# Quark deconfinement in lattice QCD: From Hadrons to Quarks

Yu Maezawa (前澤祐) Nuclear Physics group, YITP

Phys. Rev. Lett. 111 (2013) 082301 Phys. Lett. B 737 (2014) 210

A. Bazavov,<sup>1</sup> H.-T. Ding,<sup>1,2</sup> P. Hegde,<sup>3</sup> O. Kaczmarek,<sup>4</sup> F. Karsch,<sup>1,4</sup> E. Laermann,<sup>4</sup> Y. Maezawa,<sup>1</sup> Swagato Mukherjee,<sup>1</sup> H. Ohno,<sup>4</sup> P. Petreczky,<sup>1</sup> C. Schmidt,<sup>4</sup> S. Sharma,<sup>4</sup> W. Soeldner,<sup>5</sup> and M. Wagner<sup>4</sup>
<sup>1</sup>Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
<sup>2</sup>Physics Department, Columbia University, New York, New York 10027, USA
<sup>3</sup>Department of Physics R518, High Energy Physics Lab, National Taiwan University, Taipei 10617, Taiwan
<sup>4</sup>Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany
<sup>5</sup>Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

Lunch seminar @ YITP, June 24, 2015

# Hot QCD world



Amazing plasma of quarks and gluons...

QCD thermodynamics



### **Quantum Chromo-Dynamics**



# **Lattice QCD simulations QCD**: Strong non-linearity and infinite-dimensional integral Field theory on lattice Monte-Carlo simulations in Euclidean space based on importance sampling $\langle \mathcal{O} \rangle = \frac{1}{Z} \int D\bar{q} Dq DA \mathcal{O}(\bar{q}, q, A) e^{-S_{QCD}}$ $U_{\mu}(x)$ $\psi(x)$ $= \frac{1}{N_{\text{conf}}} \sum_{\{U_i\}}^{N_{\text{conf}}} \mathcal{O}(U_i) \pm O(\frac{1}{\sqrt{N_{\text{conf}}}})$ $P_{\mu\nu}(x)$

 $\{U_i\}$ : configurations generated with the weight exp(-S<sub>QCD</sub>)

Ist principle and non-perturbative calculations in large-scale computational simulations

# **Lattice QCD simulations**



# **Deconfinement of quarks**

QCD phase transition at high temperature:

- Dominated by chiral transition
- Color DoF gradually deconfined

Polyakov loop: test color charge  $_1$  of a static quark (  $m \to \infty$  )  $\frac{1}{T}$ 

### How dynamical quarks deconfine?

response to chemical potential



BaryonQuark $\frac{\partial^2(P/T^4)}{\partial \mu_B^2}\Big|_{\mu_B=0} \propto 1^2$  $\frac{\partial^2(P/T^4)}{\partial \mu_B^2}\Big|_{\mu_B=0} \propto \left(\frac{1}{3}\right)^2$ Susceptibility: $\chi_{mn}^{BS} \equiv \frac{\partial^{m+n}(P/T^4)}{\partial \hat{\mu}_B^m \hat{\mu}_S^n}\Big|_{\vec{\mu}=0}$  $\hat{\mu} = \mu/T$  $n+m \in even$  $n+m \in even$  $\mu_S \leftrightarrow \mu_C$ 

 $\psi(x)$ 

## **Deconfinement of quarks**



### Hadron resonance gas

Non-interacting Meson-Baryon gas system  

$$\frac{P^{\text{HRG}}}{T^4} = \sum_{i \in \text{meson}} \frac{g_i}{\pi^2} \left(\frac{m_i}{T}\right)^2 K_2\left(\frac{m_i}{T}\right) \cosh(S_i \hat{\mu}_S) + \sum_{i \in \text{baryon}} \frac{g_i}{\pi^2} \left(\frac{m_i}{T}\right)^2 K_2\left(\frac{m_i}{T}\right) \cosh(B_i \hat{\mu}_B + S_i \hat{\mu}_S) \\
\qquad \pi^{\pm}, \pi^0, \rho, \cdots, K, K^{\pm}, \bar{K} \cdots \\
= M_0 + M_1 \cosh(-\hat{\mu}_S) \\
\qquad + B_0 \cosh(\hat{\mu}_B) + B_1 \cosh(\hat{\mu}_B - \hat{\mu}_S) + B_2 \cosh(\hat{\mu}_B - 2\hat{\mu}_S) + B_3 \cosh(\hat{\mu}_B - 3\hat{\mu}_S) \\
\qquad N, \Delta, N^*, \cdots, \Lambda, \cdots, \qquad \Xi, \cdots, \qquad \Omega, \cdots$$

#### Relation to susceptibilities (up to 4th order)



### Hadron resonance gas

Non-interacting Meson-Baryon gas system  $\frac{P^{\text{HRG}}}{T^4} = \sum_{i \in \text{meson}} \frac{g_i}{\pi^2} \left(\frac{m_i}{T}\right)^2 K_2\left(\frac{m_i}{T}\right) \cosh(S_i\hat{\mu}_S) + \sum_{i \in \text{baryon}} \frac{g_i}{\pi^2} \left(\frac{m_i}{T}\right)^2 K_2\left(\frac{m_i}{T}\right) \cosh(B_i\hat{\mu}_B + S_i\hat{\mu}_S)$ 

$$= M_0 + M_1 \cosh(-\hat{\mu}_S) + B_0 \cosh(\hat{\mu}_B) + B_1 \cosh(\hat{\mu}_B - \hat{\mu}_S) + B_2 \cosh(\hat{\mu}_B - 2\hat{\mu}_S) + B_3 \cosh(\hat{\mu}_B - 3\hat{\mu}_S)$$

#### Relation to susceptibilities (up to 4th order)

$$\begin{pmatrix} \chi_{11}^{BS} \\ \chi_{31}^{BS} \\ \chi_{22}^{S} \\ \chi_{22}^{BS} \\ \chi_{13}^{RS} \\ \chi_{4}^{S} \end{pmatrix} = \begin{pmatrix} 0 & -1 & -2 & -3 \\ 0 & -1 & -2 & -3 \\ 1 & 1 & 4 & 9 \\ 0 & 1 & 4 & 9 \\ 0 & -1 & -8 & -27 \\ 1 & 1 & 16 & 81 \end{pmatrix} \begin{pmatrix} M_1 \\ B_1 \\ B_2 \\ B_3 \end{pmatrix}$$

rank 4

### Hadron resonance gas

Non-interacting Meson-Baryon gas system  $\frac{P^{\text{HRG}}}{T^4} = \sum_{i \in \text{meson}} \frac{g_i}{\pi^2} \left(\frac{m_i}{T}\right)^2 K_2\left(\frac{m_i}{T}\right) \cosh(S_i \hat{\mu}_S) + \sum_{i \in \text{baryon}} \frac{g_i}{\pi^2} \left(\frac{m_i}{T}\right)^2 K_2\left(\frac{m_i}{T}\right) \cosh(B_i \hat{\mu}_B + S_i \hat{\mu}_S)$ 

$$= M_0 + M_1 \cosh(-\hat{\mu}_S) + B_0 \cosh(\hat{\mu}_B) + B_1 \cosh(\hat{\mu}_B - \hat{\mu}_S) + B_2 \cosh(\hat{\mu}_B - 2\hat{\mu}_S) + B_3 \cosh(\hat{\mu}_B - 3\hat{\mu}_S)$$

 $\begin{array}{l} \hline \text{Relation to susceptibilities} (\text{up to 4th order}) \\ v_1 \equiv \chi_{31}^{BS} - \chi_{11}^{BS} = 0 \\ v_2 \equiv \frac{1}{3}(\chi_2^S - \chi_4^S) - 2\chi_{13}^{BS} - 4\chi_{22}^{BS} - 2\chi_{31}^{BS} = 0 \end{array} \right] \text{ constraints for } s \text{ quark} \\ M_1 = \chi_2^S - \chi_{22}^{BS} \\ B_1 = \frac{1}{2} \left( \chi_4^S - \chi_2^S + 5\chi_{13}^{BS} + 7\chi_{22}^{BS} \right) \\ B_2 = -\frac{1}{4} \left( \chi_4^S - \chi_2^S + 4\chi_{13}^{BS} + 4\chi_{22}^{BS} \right) \\ B_3 = \frac{1}{18} \left( \chi_4^S - \chi_2^S + 3\chi_{13}^{BS} + 3\chi_{22}^{BS} \right) \end{array}$ 

### Deconfinement of u, d and s quarks



- The constraints satisfied below T<sub>C</sub>: HRG system
- Deviate from 0 at  $T \sim T_C$ : not only u,d but s quarks deconfined
- Close to free quark gas at high temperature

## **Deconfinement of charm quarks**

Similar procedure for charm:  $\mu_S \leftrightarrow \mu_C$ 



- Charm quarks also deconfined at  $T \sim T_C$
- Similar to strange susceptibility

PLB 737 (2014) 210

### Hadronic description in strangeness



- Hadronic description breaks down at  $T \sim T_C$
- Hard thermal loop perturbation theory (dotted lines) at  $T > 2T_C$

Andersen et al. (2013)

# Summary: Hot QCD world

