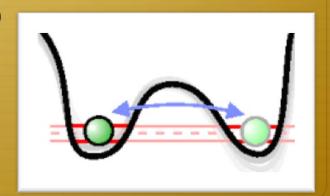


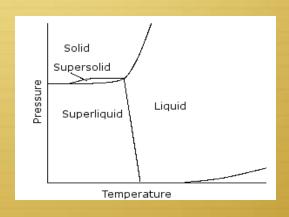
Effective Field Theory of Spatial Diffeomorphisms Breaking

Chunshan Lin YITP@Kyoto Lunch Seminar Ref: 1501.xxxxx To appear soon


♦ Space time diffeomorphisms are local symmetries In GR

$$t \to t + \xi^0, \qquad x^i \to x^i + \xi^i$$


- → Temporal diff breaking e.g. FRW universe
- \Rightarrow Spatial diff breaking \Rightarrow ?
- ♦ Three examples
 - + Monopole solution in SU(2) \rightarrow U(1)


$$\phi^a=f(r)rac{x^a}{r}\;, \qquad a=1,2,3,$$

Spatial diff is broken!

♦ Solid and Supersolid in condense matter physics

- Atoms flow without friction through a solid block supersolid
- At low energy, d.o.f of supersolid arise from the broken spatial translation symmetry

$$\langle \phi^a \rangle = x^a, \qquad a = 1, 2, 3.$$

- ♦ Massive gravity
 - Graviton is a massless spin-2 particle in GR;
 - Do we have a Higgs mechanism in gravity?

Massless spin 2 particle, 2 degrees of freedom

Massive spin 2 particle, 5 degrees of freedom

Fierz-Pauli (1939), dRGT (2010), Quasi-dilaton (2013)...

• 3 spatial diffeomorphisms breaking

3 extra degrees, eaten by graviton in the unitary gauge

- 2 gravitational wave modes
- 5 degrees of freedom in gravity

2 tensor, 2 vector, 1 scalar modes, all of them are massive

A massive gravity theory!

Effective field theory

♦ Traditionally

Covariant action

Solve the e.o.m

Spontaneous symmetry breaking

♦ EFT, an "up-side-down" approach

Given underlying symmetries

All operators

Recover General Covariance

EFT of spatial diff breaking

- ♦ We are interested in such theory:
 - 3 spatial diffeomorphi
 - Temporal diffe
 - There are only
 - SO(3) internal rota

We show that, the most generic effect, these 5 modes is (in unitary gauge)

Fixed by equation of motion, to cance out the tadpole to

Quadratic order operator, differences among different models are encoded in it!

$$S=\int d^4x \sqrt{-g}\left[rac{1}{2}M_p^2\mathcal{R}+m_H^2\sum_i G^{ii}+\Lambda+c\sum_i g^{ii}-M_p^2M^2ar{\delta}g^{ij}ar{\delta}g^{ij}+...
ight],$$

$$S=\int d^4x\sqrt{-g}\left[rac{1}{2}M_p^2\mathcal{R}+m_H^2\sum_iG^{ii}+\Lambda+c\sum_ig^{ii}-M_p^2M^2ar{\delta}g^{ij}ar{\delta}g^{ij}+...
ight],$$

• The Einstein equation yields

$$\begin{split} \Lambda &= -3M_p^2 \left(H^2 + \dot{H} \right) - 3m_H^2 \frac{\dot{H}}{a^2}, \\ c &= M_p^2 a^2 \dot{H} + m_H^2 \left(\dot{H} - H^2 \right). \end{split}$$

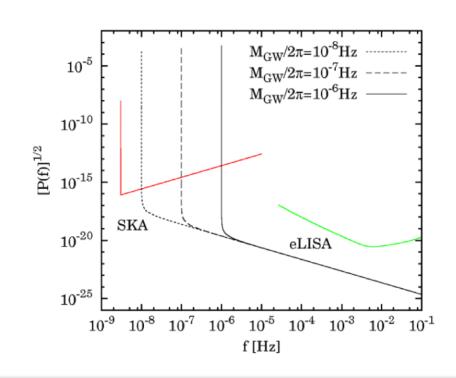
• It characterizes the most general theory of spatial diff breaking (with only 5 d.o.f), the action is an effective action of these 5 dynamical d.o.f, and it starts from quadratic order.

$$S=\int d^4x\sqrt{-g}\left[rac{1}{2}M_p^2\mathcal{R}+m_H^2\sum_iG^{ii}+\Lambda+c\sum_ig^{ii}-M_p^2M^2ar{\delta}g^{ij}ar{\delta}g^{ij}+...
ight],$$

• Recover the general covariance by

$$x^i \to x^i + \xi^i$$

$$\xi^i \to \pi^i, \quad \pi^i \to \pi^i - \xi^i.$$


• In the unitary g Goldston, by graviton, nonline general

Goldstone bosons, nonlinearly recover general covariance a massive spin 2 2+1) on the spectrum.

Several Remarks

- \Rightarrow The prediction of theory is characterized by a sixparameter set $\{H, \epsilon, \eta, s, M^2, m_H^2\}$.
- ♦ Massive tensor mode

There is a sharp peak on the stochastic gravitational waves spectrum, due to the graviton mass!
(1208.5975, by Emir, Sachiko, CL, Shinji, Norihiro)

Several Remarks

- → In Minkowski space time, these 5 degrees are strongly coupled, and effective field theory breaks down;
- ✦ However, we can still find a stable self-accelerating solution;
- ♦ The effective theory with matter taken into account?
- ♦ Extend to non-linear perturbation theory?
- ♦ Possible observational phenomena on CMB, LLS, solar system test, binary pulsar...

Thank You! Please look left and right, up and down, front and back. If they are different, it means our work is not meaningless!