K. Shizuya

Particle physics \cap Condensed-matter physics

"Graphene"

- "Graphene" : monolayer of C atoms
"relativistic" condensed-matter system
Electrons and holes ~ massless Dirac fermions

$$
\epsilon \approx v_{\mathrm{F}}|\mathbf{k}| \quad v_{\mathrm{F}} \sim 10^{6} \mathrm{~m} / \mathrm{s} \sim c / 300
$$

Exotic phemonena $\quad \sigma_{\text {min }}$ half-integer QHE $\quad \sigma_{\mathrm{H}}=\left(e^{2} / h\right) 4\left(n+\frac{1}{2}\right)$ zero-energy Landau levels

fermion \# fractionalization, chiral anomaly

- Test QED_{2+1}
- How Dirac fermions appear in a cond-mat. system

Honeycomb Lattice
The Bravais lattice is triangular and the unit cell contains two sites
Basis vectors are
$\mathbf{a}_{1}=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) a$
$\mathbf{a}_{2}=(0,1) a$
The sublattices are connected by
$\mathbf{b}_{1}=\left(\frac{1}{2 \sqrt{3}}, \frac{1}{2}\right) a$
$\mathbf{b}_{2}=\left(\frac{1}{2 \sqrt{3}},-\frac{1}{2}\right) a$
$\mathbf{b}_{3}=\left(-\frac{1}{\sqrt{3}}, 0\right) a$

Tight-binding Hamiltonian

$$
\begin{array}{rlrl}
H & =\alpha \sum_{\mathbf{A}} \sum_{i}\left\{U^{\dagger}(\mathbf{A}) V\left(\mathbf{A}+\mathbf{b}_{i}\right)+V^{\dagger}\left(\mathbf{A}+\mathbf{b}_{\mathbf{i}}\right) U(\mathbf{A})\right\} \\
\mathbf{A} & =n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2} & \text { hopping } B \leftrightarrow A
\end{array}
$$

$$
\begin{aligned}
& U(\mathbf{A})=\int_{\Omega_{B}} \frac{d^{2} k}{(2 \pi)^{2}} e^{i \mathbf{k} \cdot \mathbf{A}} U_{\mathbf{k}}, \quad V(\mathbf{B})=\int_{\Omega_{B}} \frac{d^{2} k}{(2 \pi)^{2}} e^{i \mathbf{k} \cdot \mathbf{B}} V_{\mathbf{k}} \\
& H=\sum_{\mathbf{k}}\left(U_{\mathbf{k}}^{\dagger}, V_{\mathbf{k}}^{\dagger}\right)\left(\begin{array}{c}
\alpha \phi^{*}(\mathbf{k}) \\
\phi(\mathbf{k})=e^{i \mathbf{k} \cdot \mathbf{b}_{1}}+e^{i \mathbf{k} \cdot \mathbf{b}_{2}}+e^{i \mathbf{k} \cdot \mathbf{b}_{3}} \\
\text { energy }: E(\mathbf{k})
\end{array}\right)\binom{U_{\mathbf{k}}}{V_{\mathbf{k}}} \\
&
\end{aligned}
$$

The separation of the conduction and valence bands minimized at zeros of

$$
\phi(\mathbf{k})=e^{i \mathbf{k} \cdot \mathbf{b}_{1}}+e^{i \mathbf{k} \cdot \mathbf{b}_{2}}+e^{i \mathbf{k} \cdot \mathbf{b}_{3}}
$$

These occur at

$$
\mathbf{q}_{1}=\frac{4 \pi}{3 a}\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \text { and } \mathbf{q}_{2}=-\mathbf{q}_{1}
$$

(and all other equivalent points on the corners of the Brillouin zone).

In the continuum (low energy) limit ($a \rightarrow 0$), only electron state near \mathbf{q}_{1} and \mathbf{q}_{2} participate in the dynamics.
(1) Near $\mathbf{k}=-\mathbf{q}_{1}$,

$$
\begin{aligned}
& H=v_{\mathrm{F}} \sum_{\mathbf{k}}\left(U^{\dagger}, V^{\dagger}\right)\binom{i e^{-i \pi / 3}\left(k_{x}-i k_{y}\right)}{-i e^{i \pi / 3}\left(k_{x}+i k_{y}\right)}\binom{U\left(\mathbf{k}-\mathbf{q}_{\mathbf{1}}\right)}{V\left(\mathbf{k}-\mathbf{q}_{1}\right)} \\
&=v_{\mathrm{F}} \sum_{\mathbf{k}}\left(U^{\dagger} e^{-i \pi / 6}, V^{\dagger} e^{i \pi / 6}\right)\binom{i\left(k_{x}-i k_{y}\right)}{-i\left(k_{x}+i k_{y}\right)}\binom{e^{i \pi / 6} U\left(\mathbf{k}-\mathbf{q}_{1}\right)}{e^{-i \pi / 6} V\left(\mathbf{k}-\mathbf{q}_{1}\right)} \\
& v_{\mathrm{F}}=\sqrt{3} \alpha / 2
\end{aligned}
$$

Dirac Hamiltonian

$$
\begin{array}{r}
\left(-i\left(k_{x}+i k_{y}\right)^{i\left(k_{x}-i k_{y}\right)}\right)=-k_{x} \sigma_{2}+k_{y} \sigma_{1}=\gamma^{0}\left(-k_{1} \gamma^{1}-k_{2} \gamma^{2}\right) \\
\text { with } \gamma^{\mu}=\left(\sigma_{3}, i \sigma_{1}, i \sigma_{2}\right) \text {, and } k^{i}=\left(k_{x}, k_{y}\right) .
\end{array}
$$

$\rightarrow H_{1}=-\gamma^{0} \nVdash$ for $\psi_{1} \sim e^{i \frac{\pi}{6} \sigma_{3}}\left(U\left(\mathbf{k}-\mathbf{q}_{1}\right), V\left(\mathbf{k}-\mathbf{q}_{1}\right)\right)^{\mathrm{t}}$.

Similarly, (2) Near $\mathbf{k}=\mathbf{q}_{1}$,

$$
H=v_{\mathrm{F}} \sum_{\mathbf{k}}\left(U^{\dagger}, V^{\dagger}\right)\left(\begin{array}{c}
-i e^{-i \pi / 3}\left(k_{x}-i k_{y}\right)
\end{array} i e^{i \pi / 3}\left(k_{x}+i k_{y}\right)\right)\binom{U\left(\mathbf{k}+\mathbf{q}_{1}\right)}{V\left(\mathbf{k}+\mathbf{q}_{1}\right)}
$$

One has

$$
\begin{aligned}
\binom{i\left(k_{x}+i k_{y}\right)}{\left.-i k_{y}\right)}=-k_{x} \sigma_{2}-k_{y} \sigma_{1} & =\sigma_{2}\left(-k_{x} \sigma_{2}+k_{y} \sigma_{1}\right) \sigma_{2} \\
& =\sigma_{2} \sigma_{3}\left(-k_{1} \gamma^{1}-k_{2} \gamma^{2}\right) \sigma_{2}
\end{aligned}
$$

Let $\psi_{2}=\sigma_{2} e^{-i \frac{\pi}{6} \sigma_{3}}\left(U\left(\mathbf{k}+\mathbf{q}_{1}\right), V\left(\mathbf{k}+\mathbf{q}_{1}\right)\right)^{\mathrm{t}} .$.
$\rightarrow H_{2}=-\gamma^{0} \not k$

$$
\begin{array}{r}
H=\int d^{2} \mathbf{x}\left[\psi^{\dagger}\left(v_{\mathrm{F}} \sigma_{k} \Pi_{k}+m \sigma_{3}-e A_{0}\right) \psi\right. \\
\left.+\chi^{\dagger}\left(v_{\mathrm{F}} \sigma_{k} \Pi_{k}-m \sigma_{3}-e A_{0}\right) \chi\right]
\end{array}
$$

$$
\Pi_{i}=-i \partial_{i}+e A_{i}
$$

$$
\begin{aligned}
\psi_{\alpha} & =\left(\psi_{1}, \psi_{2}\right)^{\mathrm{t}} \propto\left(U_{\mathbf{k}-\mathbf{q}}, V_{\mathbf{k}-\mathbf{q}}\right)^{\mathrm{t}} \\
\chi_{\alpha} & =\left(\chi_{1}, \chi_{2}\right)^{\mathrm{t}} \propto\left(-V_{\mathbf{k}+\mathbf{q}}, U_{\mathbf{k}+\mathbf{q}}\right)^{\mathrm{t}} \\
v_{\mathbf{F}} & \left.\sim 10^{6} \mathrm{~m} / \mathrm{s}\right) \sim c / 300
\end{aligned}
$$

Spinor structure <—— sublattices

Bilayer graphene

$$
\begin{aligned}
& H^{\mathrm{bi}}=\left(\begin{array}{cccc}
& v p^{\dagger} & & \\
v p & & \gamma_{1} & \\
& \gamma_{1} & & v p^{\dagger}
\end{array}\right) \begin{array}{l}
\psi_{A} \\
\psi_{B} \\
\psi_{\tilde{A}} \\
\psi_{\tilde{B}}
\end{array} \\
& \hat{H}^{\mathrm{bi}}=\left(\begin{array}{ccc}
& & v p^{\dagger} \\
& v p^{\dagger} & \\
& & \\
v p & & \gamma_{1}
\end{array}\right) \begin{array}{l}
\tilde{\mathrm{A}}_{1}, \mathrm{~B} \\
\psi_{A} \\
\psi_{\tilde{B}} \\
\psi_{\tilde{A}} \\
\psi_{B}
\end{array}=\left(\begin{array}{cc}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right) \\
& H_{\mathrm{eff}}=H_{11}+H_{12} \frac{1}{H_{22}-i \partial_{t}} H_{21} \approx \frac{1}{2 m^{*}}\left(p^{2} \quad\left(p^{\dagger}\right)^{2}\right) \quad m^{*}=\frac{\gamma_{1}}{v^{2}}
\end{aligned}
$$

chiral Schroedinger eq.
positive- and negative-energy states w. quadratic dispersion gapless

