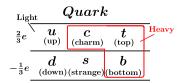

Hadronic molecular states and Heavy Quark Spin Symmetry

Yasuhiro Yamaguchi¹

¹YITP Kyoto University, Japan

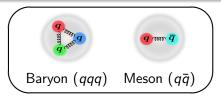


Lunch Seminar 5/13 2015, YITP

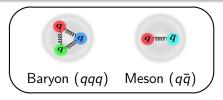
イロト 不得 とくほ とくほ とうほう

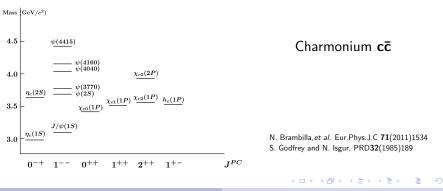
Outline

- 1. Introduction
 - Hadronic molecules
 - Heavy Quark Spin Symmetry and One pion exchange potential
- **2.** Meson-Nucleon molecules: $\overline{D}N$ and BN
- **3.** $\overline{D}NN$ and BNN
- 4. Summary



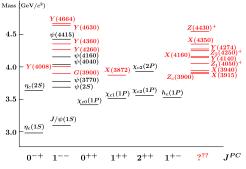
Hadronic molecules $P^{(*)}$ N

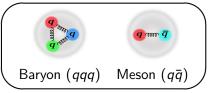

Exotic hadrons in the heavy quark region Introduction


- Constituent quark model (baryon(qqq), meson (qq̄))
- \Rightarrow successfully applied to hadron spectra.

Exotic hadrons in the heavy quark region Introduction

 ▷ Constituent quark model (baryon(qqq), meson (qq̄))
 ⇒ successfully applied to hadron spectra.

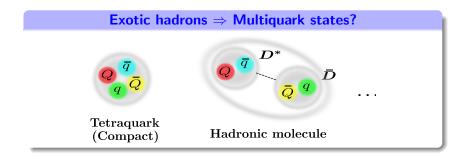




Exotic hadrons in the heavy quark region Introduction

- ⇒ successfully applied to hadron spectra.

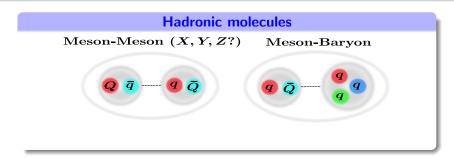
New Exotic hadrons X, Y, Z in the heavy quark (c, b) sector



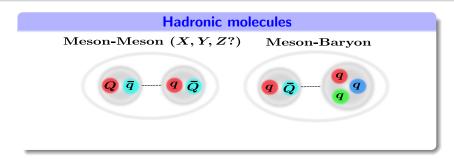
N. Brambilla, et al. Eur. Phys. J.C **71**(2011)1534 S. Godfrey and N. Isgur, PRD**32**(1985)189

 ▷ What is the structure of exotic hadrons? (□) < (□)</th>

 5/13 2015
 Yasuhiro Yamaguchi(YITP)
 Lunch Seminar@YITP


Exotic structure: Hadronic molecules

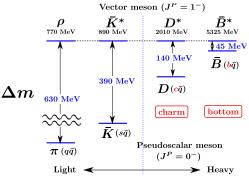
э


∃ >

Exotic structure: Hadronic molecules

- Loosely bound states (resonances) of hadrons
 - \rightarrow Appearing near the thresholds (M-M, M-B,...)
- Molecules are formed by the Hadron-Hadron interaction dynamically.

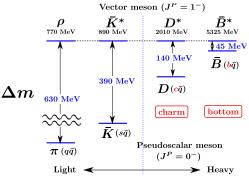
Exotic structure: Hadronic molecules



- Loosely bound states (resonances) of hadrons
 - \rightarrow Appearing near the thresholds (M-M, M-B,...)
- Molecules are formed by the Hadron-Hadron interaction dynamically.

In the Heavy-hadron interaction, the Heavy Quark Spin Symmetry plays an important role!

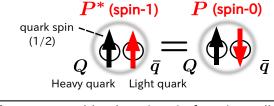
Mass degeneracy of heavy hadrons


• Mass difference between vector and pseudoscalar mesons. $(Q\bar{q}, q = u, d)$

- $\triangleright \Delta m$ decreases when the quark mass increases.
- ▷ Masses of $\{B, B^*\}$ ($\{D, D^*\}$) are almost degenerate.

Mass degeneracy of heavy hadrons

• Mass difference between vector and pseudoscalar mesons. $(Q\bar{q}, q = u, d)$

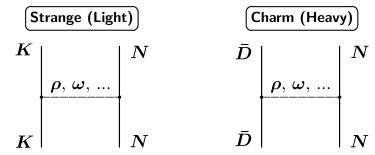


- $\triangleright \Delta m$ decreases when the quark mass increases.
- ▷ Masses of $\{B, B^*\}$ ($\{D, D^*\}$) are almost degenerate. → Heavy Quark Spin Symmetry!

Heavy Quark Spin Symmetry and Mass degeneracy Introduction

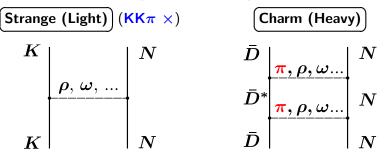
Heavy Quark Spin Symmetry (HQS) N.Isgur, M.B.Wise, PLB232(1989)113

- Spin-spin force between quarks is suppressed in $m_Q \rightarrow \infty$.
- e.g. Heavy-light mesons


 Δm_{P^*P} caused by the spin-spin force is small.

 \Rightarrow Mass degeneracy of hadrons with the different spins.

- Mass degeneracy of $\{D, D^*\}(Q\bar{q})$, $\{\eta_c, J/\psi\}(Q\bar{Q})$, $\{\Sigma_c, \Sigma_c^*\}(Qqq)$ (baryons)...
- New symmetry appearing in the heavy quark region!


Interaction in the heavy flavor sector

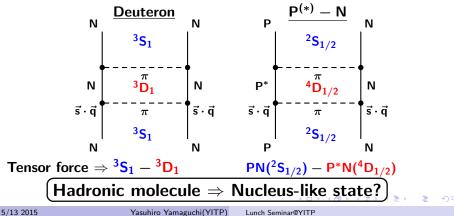
- Interaction between K (light meson) and N
 - \Rightarrow Short range force (ρ , ω exchanges...) dominates.

Interaction in the heavy flavor sector

• Interaction between K (light meson) and N \Rightarrow Short range force (ρ , ω exchanges...) dominates.

- In the heavy sector, $\overline{D} \overline{D}^*$ mixing caused by small $\Delta m_{\overline{D}\overline{D}^*}$ enhances the one π exchange potential (OPEP).
- The small Δm_{DD^*} is induced by the Heavy Quark Spin Symmetry!

 $m_{K^*} - m_K \sim 400 \text{ MeV} \Leftrightarrow m_{D^*} - m_D \sim 140 \text{ MeV}$


OPEP: Important role in the nuclei (H.Yukawa 1935)

• One pion exchange potential

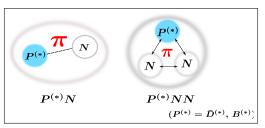
$$V_{PN-P^*N}^{\pi} = -\frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_N f_{\pi}} \frac{1}{3} \begin{bmatrix} \vec{\varepsilon}^{\dagger} \cdot \vec{\sigma} C(r) + S_{\varepsilon} T(r) \end{bmatrix} \vec{\tau}_P \cdot \vec{\tau}_N$$

Spin-spin force **Tensor force**

S.Yasui and K.Sudoh PRD80(2009)034008

▷ T(r) generates **the strong attraction!** \Leftrightarrow Deuteron

 Additional π exchange ⇒ Meson-Meson (X, Y, Z), Meson-Baryon (Meson Nuclei) molecules

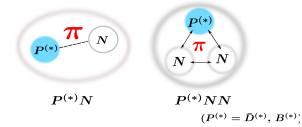

э

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

• Additional π exchange \Rightarrow Meson-Meson (X, Y, Z), Meson-Baryon (Meson Nuclei) molecules

Main Subject

• Hadronic molecules formed by Heavy meson-Nucleon with the π exchange potential.



- $P = \overline{D}(\overline{c}q), B(\overline{b}q) \rightarrow \text{No } q\overline{q} \text{ annihilation}!$
- ⇒ Bound states of $\overline{D}(B)$ nuclei are stable against the strong decay! (Genuinely exotic states!)
 - $\Leftrightarrow K(\bar{s}q) \text{ nuclei (Light sector) have not been found.}$

(KN interaction is repulsion.)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Results of P^(*)N and P^(*)NN states

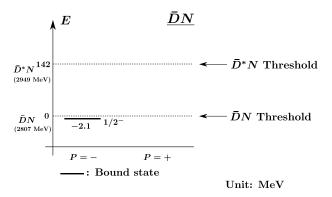
Bound state and Resonance

- We solve the coupled-channel Schrödinger equations for *PN* and *P***N* channels.
- Interaction: π , ρ , ω exchange potentials

・ 同 ト ・ ヨ ト ・ ヨ ト

•
$$J^P = 1/2^{\pm}, 3/2^{\pm}, 5/2^{\pm}$$
 with $I = 0$

Unit: MeV

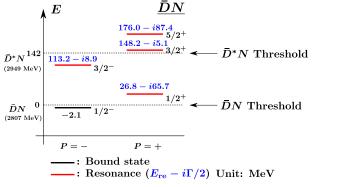

・ロト ・四ト ・ヨト ・ヨト

Y.Y., S.Ohkoda, S.Yasui and A.Hosaka, PRD84 014032 (2011) and PRD85 054003 (2012)

э

•
$$J^P = 1/2^{\pm}, 3/2^{\pm}, 5/2^{\pm}$$
 with $I = 0$

One bound state

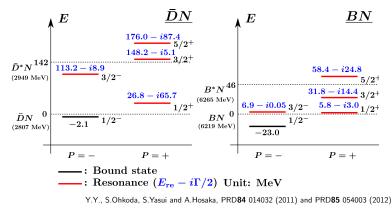

Y.Y., S.Ohkoda, S.Yasui and A.Hosaka, PRD84 014032 (2011) and PRD85 054003 (2012)

(a)

э

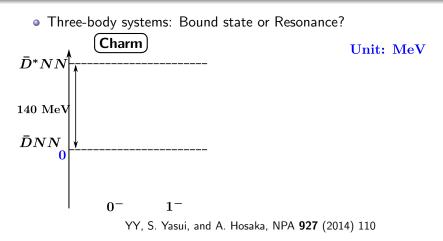
•
$$J^P = 1/2^{\pm}, 3/2^{\pm}, 5/2^{\pm}$$
 with $I = 0$

One bound state, and resonances in charm

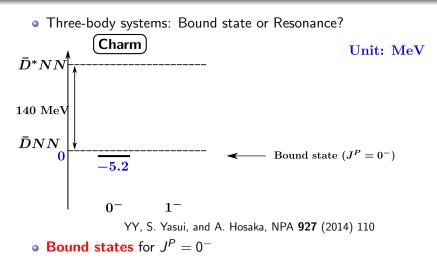


Y.Y., S.Ohkoda, S.Yasui and A.Hosaka, PRD84 014032 (2011) and PRD85 054003 (2012)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

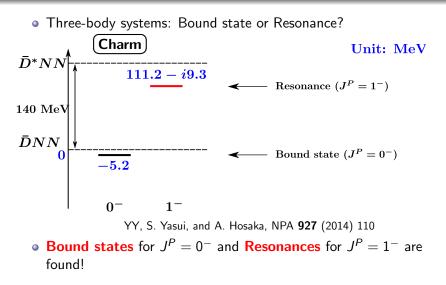

•
$$J^P = 1/2^{\pm}, 3/2^{\pm}, 5/2^{\pm}$$
 with $I = 0$

One bound state, and resonances in charm and bottom sectors!

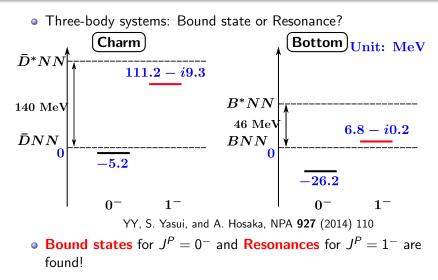


■ Many states near the thresholds. ⇔ No KN bound state

$\bar{D}^{(*)}$ NN and $B^{(*)}$ NN for I = 1/2 (3-body) \bar{D} NN and BNN



$\bar{\mathsf{D}}^{(*)}\mathsf{NN}$ and $\mathsf{B}^{(*)}\mathsf{NN}$ for $\mathsf{I}=1/2$ (3-body) $_{\bar{\mathsf{D}}\mathsf{NN}}$ and $_{\mathsf{BNN}}$


/⊒ ► < ∃ ►

$\bar{D}^{(*)}$ NN and $B^{(*)}$ NN for I = 1/2 (3-body) \bar{D} NN and BNN

伺 と く き と く き と

$\bar{\mathsf{D}}^{(*)}\mathsf{NN}$ and $\mathsf{B}^{(*)}\mathsf{NN}$ for $\mathsf{I}=1/2$ (3-body) $_{\bar{\mathsf{D}}\mathsf{NN}}$ and $_{\mathsf{BNN}}$

New exotic states!

Energy expectation values of the bound states $\bar{\text{DNN}}$ and BNN

Q. How is the bound state formed?

 \Rightarrow Expectation values of the potentials $\left<\psi\right|\left.V\left|\psi\right>$

The bound state of $ar{D}NN(0^-)$ (Unit: MeV)				
$\bar{D}^{(*)}NN$	$\langle V_{\bar{D}N\!-\!\bar{D}^*N} angle$	$\langle V_{ar{D}^*N\!-\!ar{D}^*N} angle$	$\langle V_{NN} \rangle$	
Central	-3.1	0.1	-9.2	
Tensor	-45.6	-1.0	-0.3	
LS			-0.5	

YY, S. Yasui, and A. Hosaka, NPA 927 (2014) 110

Energy expectation values of the bound states $\bar{\text{DNN}}$ and BNN

Q. How is the bound state formed?

 \Rightarrow Expectation values of the potentials $\left\langle \psi\right|$ V $\left|\psi\right\rangle$

The bound state of $ar{D}NN(0^-)$ (Unit: MeV)				
$\bar{D}^{(*)}NN$	$\langle V_{\bar{D}N\!-\!\bar{D}^*N} angle$	$\langle V_{ar{D}^*N\!-\!ar{D}^*N} angle$	$\langle V_{NN} \rangle$	
Central	-3.1	0.1	-9.2	
Tensor	-45.6	-1.0	-0.3	
LS			-0.5	

YY, S. Yasui, and A. Hosaka, NPA 927 (2014) 110

 V_{D̄N-D̄*N} (Tensor) generates the strong attraction.
 ⇔ the NN force (V_{NN}) plays a minor role, because the Deuteron channel (J^P_{NN} = 1⁺) is suppressed. (D̄NN(J^P = 0⁻))

Summary

Subject: Hadronic molecules $P^{(*)}N$ and $P^{(*)}NN$ by introducing Heavy quark symmetry and OPEP

• New Bound states and Resonances are found in $P^{(*)}N$ and $P^{(*)}NN$ in the heavy quark sectors.

ᆂ

- The Heavy quark symmetry enhances the OPEP between the heavy meson *P* and the nucleon *N*.
- Tensor force of OPEP in PN P*N mixing plays a crucial role to produce the New Exotic states.

Thank you for your kind attention.