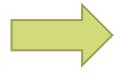
Moulting Black Holes

Masaki Shigemori

(KMI, Nagoya U)

KEK, 22 June 2011

Iosif Bena, Borun Chowdhury, Jan de Boer, Sheer El-Showk and MS: 103.nnnn


- molt†,《英》moult/móult/【動】 | 自 | 〈鳥が〉羽毛が生え替る, 〈動物が〉毛[角]が抜け[生え]替る,脱皮する // Snakes ~. ヘビ (は脱皮する.
 - ── | 他 | 〈羽毛·殼など〉を脱ぐ,落す.
 - 【名】□□ 抜け替り;その時期.molt·er【名】□ 羽[毛,角]が生え替る時期の鳥[虫,動物].

Introduction

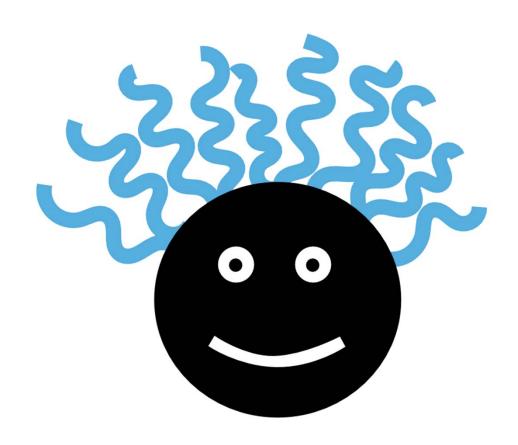
No hair theorem

Black holes have no "hair"

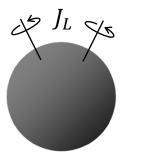
Given charges M, J, Q



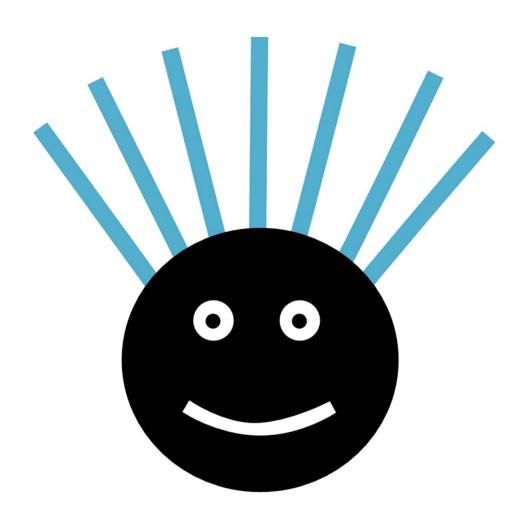
Unique BH solution



"Moulting" black holes

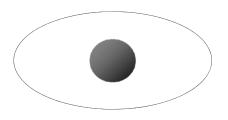

- AdS BH can spit out excessive charges to "hair" and increase entropy
 - ▶ Einstein-Maxwell has BH with charged condensate [Gubser]
 - ▶ AdS₅ BH with R-charge [Bhattacharyya+Minwalla+Papadodimas]
 - "Enigmatic" BHs in 4d N=2 sugra / MSW [Denef+Moore]

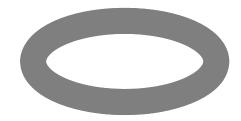
— but not under very good control



AdS₃/CFT₂: ideal arena

- ▶ DI-D5 system
 - ▶ Bulk: $AdS_3 \times S^3 \times T^4$ or $AdS_3 \times S^3 \times K3$
 - Boundary: D1-D5 CFT
- Pivotal role in micro. understanding of BH in string theory
 - Strominger-Vafa: the first microscopic explanation of S_{BH}
 - BMPV black hole
- ▶ Under good control ☺




 $J_L \neq 0$, $J_R = 0$

What we do

- ▶ Strategy: find max entropy config for fixed *M*, *J*
- Results
 - ▶ CFT side: found a novel phase
 - ▶ Gravity side: 2-center solution: "hairy BH" and BR

- Implications
 - Some states lift but some don't?
 - A new index?

Outline

- ▶ Introduction ✓
- Boundary CFT side
- Bulk gravity side
- Discussion
- Conclusion

Boundary CFT side of the story

The AdS₃/CFT₂ correspondence

 N_1 DI-branes + N_5 D5-branes

bulk

- Type IIB sugra
- $AdS_3 \times S^3 \times M_4$ with $M_4 = T^4$ or K3
- Strong coupling

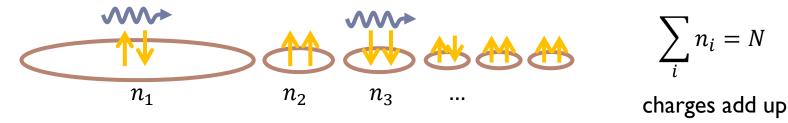

boundary

- > 2d $\mathcal{N} = (4,4)$ SCFT (DI-D5 CFT) in the Ramond sector
- Sigma model on $Sym^N M_4$ with $N \equiv N_1 N_5$
- Weak (zero) coupling

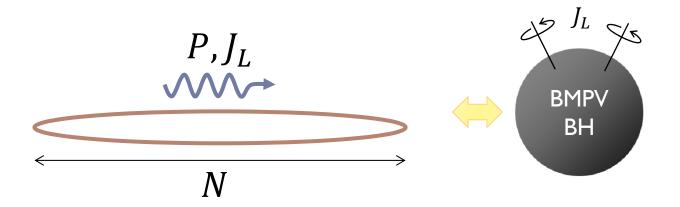
Some facts about D1-D5 CFT

- ▶ Charges: L_0 , \overline{L}_0 ; $SU(2)_L \times SU(2)_R$ R-charges J_L , J_R
- Supersymmetric states: $\overline{L}_0=0$
 - $L_0 = P$: momentum; J_L, J_R : angular momenta

"Standard lore" phase diagram


States of D1-D5 CFT

- Building blocks: "effective strings"
 - ▶ Has length n
 - Carries "base" spin $(j_L, j_R)_{\text{base}} = (\pm 1, \pm 1)$
- $(j_L, j_R)_{\text{base}} = (+1, -1)$ $\longleftrightarrow n$


Excitations on it can carry momentum p and angular momenta j_L

States of the CFT is constructed by combining eff. strings

Example: BMPV ensemble

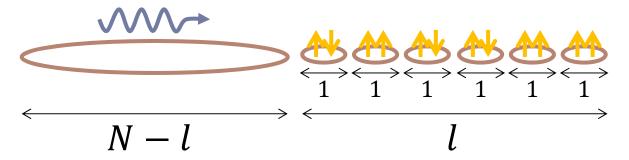
- A single string carries all charges N, P, J_L
- Base spin ignorable

$$S_{\rm CFT} = 2\pi \sqrt{NP - J_L^2/4} = S_{\rm BMPV}$$

The question

- Mhat's the max entropy states, for given L_0 , J_L ?
 - Better for P to be carried by a long string
 - \triangleright Making the long string carry J_L reduces entropy
 - It may be better to make some of J_L carried by 'short' strings

$$\Delta P = P$$


$$\Delta J_L = J_L - l$$

$$\Delta J_R = 0$$

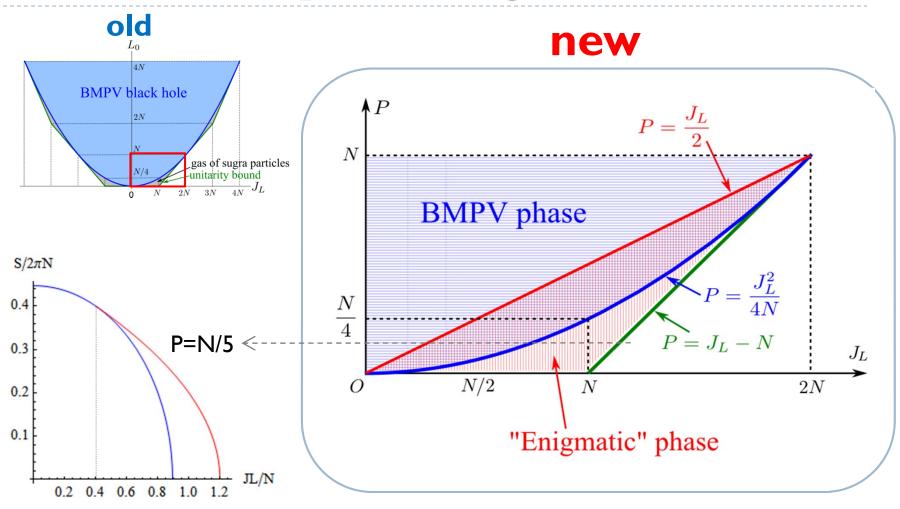
$$\Delta P = 0$$

$$\Delta J_L = l$$

$$\Delta J_R = any$$

Maximizing entropy

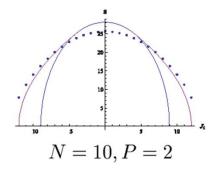
$$S(l) = 2\pi\sqrt{(N-l)P - (J_L - l)^2/4}$$

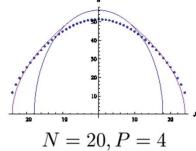

maximize for l

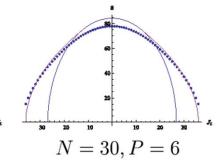
For
$$2P \leq J_L \leq N + P$$
, max is

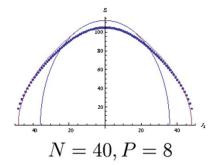
$$S(l_{max}) = 2\pi\sqrt{P(N+P-J_L)} \equiv S_{\text{CFT}}$$
,
 $l_{\text{max}} = J_L - 2P$

- \blacktriangleright Always larger than $S_{
 m BMPV}$
- Comes in an $SU(2)_R$ multiplet with $J_R = J_L 2P$


The new CFT phase diagram




Numerical check

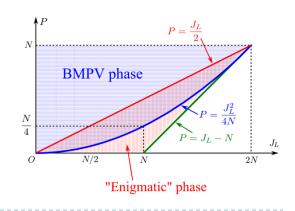

▶ Compare with T⁴ partition function

- ▶ Can't use Cardy (which is valid only for $P \gg N$)
- ▶ Use DMVV formula and evaluate by computer

S versus
$$J_L$$
 for $k = \frac{P}{N} = \frac{1}{5}$

Comments

▶ Degeneracy (entropy) ≠ index (elliptic genus)


$$Z = \text{Tr}_{\text{BPS}}[q^{L_0}y^{J_L}]$$
 $\chi = \text{Tr}[(-1)^{J_L + J_R}q^{L_0}y^{J_L}]$

- Absolute # of states
- Not protected

- Not absolute # of states
- Protected
- For enigmatic phase, entropy \neq K3 elliptic genus
 - Elliptic genus always gives BMPV entropy: $\chi \sim \exp(2\pi\sqrt{NP} J_L^2/4)$ even outside the Cardy regime $P \gg N$ [Castro-Murthy]
 - ▶ New phase *not* captured by elliptic genus

Summary — CFT side

- Found an "new phase" in non-Cardy regime
- Exists even outside the "BMPV parabola"
- Dominates over BMPV when coexists
- ▶ Comes in an $SU(2)_R$ multiplet with $J_R = J_L 2P$
- Not captured by elliptic genus
 - → Gets lifted at strong coupling?
 Zero coupling artifact?

Bulk sugra side of the story

The goal

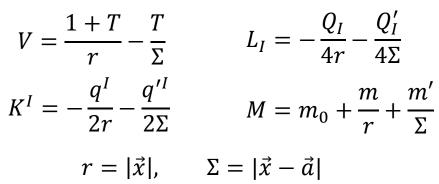
- We found CFT phase with more entropy than BMPV
- What's the bulk dual configuration?
 - \rightarrow Find max entropy configuration given N, P, J_L

Supersymmetric sugra solutions

- ightharpoonup Assume two isometries ightharpoonup reduces to 4d N=2 sugra
- Most general timelike susy solutions in 4D known [Bates-Denef] [Gauntlett-Gutowski] [Bena-Warner]

$$\begin{split} ds_{11}^2 &= -Z^{-2/3}(dt+k)^2 + Z^{1/3}ds_{HK}^2 + Z^{1/3}(Z_1^{-1}dx_{12}^2 + Z_2^{-1}dx_{34}^2 + Z_3^{-1}dx_{56}^2) \\ \mathcal{A} &= A^1 \wedge dx_1 \wedge dx_2 + A^2 \wedge dx_3 \wedge dx_4 + A^3 \wedge dx_5 \wedge dx_6 \\ Z &= Z_1Z_2Z_3, \qquad A^I &= B^I - Z_I^{-1}(dt+k) \\ ds_{HK}^2 &= Vdy_{123}^2 + V^{-1}\sigma^2, \qquad \sigma = d\psi + A, \\ \vec{\nabla} \times \vec{A} &= \vec{\nabla} V, \qquad \text{or} \qquad dA = *_3 dV. \end{split}$$

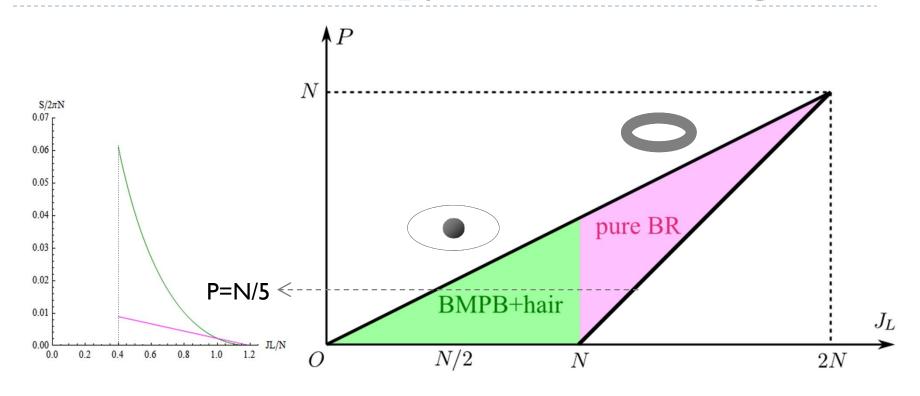
$$Z_I &= L_I + \frac{1}{2}C_{IJK}V^{-1}K^JK^K, \\ \Theta^I &= dB^I = d(V^{-1}K^I) \wedge \sigma - V *_3 d(V^{-1}K^I), \\ B^I &= V^{-1}K^I\sigma + \xi^I, \qquad \vec{\nabla} \times \vec{\xi}^I = -\vec{\nabla} K^I \\ k &= \mu\sigma + \omega, \\ \mu &= M + \frac{1}{2}V^{-1}K^IL_I + \frac{1}{6}C_{IJK}V^{-2}K^IK^JK^K = \overline{M} + \frac{1}{2}V^{-1}Z_IK^I, \\ \vec{\nabla} \times \vec{\omega} &= V\vec{\nabla} M - M\vec{\nabla} V + \frac{1}{2}(K^I\vec{\nabla} L_I - L^I\vec{\nabla} K_I) \end{split}$$


Solution determined given harmonic functions on \mathbb{R}^3 $V, K^I, L_I, M \ (I=1,2,3)$

Ansatz

CFT states came in an $SU(2)_R$ multiplet with $J_R = J_L - 2P$ $J_R \leftrightarrow 4 d$ angular momentum

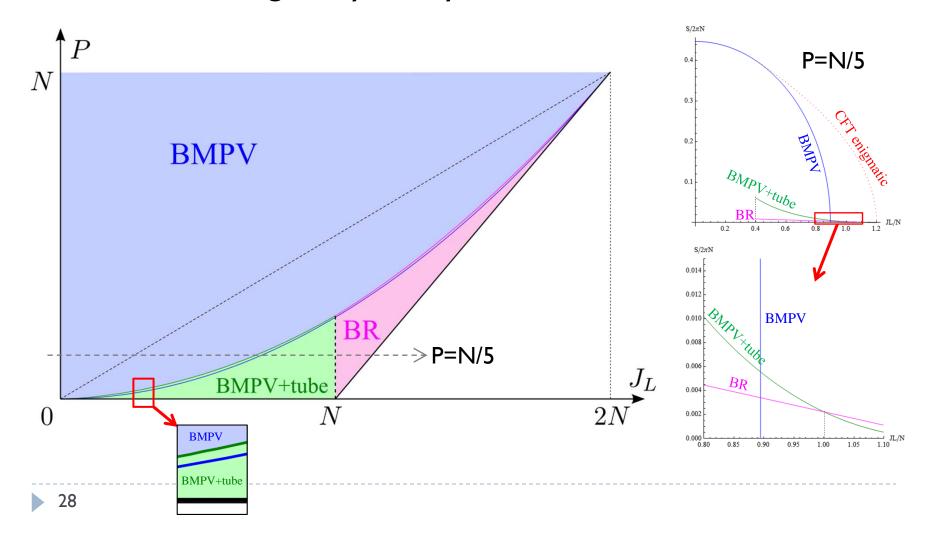
2-center configs.



Parameters constrained to give desired total charges

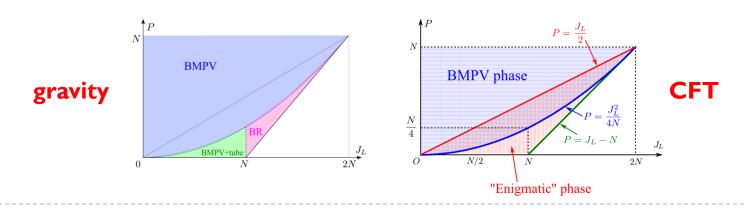
Play with parameters and maximize BH entropy

Result: max-entropy 2-center configs.



$$S_{\text{BMPV+hair}} = 2\pi \left(\sqrt{N} - \sqrt{J_L - P}\right)\sqrt{P}$$

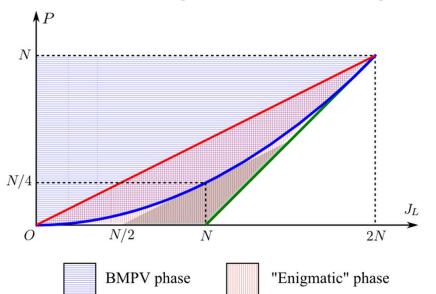
$$S_{\text{BR}} = 2\pi \left(\sqrt{N} - \sqrt{N - P}\right)\sqrt{P - J_L + N}$$
< S_{CFT}


Bulk phase diagram

2-center configs very barely dominates over BMPV

Summary — gravity side

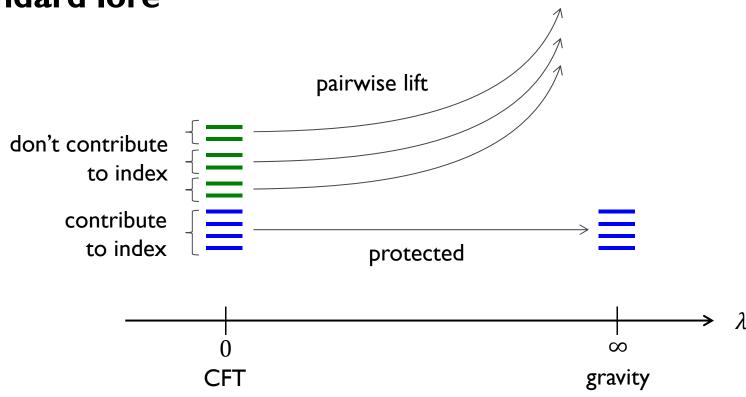
- ▶ Found 2-center configs for $P \sim J_L \sim N$
- Exists even outside the "BMPV parabola"
- Exists in the same region as CFT enigmatic phase does
- Dominates over BMPV partly in coexisting region
- Entropy strictly smaller than CFT enigmatic phase



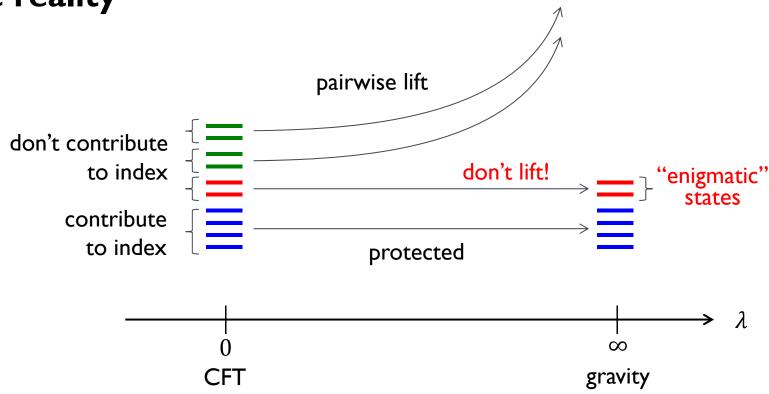
Discussion

Discussion

- Found configs whose entropy is larger than BMPV
 - BMPV is unstable, in spite of susy
- BH configs exist even outside the BMPV parabola!
 - Elliptic genus doesn't capture this BH


Cf. Matching of CFT and sugra elliptic genera [de Boer]

It was believed that there are no BHs in the gray region, but there are!


Partial lifting (1)

Standard Iore

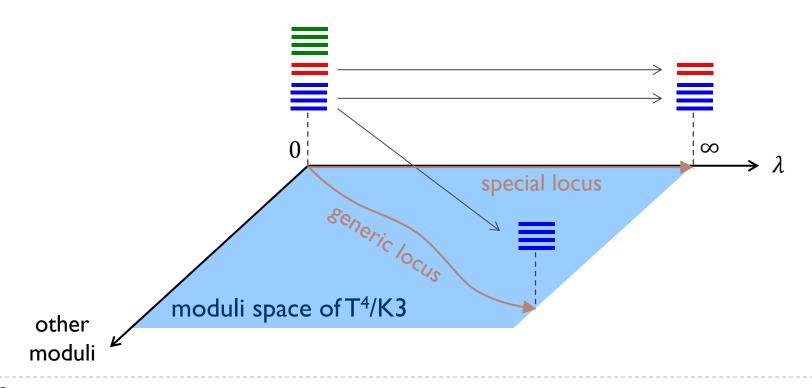
Partial lifting (2)

The reality

Protected for dynamical reasons, not susy?

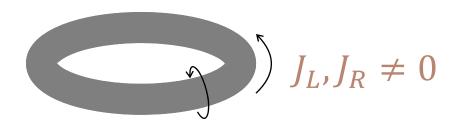
Conclusion

Conclusion


- ▶ Studied phases of D1-D5 system for given N, P, J_L
- Found new phases both in CFT & gravity
 - Controlled example of "hairy" BH
- New phases dominate over BMPV
- Some states survive strong coupling, although not protected by susy!
 - Dynamical protection? A new index??
- Further investigation needed

Thanks!

A new index?


We are not turning on generic moduli

— There may be an index protected only on special loci

Unsolved issues

- Black rings (susy)
 - Microscopics (CFT state) not understood [Bena+Kraus]
 - Dipole charge?

- Multi-center solutions
 - Zoo of solutions, no organizing principle
 - Microscopics unclear
 - Fuzzballs / gravity microstate

