum dynamics.

Future problems Large N. Clarify quantum dynamics. Wheeler-DeWitt (with Prof. Freidel) Gravity. merely "Universe" or our Universe ?