Massive gravity and cosmology

Shinji Mukohyama

Based on collaboration with Antonio DeFelice, Garrett Goon, Emir Gumrukcuoglu, Lavinia Heisenberg, Kurt Hinterbichler, David Langlois, Chunshan Lin, Ryo Namba, Atsushi Naruko, Takahiro Tanaka, Norihiro Tanahashi, Mark Trodden

Why alternative gravity theories?

Three conditions for good alternative theories of gravity (my personal viewpoint)

- 1. Theoretically consistent e.g. no ghost instability
- 2. Experimentally viable solar system / table top experiments
- 3. Predictable e.g. protected by symmetry

Some examples

- I. Ghost condensation
 IR modification of gravity
 motivation: dark energy/matter
- II. Nonlinear massive gravityIR modification of gravitymotivation: "Can graviton have mass?"
- III. Horava-Lifshitz gravityUV modification of gravitymotivation: quantum gravity
- IV. Superstring theory
 UV modification of gravity
 motivation: quantum gravity, unified theory

A motivation for IR modification

- Gravity at long distances
 Flattening galaxy rotation curves
 extra gravity

 Dimming supernovae
 accelerating universe
- Usual explanation: new forms of matter (DARK MATTER) and energy (DARK ENERGY).

Dark component in the solar system?

Precession of perihelion observed in 1800's...

which people tried to explain with a "dark planet", Vulcan,

But the right answer wasn't "dark planet", it was "change gravity" from Newton to GR. Can we change gravity in IR?

Change Theory? Massive gravity Fierz-Pauli 1939 DGP model Dvali-Gabadadze-Porrati 2000

Change State? Higgs phase of gravity The simplest: Ghost condensation

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004.

Simple question: Can graviton have mass? May lead to acceleration without dark energy

Simple question: Can graviton have mass? May lead to acceleration without dark energy

Fierz-Pauli theory (1939) Unique linear theory without instabilities (ghosts)

Simple question: Can graviton have mass? May lead to acceleration without dark energy

Fierz-Pauli theory (1939)

Unique linear theory without instabilities (ghosts) van Dam-Veltman-Zhakharov discontinuity (1970) Massless limit ≠ General Relativity

Simple question: Can graviton have mass? May lead to acceleration without dark energy

Simple question: Can graviton have mass? May lead to acceleration without dark energy

Vainshtein mechanism (1972) Nonlinearity → Massless limit = General Relativity

Fierz-Pauli theory (1939) Unique linear theory

without instabilities (ghosts) Boulware-Deser ghost (1972) 6th d.o.f.@Nonlinear level → Instability (ghost)

van Dam-Veltman-Zhakharov discontinuity (1970) Massless limit ≠ General Relativity

Nonlinear massive gravity

de Rham, Gabadadze 2010 de Rham, Gabadadze & Tolley 2010

- First example of fully nonlinear massive gravity without BD ghost since 1972!
- Purely classical (but technically natural)
- Properties of 5 d.o.f. depend on background
- 4 scalar fields φ^a (a=0,1,2,3)
- Poincare symmetry in the field space: $\phi^a \rightarrow \phi^a + c^a, \quad \phi^a \rightarrow \Lambda^a_b \phi^b$

 $\Rightarrow f_{\mu\nu} \equiv \eta_{ab} \partial_{\mu} \phi^a \partial_{\nu} \phi^b$

Pullback of Minkowski metric in field space to spacetime

Systematic resummation

de Rham, Gabadadze & Tolley 2010

$$I_{mass}[g_{\mu\nu}, f_{\mu\nu}] = M_{Pl}^2 m_g^2$$

 $f_{\mu
u}\equiv\eta_{ab}\partial_{\mu}\phi^{a}\partial_{
u}\phi^{b}$

$$d^{4}x\sqrt{-g}\left(\mathcal{L}_{2}+\alpha_{3}\mathcal{L}_{3}+\alpha_{4}\mathcal{L}_{4}\right)$$
$$\mathcal{K}_{\mu}^{\mu}=\delta_{\mu}^{\mu}-\left(\sqrt{g^{-1}f}\right)^{\mu}$$

$$egin{aligned} \mathcal{L}_2 &= rac{1}{2} \left([\mathcal{K}]^2 - [\mathcal{K}^2]
ight) \ \mathcal{L}_3 &= rac{1}{6} \left([\mathcal{K}]^3 - 3 \left[\mathcal{K}
ight] \left[\mathcal{K}^2
ight] + 2 \left[\mathcal{K}^3
ight]
ight) \ \mathcal{L}_4 &= rac{1}{24} \left([\mathcal{K}]^4 - 6 \left[\mathcal{K}
ight]^2 \left[\mathcal{K}^2
ight] + 3 \left[\mathcal{K}^2
ight]^2 + 8 \left[\mathcal{K}
ight] \left[\mathcal{K}^3
ight] - 6 \left[\mathcal{K}^4
ight]
ight) \end{aligned}$$

No helicity-0 ghost, i.e. no BD ghost, in decoupling limit $\mathcal{K}_{\mu\nu} = \partial_{\mu}\partial_{\nu}\pi \implies \mathcal{L}_{2,3,4} = (\text{total derivative})$

No BD ghost away from decoupling limit (Hassan&Rosen)

Simple question: Can graviton have mass? May lead to acceleration without dark energy

Simple question: Can graviton have mass? May lead to acceleration without dark energy

Cosmological solutions of nonlinear massive gravity

D'Amico, et.al. (2011) Non-existence of flat FRW (homogeneous isotropic) universe!

Cosmological solutions of nonlinear massive gravity

Open universes with selfacceleration GLM (2011a) D'Amico, et.al. (2011) Non-existence of flat FRW (homogeneous isotropic) universe!

Cosmological solutions of nonlinear massive gravity

Cosmological solutions of nonlinear massive gravity

More general fiducial metric f_{μυ} closed/flat/open FRW universes allowed GLM (2011b)

Open universes with self acceleration GLM (2011a) NEW Nonlinear instability of FRW solutions DGM (2012)

D'Amico, et.al. (2011) Non-existence of flat FRW (homogeneous isotropic) universe!

Cosmological solutions of nonlinear massive gravity

Cosmological solutions of nonlinear massive gravity

Summary

- Nonlinear massive gravity free from BD ghost
- Open FLRW solutions exist but are unstable
- New class of cosmological solutions: anisotropic FLRW → statistical anisotropy (suppressed by small m_g²)
- Extended theories: extended quasidilaton, bimetric theory, rotation-invariant massive gravity...
- New matter coupling leads to stable cosmology

Why alternative gravity theories?

