A Holographic Study of Thermalization in Strongly Coupled Plasmas

Masaki Shigemori (KMI Nagoya)

KEK, 21 June 2011

Vijay Balasubramanian (U Penn), Berndt Müller (Duke)

Alice Bernamonti, Ben Craps, Neil Copland, Wieland Staessens (VU Brussels)

Jan de Boer (Amsterdam)

Esko Keski-Vakkuri (Helsinki)

Andreas Schäfer (Regensburg)

What happens in nuclear matter at high temperature?

Heavy ion collision

- QGP created at RHIC, LHC
- "Little Bang"
- Strongly coupled
- Difficult to study

Perturbative QCD: not applicable Lattice simulations: not always powerful enough

Holographic approach

QCD "
$$\sim$$
" $\mathcal{N} = 4$ SYM \square AdS/CFT AdS string

- Equilibrated QGP
 AdS black hole
- HI collisionEnergy injection?
- Thermalization

BH formation

- A toy model for QCD
- General insights into strongly coupled physics

Questions we ask & (try to) answer

- What is the measure for thermalization in the bulk?
 - Local operators are not sufficient

 $\langle T_{\mu\nu} \rangle$, etc.

Non-local operators do better job $\langle \mathcal{O}(x)\mathcal{O}(x')\rangle$, etc.

What is the thermalization time?

When observables become identical to the thermal ones

Outline

- 0. Intro
- I. Review
 - I.I HI collision
 - I.2 Lattice
 - I.3 Holographic approach
- Mostly based on - Casalderrey-Solana et al. 1101.0618
- 2. Holographic thermalization
 2.1 Models & probes for therm'n
 2.2 The model & results
 2.3 Summary

1.1 QCD and heavy ion collision

QCD at high T

Conjectured phase diagram

Heavy Ion Collision

Actual:

Taken from BNL website

Scales in HI collision (1)

fm = Fermi = femtometer = 10^{-15} m ~ 3×10^{-24} sec = 3 yoctoseconds

m	mili	10^{-3}
μ	micro	10^{-6}
n	nano	10 ⁻⁹
р	pico	10^{-12}
f	femto	10^{-15}
а	atto	10 ⁻¹⁸
Z	zepto	10 ⁻²¹
у	yocto	10^{-24}

hydrogen atom: $\sim 10^5$ fm

Scales in HI collision (2)

RHIC: Au
$$\sqrt{s_{nucl}} \sim 200 \text{ GeV}$$

 $\sqrt{s_{tot}} \sim 40 \text{ TeV}$
LHC: Pb $\sqrt{s_{nucl}} \sim 5.5 \text{ TeV}$
 $\sqrt{s_{tot}} \sim 1000 \text{ TeV}$

Energy density on collision $\sim 5 \text{ Gev}/\text{fm}^3$ (RHIC, 5x crossover energy density)

8000 hadrons produced (RHIC)

Stages in HI collision

~60 GeV/fm³ (LHC, t=0.25 fm)

Bjorken flow

Boost invariance (in central rapidity region)

Elliptic flow

 $\frac{dN}{d^2\mathbf{p}_T dy} \propto 1 + 2\nu_2 \cos(2\phi) + \cdots$

"elliptic flow" v_2 : parametrizes asymmetry in hadron multiplicity

> v_2 is important for determining hydro properties of QGP

Phenomenology of HI collision (1)

- ▶ Ideal hydro after $\tau_0 = 0.6 1$ fm explains v_2 (≤ 0.2)
 - Very fast thermalization
 - Larger au_0 spoils agreement
 - ▶ Perturbative QCD fails: $(\tau_0)_{pQCD} \gtrsim 2.5 \text{ fm}/c$

Phenomenology of HI collision (2)

• QGP has very small shear viscosity - entropy density ratio:

$$\frac{\eta}{s} = \frac{1-2.5}{4\pi}$$

- The smallest observed in nature (water ~380, helium ~9) (ultracold atoms at the unitarity point has similar η/s)
- Perturbative QCD fails:

$$\frac{\eta}{s} \sim \frac{1}{\alpha_s^2 \log \alpha_s}$$

- Short mean-free-path \rightarrow no well-defined quasiparticle
- Strongly coupled; perturbative approach invalid
- LHC: comparably strongly coupled; η/s comparably small

Phenomenology of HI collision (3)

- All hadron species emerge from a single common fluid
- Baryon chemical potential is small: $\mu \ll T$
- Jet quenching:

T \checkmark You are here!

- Medium modifies jets
- Jets modifies medium

Phenomenology of HI collision (4)

• Quarkonia: mesons made of $q\bar{q}$

 $r > T^{-1} \rightarrow \text{production suppressed}$

A field theory model of HI collision

1.2 Lattice approach

Lattice QCD (1)

- Good at thermodynamics
 - Deconfinement is crossover $T_c = 150 - 170 \text{ MeV}$
 - More conformal for larger T(but non-conformal at $T \sim T_c$)

CFT is not a crazy model

- Still, deconfined (Polyakov loop \neq 0)
 - Made of quarks & gluons
 - But can't be treated perturbatively

Lattice QCD (2)

At pioneering stage about transport properties

- Real-time correlators difficult
- Shear viscosity

$$\frac{\eta}{s} = \frac{1.2 - 1.7}{4\pi} \quad (T = 1.2 - 1.7T_c)$$

Not (yet) applicable to non-equilibrium properties

1.3 Holographic approach

Holographic approach

Want to study strongly coupled phenomena in QCD

• Toy model: $\mathcal{N} = 4 SU(N_c)$ SYM

Difference between QCD and $\mathcal{N} = 4$

- Is $\mathcal{N} = 4$ SYM really "similar" to QCD???
 - QCD confines at low T, but $\mathcal{N} = 4$ doesn't confine

 \implies At $T > T_c$ QCD deconfines and is similar to $\mathcal{N} = 4$

• $\mathcal{N} = 4$ is CFT but QCD isn't

 \implies QCD is near conformal at high T ($T \sim 5T_c$ achieved initially)

- ▶ $\mathcal{N} = 4$ is supersymmetric but QCD isn't \implies at T>0, susy broken
- QCD is asymptotically free

Experiments suggest it's strongly coupled at high T

. . .

Holo approach: equilibrium

Holo approach: near-equilibrium

Parton energy loss [Herzog et al.][Gubser]

- Quark = string ending on boundary
- Extract drag coeff / diffusion const.

Brownian motion / transverse momentum broadening

[de Boer+Hubeny+Rangamani+MS] [Son+Teaney]...

Can derive Langevin eq.

2. Probing thermalization by holography

Non-equilibrium phenomena

- (Near-)equilibrium physics (dual: BH)
 - Well-studied as we saw
- Thermalization process (dual: BH formation)
 - Poorly understood
 - Occurs fast: $\tau_0 \leq 1 \text{ fm} (\text{cf.} (\tau_0)_{pQCD} \gtrsim 2.5 \text{ fm})$
 - pQCD not applicable
 - Lattice QCD insufficient
- Non-equil. physics of strongly coupled systems: terra incognita

Basics of holography

AdS spacetime

$$ds^{2} = R_{AdS}^{2} \frac{dz^{2} - dt^{2} + dx^{2}}{z^{2}}$$

Holographic probes – local op

I-point function

Holographic probes – non-local op

2-point function

2.1 Models & probes of thermalization

Models for holographic thermalization

Initial cond?

- Not clear how to implement initial cond in bulk
- Various scenarios
 - Collision of shock waves [Chesler+Yaffe]...
 - Falling string [Lin+Shuryak]...

• Boundary perturbation [Bhattacharyya+Minwalla]...

The bulk spacetime

36

Probes of thermalization (1)

Instantaneous thermalization? [Bhattacharyya+Minwalla]

- Inside = empty AdS Outside = AdS BH
- 1-point function instantaneously thermalizes

Probes of thermalization (2)

- Local operators are not sufficient
 - They know only about near-bndy region
 They probe UV only
- Non-local operators do better job
 - They reach deeper into bulk

➡ They probe IR also

 They know more detail about thermalization process

Non-local operators

2-point function

- $\flat \ \langle \mathcal{O}(x)\mathcal{O}(x)\rangle$
- Bulk: geodesic (ID)
- Wilson line
 - $V = P\left\{\exp\left[\int_{C} A_{\mu}(x) dx^{\mu}\right]\right\}$
 - Bulk: minimal surface (2D)
- Entanglement entropy
 - $S_A = -\operatorname{Tr}_A[\rho_A \log \rho_A], \ \rho_A = \operatorname{Tr}_B[\rho_{tot}]$
 - Bulk: codim-2 hypersurface

Let's study these during BH formation process!

2.2 The model and results

The model: Vaidya AdS

Null infalling shock wave in AdS (Vaidya AdS spacetime)

Nonlocal probes we consider

Bulk spacetime	Dim of bulk probe	Operator
AdS3	1	Geodesic = EE
	1	Geodesic
Aust	2	Wilson line = EE
	1	Geodesic
AdS5	2	Wilson line
	3	EE

What we computed

AdS3

Can be solved analytically in thin shell limit <u>Cf.</u> Numerically done in [Abajo-Arastia+Aparicio+Lopez 1006.4090]

AdS4

Numerical <u>Cf.</u> Partly done in [Albash+Johnson 1008.3027]

AdS5

Numerical

Geodesics in AdS_3 (1)

Equal-time geodesics

- Geodesic connecting two boundary points at distance ℓ , at time t_0 after energy was deposited into system
- Refraction cond across shock wave

Geodesics in AdS_3 (2)

Analytic expression

$$\mathcal{L} - \mathcal{L}_{\text{therm}} = 2 \log \left[\frac{\sinh(r_H t_0)}{r_H \sqrt{1 - c^2}} \right], \qquad r_H \equiv \sqrt{M},$$
$$\ell = \frac{1}{r_H} \left[\frac{2c}{s\rho} + \ln \left(\frac{2(1+c)\rho^2 + 2s\rho - c}{2(1+c)\rho^2 - 2s\rho - c} \right) \right], \qquad \rho = \frac{1}{2} \coth(r_H t_0) + \frac{1}{2} \sqrt{\coth^2(r_H t_0) - \frac{2c}{c+1}}$$

Equal-time geodesics for fixed $\ell = 21.3$ and $t_0 = 0.1, 1.0, 4.0$

Equal-time geodesics for fixed $t_0 = 2$ and $\ell = 3.0, 4.6, 68.2$

Result: geodesic length

v = 0

• Given fixed ℓ , compute \mathcal{L} as function of t_0

- Renormalize \mathcal{L} by subtracting thermal value \mathcal{L}_{therm}
- If we wait long enough, $\mathcal{L} \to \mathcal{L}_{therm}$ (thermalize)

Larger ℓ ⇒ It takes longer to thermalize — "Top-down"

"Thermalization time" from geodesics

 τ_{crit} : \mathcal{L} becomes equal to the thermal value τ_{max} : $\mathcal{L}(t_0)$ has steepest slope $\tau_{1/2}$: \mathcal{L} becomes half the thermal value

• $\tau_{\rm crit}^{\rm AdS3} = \ell/2$ is as expected from causality bound

• Others would indicate $\tau < \ell/2$: superluminous propagation??

 \implies Should look at observable that gives largest τ

"Causality bound"

Other non-local observables

Similar behavior for all probes – "Top-down" thermalization

Thermalization time

- EE for disk/sphere saturates the causality bound $\tau \geq \ell/2$
- Infinite rectangle doesn't have one scales reason for larger τ ?

D

Infinite rectangle

2.3 Summary

Summary

- Studied various nonlocal probes during thermalization after sudden injection of energy
- Different probes show different thermalization time
 - Largest τ for codim-2 probes
 - Equilibration propagates at speed of light
- "Top-down" thermalization
 - Thermalization proceeds from UV to IR
 - "Built-in" in the bulk,
 but not in weakly-coupled field theory

An "estimate" of therm'n time in HI collision

$$\tau_{\rm crit} = \ell/2$$

$$\int \ell \sim T = 300 - 400 \text{ MeV}$$

$$\tau_{\rm crit} \sim 0.3 \text{ fm/}c$$
Reasonably short!
Cf. $\tau_{\rm expr} = 0.6 - 1 \text{ fm/}c$

$$\tau_{\rm pQCD} \gtrsim 2.5 \text{ fm/}c$$

Future directions

- More realistic backgrounds
- Toward emergent boost invariance
 - Falling string [Lin-Shuryak]
 - Approach to Janik-Peschanski solution

Idealized HI collision

Thanks!

Extra material

"Swallowtail" phenomenon [Albash+Johnson]

Rectangular Wilson loop for AdS4

For given t_0 , there are three possible minimal area surfaces

"Swallowtail" in quasi-static shell

EE as "coarse-grained" entropy

(Left) Maximal growth rate of entanglement entropy density vs. diameter of entangled region for d = 2; 3; 4 (top to bottom). (Middle) Same plot for d = 2, larger range of ℓ . (Right) Maximal entropy growth rate for d = 2.