Type Ic Core-Collapse Supernovae Evolved from Very Massive Stars

Takashi Yoshida YITP, Kyoto University

Collaborators: Hideyuki Umeda, Shinpei Okita Department of Astronomy, University of Tokyo

Lunch Seminar in YITP, July 10, 2013

Very massive star

Super-luminous supernova (SL SN)

Core-collapse supernova (CC SN)

Pair-instability supernova (PI SN)

Pulsational pair-instability supernova (PPI SN)

Very Massive Stars

 M > 100M_o stars are identified in young starburst regions!
 e.g., 165-320M_o in R136 cluster 105-170M_o in NGC3603

Fate of very massive stars Supernova?, Blackhole formation?

Super-Luminous Supernovae (SLSN)

Type Ic SL SN 2007bi

Takashi Yoshida Lunch Seminar, YITP, July 10, 2013

Explosion Mechanism of SN 2007bi

SN models reproducing light curve of SN 2007bi

PI SNe and PPI SNe

Final Fate of Very Massive Stars

Z=0.004 stars (TY & Umeda 2011, MNRAS 412, L78)

⁵⁶Ni Production of Aspherical CC SNe

Conclusions

Super-luminous supernovae

Some of them are expected to be evolved from very massive stars.
e.g. SN 2007bi: pair-instability (PI) SN or core-collapse (CC) SN?

Type Ic SNe with large ⁵⁶Ni production @ Z=0.004

- CCSN (PPI SN) with $M(^{56}Ni) \ge 3 M_{\odot}$
 - $110 \leq M_{\text{init}} \leq 280 \ M_{\odot}, E \geq 2 \times 10^{52} \ \text{erg}$
- PISN with $M(^{56}Ni) \gtrsim 3 M_{\odot}$

 $(M_{\text{init}} \ge 300 M_{\odot} \text{ with small mass loss rate})$

Aspherical CC SN models for SN 2007bi

≥ 250 M_{\odot} model, $E=7\times10^{52}$ erg: $\theta_{\rm op} \gtrsim 40^{\circ}$

110 M_{\odot} model, $E=5\times10^{52}$ erg: $\theta_{\rm op} \gtrsim 65^{\circ}$