Exotic Branes and and Non-Geometric Backgrounds

Masaki Shigemori

(Amsterdam)

Saclay, 4 June 2010

J de Boer and MS: 1004.2521, 100x.nnnn

Introduction

U-duality

Relates various objects in string/M-theory

T:
$$Dp \leftrightarrow D(p\pm 1)$$
, $FI \leftrightarrow P$, $NS5 \leftrightarrow KKM$, ...
S: $FI \leftrightarrow DI$, $NS5 \leftrightarrow D5$, ...

- ▶ Enhances in lower dims.
 - M-theory on T^k : $E_{k(k)}(Z)$ [Hull+Townsend]

k	D	G(Z)
I	10	I
2	9	$SL(2,Z) \times Z_2$
3	8	$SL(3,Z) \times SL(2,Z)$
4	7	O(5,5,Z)
5	6	SL(5,Z)
6	5	$E_{6(6)}(Z)$
7	4	E ₇₍₇₎ (Z)
8	3	$E_{8(8)}(Z)$

Codimension-2 objects (1)

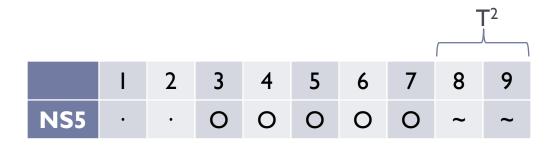
U-duality on codim-2 objects produces exotic states

They can have mass $\sim g_s^{-3}$, g_s^{-4}

[9707217 Elitzur+Giveon+Kutasov+Rabinovici] [9809039 Obers+Pioline]

Codimension-2 objects (2)

▶ Example: Type II on T²



5²₂

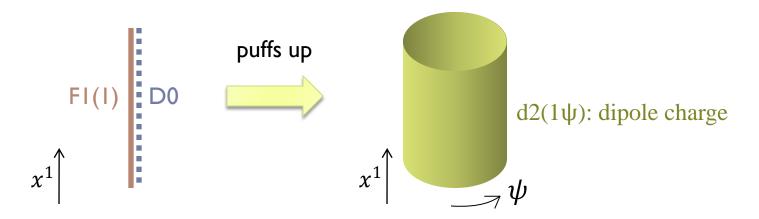
We will see that this is a "T-fold".

Supertube effect

- Codim-2 object problematic
 - Log divergences

$$V \sim \frac{1}{r^{d-2}} \qquad \stackrel{d=2}{\longrightarrow} \qquad V \sim \log\left(\frac{\mu}{r}\right)$$

- Are they relevant? Why care?
- ► Supertube effect = spontaneous polarization [Mateos+Townsend]



Relevance of exotic branes

- Non-exotic branes can puff up to produce exotic dipole charges
 - → No log divergence
 - → Exotic branes are relevant to non-exotic physics!
- Black holes: bound states of branes
 - → Microstate (non-)geometries?

Outline

- Introduction
- Exotic states & their higher-D origin
- Sugra description
- Supertube effect
- Conclusion

Exotic states and their higher-D origin

Exotic states in 3D (1)

- M on T⁸ or Type II on T⁷
 - \rightarrow 3D N=16 sugra
 - \rightarrow 128 scalars (in 3D, scalar = vector)
 - \rightarrow U-duality group $E_{8(8)}(Z)$: generated by T- and S-dualities
- Particle multiplet:
 - Start from a point-like object
 e.g. D7(3456789) wrapped on T⁷
 - → Take T- and S-dualities to get other states

Exotic states in 3D (2)

Particle multiplet:

[9707217 Elitzur+Giveon+Kutasov+Rabinovici] [9809039 Obers+Pioline]

Type IIA	P (7), F1 (7), D0 (1), D2 (21), D4 (35), D6 (7),
	NS5 (21), KKM (42), 5_2^2 (21), 0_3^7 (1), 2_3^5 (21),
	$4_3^2 \ ({\bf 35}), 6_3^1 \ ({\bf 7}), 0_4^{(1,6)} \ ({\bf 7}), 1_4^6 \ ({\bf 7})$
Type IIB	P (7), F1 (7), D1 (7), D3 (35), D5 (21), D7 (1),
	NS5 (21), KKM (42), 5_2^2 (21), 1_3^6 (7), 3_3^4 (35),
	5_3^2 (21), 7_3 (1), $0_4^{(1,6)}$ (7), 1_4^6 (7)
M-theory	P (8), M2 (28), M5 (56), KKM (56),
	5^3 (56), 2^6 (28), $0^{(1,7)}$ (8)

240 states

Notation for exotic states

$$b_n^c: M = \frac{R^b (R^c)^2}{g_s^n}$$

$$b_n^{(d,c)}: M = \frac{R^b (R^c)^2 (R^d)^3}{g_s^n}$$

Example:
$$5_2^2(34567,89)$$
: $M = \frac{R_3 \cdots R_7 (R_8 R_9)^2}{g_s^2 l_s^8}$

Duality rules

Duality rules can be read off from:

$$T_y: R_y \to \frac{l_2^2}{R_y}, g_s \to \frac{l_s}{R_y}g_s$$
 $S: g_s \to \frac{1}{g_s}, l_s \to g_s^{1/2}l_s$

Example:

NS5(34567)
$$\stackrel{\mathsf{T_8}}{\to}$$
 KKM(34567,8) $\stackrel{\mathsf{T_9}}{\to}$ 5²₂(34567,89)

$$M = \frac{R_3 \cdots R_7}{g_s^2 l_s^6} \xrightarrow{\mathsf{T}_8} \frac{R_3 \cdots R_7}{(l_s/R_8)^2 l_s^6} = \frac{R_3 \cdots R_7 R_8^2}{g_s^2 l_s^8} : \mathsf{5}_2^1 = \mathsf{KKM}$$

$$\xrightarrow{\mathsf{T}_9} \frac{R_3 \cdots R_7 R_8^2}{(l_s/R_8)^2 l_s^8} = \frac{R_3 \cdots R_7 (R_8 R_9)^2}{g_s^2 l_s^{10}} : \mathsf{5}_2^2$$

Higher D origin

- ▶ 240 states for 128 gauge fields??
 - → Higher D origin unclear

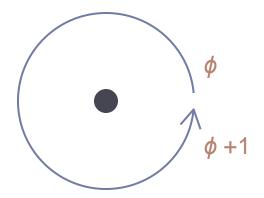
```
<u>cf.</u> D>3: (#point particle states) = (#gauge fields)Higher D origin: wrapped branes
```

Claim: higher D origin isU-fold = non-geometric background

Higher D origin = U-folds (1)

E.g. D7 on T^7

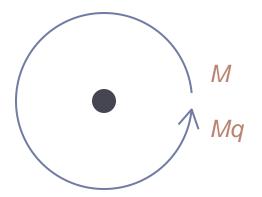
- ▶ (magnetically) coupled to RR 0-form C₀
- \rightarrow 3D scalar $\phi = C_0$
- Monodromy: $\phi \rightarrow \phi + 1$ (part of SL(2,Z) symmetry of IIB)



Higher D origin = U-folds (2)

- In 3D, charge = monodromy of scalar ϕ
- Shifting symmetry + S,T-dualities $\Longrightarrow E_{8(8)}(\mathbb{Z})$
- ϕ gets combined with other scalars to form moduli matrix $M \in \mathcal{M} = SO(16) \backslash E_{8(8)}(\mathbb{R}) / E_{8(8)}(\mathbb{Z})$
- Can consider a particle with general U-duality monodromy

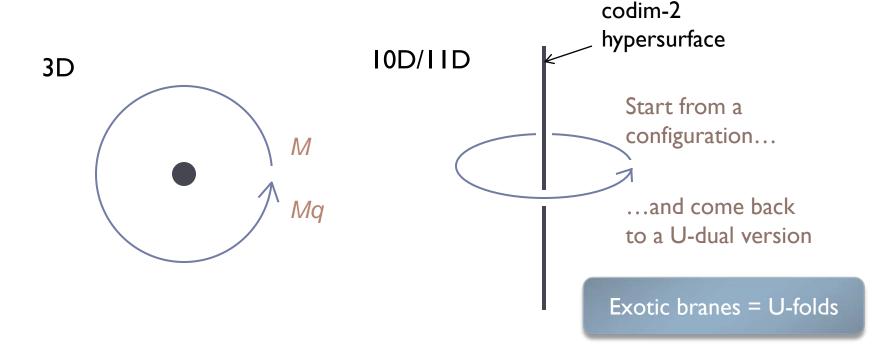
$$q \in E_{8(8)}(\mathbb{Z}) \equiv G(\mathbb{Z})$$



"Charge" of a 3D particle is U-duality monodromy around it!

Higher D origin = U-folds (3)

- "Charge" of a 3D particle = U-duality monodromy around it
- No relation between #(gauge fields) = #scalars and #charges
- In 10D/11D, we have a non-geometric U-fold



How many "charges" are there? (1)

1. Start from charge = monodromy $q \in G(\mathbb{Z})$, i.e.

$$M \rightarrow Mq$$

- 2. Go to another U-dual frame by $U \in G(\mathbb{Z})$
- 3. In the dual frame, charge and moduli are

$$\tilde{q} = U^{-1}q U \qquad \qquad \tilde{M} = MU$$

- 4. Change moduli adiabatically back to $oldsymbol{M}$
- 5. In the original frame, we have charge $\tilde{q} = U^{-1}q \; U$

Starting from a charge $\,q\,$, can obtain other charges $\,\tilde{q}\,$ by conjugation by U-duality matrix U

Caveats:

How many "charges" are there? (2)

Example

D7 has monodromy

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL(2, \mathbb{Z})$$

▶ Conjugate by a general SL(2,Z) matrix

$$U = \begin{pmatrix} s & r \\ q & p \end{pmatrix}, \qquad ps - qr = 1, \qquad p, s, q, r \in \mathbb{Z}$$

New charge:

$$\tilde{T} = U^{-1}TU = \begin{pmatrix} 1+pq & p^2 \\ -q^2 & 1-pq \end{pmatrix}$$
: monodromy of (p,q) 7-brane

Note: there are only 2 parameters although U had 3

How many "charges" are there? (3)

- Set of all charges obtained from given q: conjugacy orbit
- "Charges" live in discrete non-Abelian "lattice" $G(\mathbb{Z})$
 - → Meaningless to ask "how many" different charges there are
- ▶ Replace $G(\mathbb{Z}) \to G(\mathbb{R})$ and compute dimension of conjugacy class in $G(\mathbb{R})$
- ▶ For I/2 BPS objects, dimension = 58
 - 240 states are special points in this 58-dim space preserving rectangularity of internal torus

Sugra description of exotic states

Sugra solution for 5^2 (1)

KKM(56789,4):

$$ds^{2} = dx_{056789}^{2} + Hdx_{123}^{2} + H^{-1}(dx^{4} + \omega)^{2}$$

$$e^{2\Phi} = 1, \ d\omega = *_{3} dH,$$

$$H = 1 + \sum_{p} H_{p}, \ H_{p} = \frac{R_{4}}{2|\vec{x} - \vec{x}_{p}|}$$

 \vec{x}_n : positions of centers in \mathbb{R}^3_{123}

$$H(r) = h + \sigma \log \left(\frac{\mu}{r}\right)$$

[Sen] [Blau+O'Loughlin]

 \int T-dualize along x^3

Sugra solution for 5_2^2 (2)

$5_2^2(56789,34)$ metric:

$$ds^{2} = H(dr^{2} + r^{2}d\theta^{2}) + HK^{-1}dx_{34}^{2} + dx_{056789}^{2}$$

$$B_{34}^{(2)} = -K^{-1}\theta\sigma, \quad e^{2\Phi} = HK^{-1}, \quad K \equiv H^{2} + \sigma^{2}\theta^{2}$$

$$H(r) = h + \sigma \log \left(\frac{\mu}{r}\right)$$
 $\sigma = \frac{R_3 R_4}{2\pi \alpha'}$

Cf. [Blau+O'Loughlin]: 61

▶ T-fold structure:

$$\theta = 0$$
: $G_{33} = G_{44} = H^{-1}$,
 $\theta = 2\pi$: $G_{33} = G_{44} = \frac{H}{H^2 + (2\pi\sigma)^2}$

 \rightarrow x³-x⁴ torus size doesn't come back to itself!

T-fold structure of 5^2_2

Package 3-4 part of G, B:

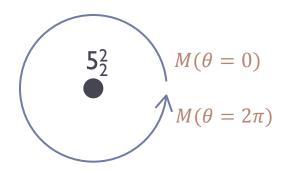
$$M = \begin{pmatrix} G^{-1} & G^{-1}B \\ -BG^{-1} & G - BG^{-1}B \end{pmatrix}$$

T-duality acts as

$$M \to M^{'} = \Omega^{t} M \Omega, \qquad \Omega \in SO(2,2,\mathbb{R})$$

T-duality monodromy around 5^2_2 :

$$\Omega = \begin{pmatrix} 1 & 0 \\ 2\pi\sigma & 1 \end{pmatrix} : M(\theta = 0) \to M(\theta = 2\pi)$$



Comments

- Can compute mass by putting it in flat space
- Not well-defined as stand-alone objects
 - Log divergence
 - → Superpositions (cf. F-theory 7-branes)
 - → Configs with higher codims. (next topic)
- Easy to get sugra metric for other exotic branes
 - Questionable for states with M \sim g_s⁻³, g_s⁻⁴

Supertube effect and exotic branes

Dualizing supertube effect

Original supertube effect:

$$D0 + F1(1) \rightarrow D2(1\psi)$$

dualize

Various other known puff-ups:

$$F1(1)+P(1)\to F1(\psi) \qquad \qquad \text{FP sys}$$

$$D1(1)+D5(12345)\to KKM(2345\psi,1) \qquad \text{LM geom}$$

$$M2(12)+M2(34)\to M5(1234\psi) \qquad \qquad \text{black ring}$$

Puff-ups involving exotic charges

$$D0 + F1(1) \rightarrow D2(1\psi)$$

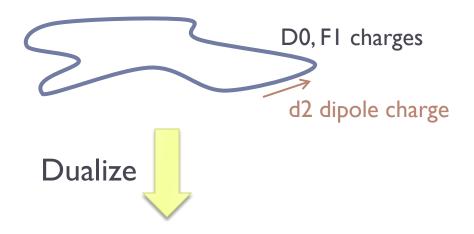
dualize

Exotic puff-ups:

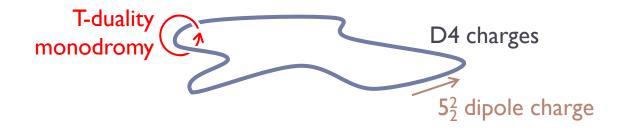
D4(6789) + D4(4589)
$$\rightarrow$$
 5 $_2^2$ (4567 ψ , 89)
:part of 4D BH system
D3(589) + NS5(46789) \rightarrow 5 $_3^2$ (4567 ψ , 89)
NS5(46789) + KKM(46789,5) \rightarrow 1 $_4^6$ (ψ , 456789)
 $g_s^{-a} + g_s^{-b} \rightarrow g_s^{-a-b}$

Sugra solution for D4+D4 \rightarrow 5²

Basic sugra supertube



Exotic 2-charge solution



$D4(6789)+D4(4589)\rightarrow 5_2^2 (4567\psi,89)$

$$ds^{2} = -\frac{1}{\sqrt{f_{1}f_{2}}}(dt - A)^{2} + \sqrt{f_{1}f_{5}} dx_{123}^{2} + \sqrt{\frac{f_{1}}{f_{2}}}dx_{45}^{2} + \sqrt{\frac{f_{2}}{f_{1}}}dx_{67}^{2} + \frac{\sqrt{f_{1}f_{2}}}{f_{1}f_{2} + \gamma^{2}} dx_{89}^{2},$$

 f_i , A: sourced along curve

$$f_{1} = 1 + \frac{Q_{1}}{L} \int_{0}^{L} \frac{dv}{|\vec{x} - \vec{F}(v)|}, \quad f_{2} = 1 + \frac{Q_{1}}{L} \int_{0}^{L} \frac{\left|\dot{\vec{F}}(v)\right|^{2}}{\left|\vec{x} - \vec{F}(v)\right|} dv, \quad A_{i} = -\frac{Q_{1}}{L} \int_{0}^{L} \frac{\dot{F}_{i}(v)}{\left|\vec{x} - \vec{F}(v)\right|} dv$$

$$d\beta_{I} = *_{3} df_{I}, \qquad d\gamma = *_{3} dA$$

• β_i , γ have monodromy around curve

$$\beta_I \rightarrow \beta_I - 2Q_I$$
, $\gamma \rightarrow \gamma - 2q$, \rightarrow T-fold structure just as before

Asymptotically flat 4D

$D4(6789)+D4(4589)\rightarrow 5_2^2 (4567\psi,89)$

Other fields:

$$e^{2\Phi} = \frac{\sqrt{f_1 f_2}}{f_1 f_2 + \gamma^2}, \quad B_{89}^{(2)} = \frac{\gamma}{f_1 f_2 + \gamma^2}, \quad C^{(3)} = -\gamma \rho + \sigma$$

$$\rho = (f_2^{-1} + dt - A) \wedge dx^4 \wedge dx^5 + (f_1^{-1} + dt - A) \wedge dx^6 \wedge dx^7$$
$$\sigma = (\beta_1 - \gamma dt) \wedge dx^4 \wedge dx^5 + (\beta_2 - \gamma dt) \wedge dx^6 \wedge dx^7$$

Circular D4+D4 \rightarrow 5²

For circular profile, all functions can be explicitly written down

$$dx_{123}^2 = \frac{R^2}{(\cos\phi - y)^2} \left[\frac{dy^2}{y^2 - 1} + (y^2 - 1)d\psi^2 + d\phi^2 \right]$$

$$f_{I} = 1 + \frac{Q_{I}}{R} \sqrt{\frac{\cos \phi - y}{-2y}} F\left(\frac{1}{4}, \frac{3}{4}; 1; z^{2}\right), \quad A_{\psi} = -\frac{qR}{2} \frac{y^{2} - 1}{(\cos \phi - y)^{1/2}(-2y)^{3/2}} F\left(\frac{3}{4}, \frac{5}{4}; 2; z^{2}\right)$$

$$\gamma = -\frac{q\sqrt{1-y}}{4\sqrt{2}(-y)^{3/2}} \left\{ (1+y)\mathbf{F}\left(\frac{\phi}{2} \middle| \frac{2}{1-y}\right) F\left(\frac{3}{4}, \frac{5}{4}; 2; z^2\right) + u\mathbf{E}\left(\frac{\phi}{2} \middle| \frac{2}{1-y}\right) \left[3F\left(\frac{3}{4}, \frac{1}{4}; 2; z^2\right) + F\left(\frac{3}{4}; \frac{5}{4}; 2; z^2\right) \right] \right\}$$

$$\beta_I = \cdots$$

$$z = 1 - y^{-2}$$

Puff-ups and BH microstates (1)

Standard 4D BH system

```
D0, D4(6789), D4(4589), D4(4567)
```

: Well studied for microstate counting [MSW]

NS5(6789
$$\psi$$
) 5 $\frac{1}{2}$ (6789,45 ψ)
NS5(4589 ψ) 5 $\frac{1}{2}$ (4589,67 ψ)

NS5(6789
$$\psi$$
) 5_2^2 (6789,45 ψ)

$$5^{2}_{2}(4589)$$

NS5(4567
$$\psi$$
) 5_2^2 (4567,89 ψ)

puff up

More exotic charges?

Puff-ups and BH microstates (2)

▶ 5D BH system

M2(56), M2(78), M2(9A)

: Well studied for microstate geometry

[Mathur] [Bena+Warner] [Berglund+Gimon+Levi] [de Boer+El-Showk+Messamah+Van de Bleeken]

Possible puff-ups:

M2(56) puff up M5(789A
$$\psi$$
) puff up 5^3 (789A ϕ , 56 ψ) M2(78) M5(569A ψ) 5^3 (569A ϕ , 78 ψ) M2(9A) M5(5678 ψ) 5^3 (5678 ϕ , 9A ψ) cf. black ring non-geometric

Puff-ups and BH microstates (3)

2-charge system

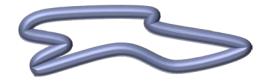
- Worldvolume theory:
 - ▶ Higgs branch coming from intersection of two stacks
- Gravity:
 - ▶ Fluctuation of I-dimensional object

$$S_{brane} = S_{gravity}$$

Puff-ups and BH microstates (4)

3-charge system

- Worldvolume theory:
 - More complicated Higgs branch from triple intersection
- Gravity:



- ► Fluctuation of 2-dimensional object?
 - Exotic branes has just the right dimensionality
- Explains missing entropy in sugra microstate geometries?

[Bena+Warner] [Berglund+Gimon+Levi] [de Boer+El-Showk+Messamah+Van den Bleeken]

Conclusions

Conclusions

- Exotic branes = non-geometries (U-folds)
- Exotic charges = U-duality monodromies
- Relevant even for non-exotic physics by supertube effect
- Unexplored exotic land out there awaiting us!
 - Classification of exotic branes (bound states, etc.)
 - Non-Abelian anyon statistics
 - AdS/CFT
 - Microstate non-geometries
 - ▶ 4D black ring??