Probing Physics beyond the Standard Model via Precision Particle Physics

Daisuke Nomura (野村大輔)

Lunch seminar at YITP, April 16, 2014

Lots of ways to search for (more) fundamental theory of elementary particles:

- $\bullet~String/M$ theory
- Cosmology
- Model building
- Physics at colliders, e.g. LHC, ILC, ...
- Precision particle physics
- •

Precision particle physics

- Assuming a well-established theory (e.g. the Standard Model), calculate physical observables at low energies as precisely as possible. Compare them with experiments.
- If there is a significant deviation between theory and exp., it may be a hint for new physics.
- If the precision is high enough, we can infer physics at higher enegies without using high energy experiments like LHC & ILC.
- Typical observables: the anomalous magnetic moment of the muon (the muon g-2), flavor violation ($b \rightarrow s\gamma, \mu \rightarrow e\gamma, \cdots$)

Article in "Nikkei Science" April 2014 Issue

Muon g-2: introduction

Lepton magnetic moment $\vec{\mu}$:

$$\vec{\mu} = -g \frac{e}{2m} \vec{s}$$
, $(\vec{s} = \frac{1}{2} \vec{\sigma}$ (spin), $g = 2 + 2F_2(0)$)

where

$$\overline{u}(p+q)\Gamma^{\mu}u(p) = \overline{u}(p+q)\left(\gamma^{\mu}F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_{2}(q^{2})\right)u(p)$$

Anomalous magnetic moment: $a \equiv (g-2)/2 \ (=F_2(0))$

Historically,

★ g = 2 (tree level, Dirac) ★ $a = \alpha/(2\pi)$ (1-loop QED, Schwinger)

Today, still important, since...

★ One of the most precisely measured quantities:

 $a_{\mu}^{\exp} = 11\ 659\ 208.9(6.3) \times 10^{-10}$ [0.5ppm] (Bennett *et al*)

★ Extremely useful in probing/constraining physics beyond the SM

Introduction: Standard Model prediction for muon g-2

QED contribution	11 658 471.808 (0.015)	Kinoshita & Nio, Aoyama et al					
\ensuremath{EW} contribution	15.4 (0.2)	Czarnecki et al					
Hadronic contributions							
LO hadronic	694.9 (4.3)	HLMNT11					
NLO hadronic	-9.8 (0.1)	HLMNT11					
light-by-light	10.5 (2.6)	Prades, de Rafael & Vainshtein					
Theory TOTAL	11 659 182.8 (4.9)						
Experiment	11 659 208.9 (6.3)	world avg					
Exp — Theory	26.1 (8.0)	3.3 σ discrepancy					

(in units of 10^{-10} . Numbers taken from HLMNT11, arXiv:1105.3149)

n.b.: hadronic contributions:

Introduction for $a_{\mu}^{had,LO}$

The diagram to be evaluated:

pQCD not useful. Use the dispersion relation and the optical theorem.

$$a_{\mu}^{\text{had,LO}} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\text{th}}}^{\infty} ds \ \frac{1}{s} \hat{K}(s) \sigma_{\text{had}}(s)$$

• Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \implies Lower energies more important $\implies \pi^{+}\pi^{-}$ channel: 73% of total $a_{\mu}^{\text{had,LO}}$

Included Hadronic Final States

Experiments with References
OLYA [16, 17, 18], OLYA-TOF [19], NA7 [20], OLYA and CMD [21, 22], DMI [23], DM2 [24], BCF [25, 26], MEA [27, 28], ORSAY- ACO [29], CMD 2 [10, 11, 30]
SND [31, 32]
SND [32, 33], CMD 2 [34, 35, 36]
ND [22], DM1 [37], DM2 [38], CMD-2 [10, 13, 34, 39], SND [40, 41], CMD [42]
MEA [27], OLYA [43], BCF [26], DM1 [44], DM2 [45, 46], CMD [22], CMD-2 [34], SND [47]
DM1 [48], CMD-2 [10, 14, 49], SND [47]
M3N [50], DM2 [51], OLYA [52], CMD-2 [53], SND [54], ORSAY- ACO [55], γγ2 [56], MEA [57]
ND and ARGUS [22], DM2 [51], CMD-2 [53, 58], SND [59, 60], ND [61]
ND [22], M3N [50], CMD [62], DM1 [63, 64], DM2 [51], OLYA [65],
γγ2 [00], CMD-2 [53, 67, 68], SND [54], ORSAY-ACO [55]
MEA [57], M3N [50], CMD [22, 62], γγ2 [56]
M3N [50]
DM2 [38], CMD 2 [69], DM1 [70]
M3N [50], CMD [62], DM1 [71], DM2 [72]
M3N [50], CMD [62], DM2 [72], γγ2 [56], MEA [57]
isospin-related
DM2 [73], CMD-2 [69]
DM2 [74, 75]
DM1 [76], DM2 [74, 75]
DM1 [77]
DM2 [74]
FENICE [78, 79], DM2 [80, 81], DM1 [82]
FENICE [78, 83]
$\gamma\gamma 2$ [84], MEA [85], M3N [86], BARYON-ANTIBARYON [87]
BES [88, 89], Crystal Ball [90, 91, 92], LENA [93], MD-1 [94], DASP [95], CLEO [96], CUSB [97], DHHM [98]

Table 1:	Experiments	and r	eferences	for th	ie e ⁺ e ⁻	data	sets for	the diff	èrent (exclusiv	ve and	$^{\mathrm{the}}$
inclusive	channels as	used in	n this ana	dysis.	The re	cent re	-analy	is from	CMD-	2 [10] s	superse	:des

channel	inclusive (1.43,2 GeV)		exclusive (1.43,2 GeV)		
	$a_{\mu}^{had,LO}$	$\Delta \alpha_{\rm had} (M_Z^2)$	$a_{\mu}^{had,LO}$	$\Delta \alpha_{\rm had} (M_Z^2)$	
$\pi^0 \gamma$ (ChPT)	0.13 ± 0.01	0.00 ± 0.00	0.13 ± 0.01	0.00 ± 0.00	
$\pi^0 \gamma$ (data)	4.50 ± 0.15	0.36 ± 0.01	4.50 ± 0.15	0.36 ± 0.01	
$\pi^+\pi^-$ (ChPT)	2.36 ± 0.05	0.04 ± 0.00	2.36 ± 0.05	0.04 ± 0.00	
$\pi^+\pi^-$ (data)	502.78 ± 5.02	34.39 ± 0.29	503.38 ± 5.02	34.59 ± 0.29	
$\pi^{+}\pi^{-}\pi^{0}$ (ChPT)	0.01 ± 0.00	0.00 ± 0.00	0.01 ± 0.00	0.00 ± 0.00	
$\pi^{+}\pi^{-}\pi^{0} (data)$	46.43 ± 0.90	4.33 ± 0.08	47.04 ± 0.90	4.52 ± 0.08	
$\eta\gamma$ (ChPT)	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	
$\eta\gamma$ (data)	0.73 ± 0.03	0.09 ± 0.00	0.73 ± 0.03	0.09 ± 0.00	
$K^{+}K^{-}$	21.62 ± 0.76	3.01 ± 0.11	22.35 ± 0.77	3.23 ± 0.11	
$K_{g}^{0}K_{L}^{0}$	13.16 ± 0.31	1.76 ± 0.04	13.30 ± 0.32	1.80 ± 0.04	
$2\pi^+ 2\pi^-$	6.16 ± 0.32	1.27 ± 0.07	14.77 ± 0.76	4.04 ± 0.21	
$\pi^{+}\pi^{-}2\pi^{0}$	9.71 ± 0.63	1.86 ± 0.12	20.55 ± 1.22	5.51 ± 0.35	
$2\pi^+ 2\pi^- \pi^0$	0.26 ± 0.04	0.06 ± 0.01	2.85 ± 0.25	0.99 ± 0.09	
$\pi^{+}\pi^{-}3\pi^{0}$	0.09 ± 0.09	0.02 ± 0.02	1.19 ± 0.33	0.41 ± 0.10	
$3\pi^+ 3\pi^-$	0.00 ± 0.00	0.00 ± 0.00	0.22 ± 0.02	0.09 ± 0.01	
$2\pi^+ 2\pi^- 2\pi^0$	0.12 ± 0.03	0.03 ± 0.01	3.32 ± 0.29	1.22 ± 0.11	
$\pi^+\pi^-4\pi^0$ (isospin)	0.00 ± 0.00	0.00 ± 0.00	0.12 ± 0.12	0.05 ± 0.05	
$K^{+}K^{-}\pi^{0}$	0.00 ± 0.00	0.00 ± 0.00	0.29 ± 0.07	0.10 ± 0.03	
$K_s^0 K_L^0 \pi^0$ (isospin)	0.00 ± 0.00	0.00 ± 0.00	0.29 ± 0.07	0.10 ± 0.03	
$K_{S}^{0}\pi^{\mp}K^{\pm}$	0.05 ± 0.02	0.01 ± 0.00	1.00 ± 0.11	0.33 ± 0.04	
$K_L^0 \pi^{\mp} K^{\pm}$ (isospin)	0.05 ± 0.02	0.01 ± 0.00	1.00 ± 0.11	0.33 ± 0.04	
$K\bar{K}\pi\pi$ (isospin)	0.00 ± 0.00	0.00 ± 0.00	3.63 ± 1.34	1.33 ± 0.48	
$\omega \rightarrow \pi^0 \gamma \pi^0$	0.64 ± 0.02	0.12 ± 0.00	0.83 ± 0.03	0.17 ± 0.01	
$\omega (\rightarrow \pi^0 \gamma) \pi^+ \pi^-$	0.01 ± 0.00	0.00 ± 0.00	0.07 ± 0.01	0.02 ± 0.00	
$\eta (\rightarrow \pi^0 \gamma) \pi^+ \pi^-$	0.07 ± 0.01	0.02 ± 0.00	0.49 ± 0.07	0.15 ± 0.02	
$\phi(\rightarrow \text{unaccounted})$	0.06 ± 0.06	0.01 ± 0.01	0.06 ± 0.06	0.01 ± 0.01	
$p\bar{p}$	0.00 ± 0.00	0.00 ± 0.00	0.04 ± 0.01	0.02 ± 0.00	
nñ	0.00 ± 0.00	0.00 ± 0.00	0.07 ± 0.02	0.03 ± 0.01	
$J/\psi, \psi'$	7.30 ± 0.43	8.90 ± 0.51	7.30 ± 0.43	8.90 ± 0.51	
$\Upsilon(1S - 6S)$	0.10 ± 0.00	1.16 ± 0.04	0.10 ± 0.00	1.16 ± 0.04	
inclusive R	73.96 ± 2.68	92.75 ± 1.74	42.05 ± 1.14	81.97 ± 1.53	
pQCD	2.11 ± 0.00	125.32 ± 0.15	2.11 ± 0.00	125.32 ± 0.15	
sum	692.38 ± 5.88	275.52 ± 1.85	696.15 ± 5.68	276.90 ± 1.77	

Important Channels

Contributions for $\sqrt{s} < 1.8 \text{GeV}$:

channel	HLMNT11	Davier et al '10	diff
$\pi^+\pi^-$	505.65 ± 3.09	507.80 ± 2.84	-2.15
$\pi^+\pi^-\pi^0$	47.38 ± 0.99	46.00 ± 1.48	1.38
K^+K^-	22.09 ± 0.46	21.63 ± 0.73	0.46
$\pi^+\pi^-2\pi^0$	18.62 ± 1.15	18.01 ± 1.24	0.61
$2\pi^+2\pi^-$	13.50 ± 0.44	13.35 ± 0.53	0.15
$K^0_S K^0_L$	13.32 ± 0.16	12.96 ± 0.39	0.36
$\pi^0\gamma$	4.54 ± 0.14	4.42 ± 0.19	0.12
	÷	:	:
Sum	634.28 ± 3.53	633.93 ± 3.61	0.35

table taken from HLMNT11

D. Nomura (YITP)

$\pi^+\pi^-$ channel: Zoom-In at ρ - ω Region 1400 BaBar (09) New Fit 1300 KLOE (10) KLOE (08) 1200 CMD-2 (07) ⊢ SND (06) -*- $\sigma^{0}(e^{+}e^{-} \rightarrow \pi^{+}\pi^{-})$ [nb] CMD-2 (04) + 1100 1000 900

D. Nomura (YITP)

Rad. Rtn. Data (for $\pi^+\pi^-$) and Our Combined Result

Full SM Result and Comparison with Other Groups

SUSY Contributions to Muon g-2

Suppose that the 3.3 σ deviation is due to SUSY... Leading SUSY contributions in the $m_Z/m_{\rm SUSY}$

In most cases, the $\tilde{\chi}^{\pm}$ - $\tilde{\nu}$ diagram (a) and/or the \tilde{B} - $\tilde{\mu}_{L/R}$ diagram (b) dominate. (Lopez-Nanopoulos-Wang, Chattopadhyay-Nath, Moroi, \cdots)

MSSM Contributions to Muon g-2

D. Nomura (YITP)

Probing bsm physics via precision particle pl

Summary

- Precision particle physics: powerful way to approach fundamental theory
- Muon g-2: typical example
- Hadronic contrib. to the muon g-2: key to improve the Standard Model prediction
- \gtrsim 3 σ discrepancy between experiment and theory \implies New Physics?

(\Leftrightarrow No new physics seen at the LHC so far. What does this mean?)

• Two new experiments to measure the muon g-2 planned at J-PARC and Fermilab.