Investigation of QCD phase diagram from imaginary chemical potential

Kouji Kashiwa

Collaborators of related studies

Masanobu Yahiroyo (Kyushu Univ.)
Hiroaki Kouno (Kyushu Univ.)
Yuji Sakai (RIKEN)

Wolfram Weise (ECT*, TUM)
Thomas Hell (TUM)
Robert D. Pisarski (BNL, RIKEN BNL)
Introduction: QCD phase diagram

Purpose of this research

Understanding the phase structure of Quantum Chromodynamics

We never observe quark itself
Quarks and gluons are confined

What happen when we consider extreme condition?

We want to know Quantum Chromodynamics (QCD) phase diagram
Introduction: QCD phase diagram

Schematic QCD phase diagram

- Temperature
- Real Quark chemical potential

- Hadron Phase
- Quark-Gluon Plasma Phase
- Color Superconducting Phase
Introduction: QCD phase diagram

Understand of QCD phase diagram is important!
Introduction: QCD phase diagram

Problem of first principle approach

First principle calculation of QCD at finite real chemical potential is not feasible ...

Lattice QCD simulation

It is numerical problem of lattice QCD...
Introduction: Lattice QCD simulation and sign problem

Several methods are proposed to circumvent the sign problem.

However ...

First principle calculation of QCD at finite real chemical potential is not feasible ...

Those methods are limited ...

(Region $\mu/T < 1$)
Our approach: Effective model + Lattice data

We extend effective models by using lattice data obtained at imaginary chemical potential.
Imaginary chemical potential approach

Our approach: Effective model + Lattice data

Why imaginary chemical potential??

1. There is no sign problem
2. Interesting behavior of QCD
Imaginary chemical potential approach

If the μ_I region has information of the μ_R region, we can construct reliable effective model!

Original (μ_R)
Shadow (μ_I)

O.K.!!
...

Year of the sheep
Imaginary chemical potential approach

Fortunately, the μ_I region has information of the μ_R region

Fourier transformation:

$$Z_{\text{Canonical}}(T, B) = \int_{-\infty}^{+\infty} d\left(\frac{\mu_I}{T}\right) e^{-iB\mu_I/T} Z_{\text{Grand Canonical}}(T, \mu_I)$$

Laplace transformation (Fugacity expansion):

$$Z_{\text{Grand Canonical}}(T, \mu_R) = \sum_{B=-\infty}^{+\infty} e^{B\mu_R/T} Z_{\text{Canonical}}(T, B)$$
If we can obtain reliable effective model,

we can investigate QCD phase structure, quantitatively!

Also, we may obtain reliable equation of state.
QCD at imaginary chemical potential

Phase structure at imaginary chemical potential

Perfectly different!

Roberge-Weiss (RW) periodicity

What model should we use?

Nambu–Jona–Lasinio (NJL) model

\[L = \bar{q} (i \gamma^\mu \partial_\mu - m_0) q + G_s \left((\bar{q}q)^2 + (\bar{q}i \gamma_5 \tau q)^2 \right) \]

This model only has 2π periodicity

We cannot use this model at imaginary chemical potential ...
What model should we use?

Polyakov–loop extended NJL (PNJL) model (Mean field approximation)

\[
L = \bar{q}(i\gamma^\mu D_\mu - m_0)q + G_s \left((\bar{q}q)^2 + (\bar{q}i\gamma_5 \bar{\tau}q)^2 \right) - U(\Phi, \bar{\Phi})
\]

Thermodynamic potential

\[
\frac{\Omega}{V} = U + U_M - 2N_f \int \frac{d^3p}{(2\pi)^3} \left[N_c E(p) + T \ln \left(1 + (\Phi + \bar{\Phi} e^{-\beta E^-}) e^{-\beta E^-} + e^{-3\beta E^-} \right) \right] + T \ln \left(1 + (\Phi + \bar{\Phi} e^{-\beta E^+}) e^{-\beta E^+} + e^{-3\beta E^+} \right) + \int \frac{d^3p}{(2\pi)^3} [N_c E(p) + T \ln \left(1 + (\Phi + \bar{\Phi} e^{-\beta E^-}) e^{-\beta E^-} + e^{-3\beta E^-} \right)]
\]

\[
U_M = G_s \sigma^2
\]
Results: Vector interaction

Vector type interaction in PNJL model

Vector interaction: $G_v \left(q \gamma^\mu q \right)^2$

Critical point is vanished!

Results: QCD phase diagram at imaginary chemical potential

Set C

<table>
<thead>
<tr>
<th>set</th>
<th>G_s</th>
<th>G_{s8}</th>
<th>G_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.498 GeV$^{-2}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>4.761 GeV$^{-2}$</td>
<td>403.89 GeV$^{-8}$</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>4.761 GeV$^{-2}$</td>
<td>403.89 GeV$^{-8}$</td>
<td>4.761 GeV$^{-2}$</td>
</tr>
</tbody>
</table>

TABLE II: Summary of the parameter sets in the PNJL calculations. The parameters Λ, m_0 and T_0 are common among the three sets: $\Lambda = 631.5$ MeV, $m_0 = 3.5$ MeV and $T_0 = 212$ MeV.

Lattice data:

Results: QCD phase diagram at imaginary chemical potential

This is rough estimate. We can determine the parameter set!
Results: QCD phase diagram at imaginary chemical potential

Results: QCD phase diagram at imaginary chemical potential

This is rough estimate. We can determine the parameter set!
Results: Colombia plot at imaginary chemical potential

C. Bonati, P. de Forcrand, M. D'Elia, O. Philipsen, F. Sanfilippo,

P. de Forcrand and O. Philipsen,

K.K., R. D. Pisarski,
Results: Colombia plot at imaginary chemical potential

We can obtain large model ambiguities at heavy quark mass region!

Introduction: QCD phase diagram

Boundary condition

Imaginary chemical potential can be converted to boundary condition.

Dual chiral condensate

Boundary angle dependent chiral condensate

Confinement-deconfinement transition
Introduction : QCD phase diagram

Hosotani mechanism

Condensation of extra-dimensional component of A_y

Beyond the standard physics (Higgs phenomenology)

Relation with μ_1 : K.K. and T. Misumi, JHEP 05 (2013) 042.

Z_3 symmetric QCD
H. Kouno, T. Misumi, K.K., T. Makiyama, T. Sasaki, M. Yahiro,

\[q_f(x, \beta = 1/T) = -\exp[i\theta_f]q_f(x,0) \]

\[\theta_2 = 2\pi/3 \]

\[\theta_3 = 4\pi/3 \]

Z_3 transformation
The imaginary chemical potential is a good region to construct reliable effective models.

- Roberge-Weiss periodicity and transition
- Finite value of quark number density

Parameters can be determined (ex. vector interaction)

Rough estimate of phase diagram

Imaginary chemical potential is very interesting and important region!

However, lattice data is not enough at the present...
I look forward to working with you again this year!