Lunch Seminar 2015/06/10

Quantum Entanglement of Local Operators

Masahiro Nozaki

Yukawa Institute for Theoretical Physics (YITP), Kyoto University

Kadanoff Center for Theoretical Physics, The University of Chicago

arXiv:1401.0539 [hep-th]
 arXiv:1405.5875 [hep-th]
 arXiv:1405.5946 [hep-th]
 arXiv.15xx.xxxx[hep-th]

Recently, (Renyi) entanglement entropy ((R)EE) has a center of wide interest in a broad array of theoretical physics.

- It is useful to study the distinctive features of various quantum state in condensed matter physics. (*Quantum Order Parameter*)
- (Renyi) entanglement entropy is expected to be an important quantity which may shed light on the mechanism behind the AdS/CFT correspondence .(*Gravity* ↔ *Entanglement*)

Recently, (Renyi) entanglement entropy ((R)EE) has a center of wide interest in a broad array of theoretical physics.

- In the lattice gauge theory, it is expected that entanglement entropy is a new order parameter which helps us study QCD more.
- But entanglement entropy in the gauge theory is ill-defined.

Recently, (Renyi) entanglement entropy ((R)EE) has a center of wide interest in a broad array of theoretical physics.

- In the lattice gauge theory, it is expected that entanglement entropy is a new order parameter which helps us study QCD more.
- But entanglement entropy in the gauge theory is ill-defined.

It is important to study the properties of (Renyi) entanglement entropy.

Recently, (Renyi) entanglement entropy ((R)EE) has a center of wide interest in a broad array of theoretical physics.

- In the lattice gauge theory, it is expected that entanglement entropy is a new order parameter which helps us study QCD more.
- But entanglement entropy in the gauge theory is ill-defined.

In this work, we investigate the time dependent property of (Renyi) entanglement entropy.

The Definition of (Renyi) Entanglement Entropy

• Definition of Entanglement Entropy

We divide the total Hilbert space into A and B: $H_{tot} = H_A \otimes H_B$. The reduced density matrix ρ_A is defined by $\rho_A \equiv Tr_B \rho_{tot}$ This means the D O F in B are traced out.

The entanglement entropy is defined by von Neumann entropy S_A .

on a certain time slice

Motivation

Previously, we studied the property of EE for the subsystem whose size (*I*) is *very small* in d CFT.

Setup

We study the property of (R)EE for

1. The size of subsystem is *infinite*. ∧

A half of the total system:

$$x^1 \ge 0$$

Setup

We study the property of (R)EE for

2. A state is defined by acting a local operator
 on the ground state:

 t

2. A state is defined by acting a local operator on the ground state:

$$|\Psi\rangle = \mathcal{NO}(t, x^i) |0\rangle$$

Motivation

We would like to focus on the time evolution of the (R)EE.

We define $\Delta S_A^{(n)}$ the excess of the (R)EE:

$$\Delta S_A^{(n)} = S_A^{(n)Ex} - S_A^{(n)G},$$

 $S_A^{(n)Ex}$: (R)EE for $\hat{\rho}_A$ (Reduced Density Matrix for $|\Psi\rangle = \mathcal{NO}(t, x^i) |0\rangle$)

 $S_A^{(n)G}$: (R)EE for the ground state

- 1. Free massless scalar field theory
- 2. U(N) or SU(N) free massless scalar field theory in Large N limit
- 3. Free massless fermionic field theory
- 4. Holographic field theory

- **1**. Free massless scalar field theory
- 2. U(N) or SU(N) free massless scalar field theory in Large N limit
- 3. Free massless fermionic field theory
- 4. Holographic field theory

4. Holographic field theory

4. Holographic field theory

Results

 $\Delta S_A^{(n)} \, \text{At Late Time(t >> /)}$

F.T.	Operator	$n \ge 2$	n = 1
Free Massless Scalar	$:(\partial^m\phi)^k:$	$\frac{1}{1-n} \log \left(\frac{1}{2^{nk}} \sum_{j=0}^{k} (_k C_j)^n \right)$	$k \cdot \log 2 - \frac{1}{2^k} \sum_{j=0}^k {}_k C_j \log {}_k C_j$
U(N),SU(N) Free Massless Scaler	$Tr(\phi_1 + i\phi_2)^J$	$\frac{2n-1}{n-1} \cdot \log 2$	$\log\left(2\sqrt{2}N\right)$ J=2
Free Massless Fermion	$ar{\psi}\psi$	$\frac{1}{1-n} \log \left[\frac{2 \cdot 12^n + 4 \cdot 9^n + 4}{2^{6n}} \right]$	$\frac{3}{4}\log\left(\frac{128}{9}\right)$
AdS/CFT	Gauge invariant Operator \mathcal{O}_Δ	$\frac{4n\Delta}{d(n-1)}\log t$ $1 \ll \Delta \ll c$	$rac{c}{6}\log t$ 2d CFT $\Delta \simeq c$

Results

$\Delta S_A^{(n)}$ At Late Time(t >> /)

F.T.	Operator	$n \ge 2$	n = 1
Free Massless Scalar	$:(\partial^m\phi)^k:$		
U(N),SU(N) Free Massless Scaler	$Tr(\phi_1 + i\phi_2)^J$	Constant	
Free Massless Fermion	$ar{\psi}\psi$		
AdS/CFT	Gauge invariant Operator \mathcal{O}_Δ	$\frac{4n\Delta}{d(n-1)}\log t$ $1 \ll \Delta \ll c$	$\frac{c}{6} \log t$ 2d CFT $\Delta \simeq c$

Example

We consider *free massless scalar* field theory in *d+1 dim*. Especially, we focus on that in *4 dim*.

We act a local operator $\phi(-t, -l, \mathbf{x})$ on the ground state: $|\Psi\rangle = \mathcal{N} \quad \phi(-t, -l, \mathbf{x}) |0\rangle$.

We measure the (Renyi) entanglement entropies at t=0.

Results

$\Delta S_A^{(n)}$ At Late Time(t >> /)

F.T.	Operator	$n \ge 2$	n = 1
Free Massless Scalar	$:(\partial^m\phi)^k:$		
<i>U(N),SU(N)</i> Free Massless Scaler	$Tr(\phi_1 + i\phi_2)^J$	Cons	stant
Free Massless Fermion	$ar{\psi}\psi$		
AdS/CFT	Gauge invariant Operator \mathcal{O}_Δ	Logarithmi	cally Grows

Summary

- If non-perturbative effect for ${\it c}$ or ${\it N}_{\it r}\,\Delta S^{(n)}_A$ can possibly approach constant.

•Free field theory (Infinite conserved charges) → Quasi-particle picture holds

$$\Rightarrow \qquad \Delta S_A^{(n)} \rightarrow Constant$$

Holographic CFT→ Quasi-particle picture breaks down

$$\Rightarrow \Delta S_A^{(n)} \Rightarrow Not constant$$

Future Problems

- In non-relativistic case, the time evolution of $\Delta S_A^{(n)}$
- In gauge field theory, $\Delta S_A^{(n)}$
- The (Renyi) entanglement entropies of operators in the interacting field theory . (also massive and charged Renyi.)

- Beyond large N, we investigate $\Delta S_A^{(n)}$.
 - approach constant?
 - diverge?