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An old & new question
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What happens in nuclear matter
at high temperature?

Low T

quarks, gluons: confined

High T

quarks, gluons: deconfined

~1012 Kelvin

Quark-Gluon Plasma 
(QGP)



Heavy ion collision
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 QGP created at RHIC, LHC
 “Little Bang”
 Strongly coupled
 Difficult to study

QGP

heavy
nucleus

heavy
nucleus

Perturbative QCD: not applicable
Lattice simulations: not always powerful enough



Holographic approach
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QCD ࣨ ൌ 4 SYM AdS string“~” =
AdS/CFT

 Equilibrated QGP

 HI collision

 Thermalization

 AdS black hole

 Energy injection?

 BH formation

 A toy model for QCD
 General insights into strongly coupled physics



Questions we ask & (try to) answer
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 What is the measure for thermalization in the bulk?

 Local operators are not sufficient

〈 ఓܶఔ〉,  etc.

 Non-local operators do better job

ࣩ ݔ ࣩ ′ݔ ,  etc.

 What is the thermalization time?
When observables become identical to the thermal ones

AdS boundary

local op

nonlocal op



Outline
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1.1 QCD and heavy ion collision
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QCD at high T
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 Conjectured phase diagram

Taken from 
FAIR website



Heavy Ion Collision
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Taken from 
BNL website

collision freeze-outnon-equilibrium
state

equilibrated
QGP

Idea:

Actual:



Scales in HI collision (1)
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fm = Fermi = femtometer = 10ିଵହ m
∼ 3 ൈ 10ିଶସ sec = 3 yoctoseconds

Au
nucleus

~10	fm

pp nn

~1	fm

m mili 10ିଷ

ߤ micro 10ି

n nano 10ିଽ

p pico 10ିଵଶ

f femto 10ିଵହ

a atto 10ିଵ଼

z zepto 10ିଶଵ

y yocto 10ିଶସ hydrogen atom: ~10ହ	fm



Scales in HI collision (2)
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RHIC:     Au   ݏ୬୳ୡ୪	~	200	GeV
TeV	40	~	୲୭୲ݏ

LHC:      Pb TeV	5.5	~	୬୳ୡ୪ݏ
TeV	1000	~	୲୭୲ݏ

ݒ ൌ 0.99995ܿ
ߛ ൌ 100

0.1	fm

Energy density on collision ~	5	Gev/fmଷ

(RHIC,  5x crossover energy density) 8000 hadrons produced
(RHIC)



Stages in HI collision
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kinematic 
freezeout

chemical
freezeout

(hadronization)

equilibration hydrodynamic
evolution

࣎ ൌ .  െ 	ࢉ/ܕ
(cf. ߬ ୮୕େୈ ≳ 2.5	fm/ܿ)

equilibrated 
QGP

non-equilibrium 
state

collision

ܶ ൌ 150 െ 180	MeV

ܶ ൌ 90	MeV

hadronic gas

energy density
~10 GeV/fm3 (RHIC, t=0.4 fm)
~60 GeV/fm3 (LHC,  t=0.25 fm)

thermalization 
time



Bjorken flow
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 Boost invariance (in central rapidity region)

(beam direction)

phenomenologically
confirmed



Elliptic flow
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beam direction

more 
hadrons

less

݀ܰ
݀ଶݕ்݀ܘ

∝ 1  ଶcosݒ2 2߶ ⋯

“elliptic flow” ݒଶ:
parametrizes asymmetry
in hadron multiplicity

ଶݒ is important for 
determining hydro 
properties of QGP

߶



Phenomenology of HI collision (1)
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 Ideal hydro after  explains ଶ

 Very fast thermalization

 Larger ߬ spoils agreement

 Perturbative QCD fails:  ߬ ୮୕େୈ ≳ 2.5	fm/ܿ



Phenomenology of HI collision (2)
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 QGP has very small shear viscosity - entropy density ratio:

ఎ
௦

ଵିଶ.ହ
ସగ

 The smallest observed in nature (water ~380,  helium ~9)
(ultracold atoms at the unitarity point has similar ݏ/ߟ)

 Perturbative QCD fails: 
ఎ
௦
~ ଵ
ఈೞమ୪୭	ఈೞ

 Short mean-free-path  no well-defined quasiparticle

 Strongly coupled; perturbative approach invalid

 LHC: comparably strongly coupled; ݏ/ߟ comparably small



Phenomenology of HI collision (3)
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 All hadron species emerge from a single common fluid

 Baryon chemical potential is small: 

 Jet quenching:
ߤ

ܶ You are here!

QGP

jet

quark plowing 
through

 Medium modifies jets
 Jets modifies medium



Phenomenology of HI collision (4)
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 Quarkonia: mesons made of 

ݎ  ܶିଵ  production suppressed

proton = ݀ݑݑ

߰/ܬ ൌ ܿܿ̅

Υ ൌ ܾതܾ



A field theory model of HI collision
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 Color glass condensate

multiplicity

rapidity

mesons

nucleons with 
large rapidity

Most particles originate from 
the “wake” of the nuclei

color flux

collision



1.2 Lattice approach
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Lattice QCD (1)
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 Good at thermodynamics

 Deconfinement is crossover
ܶ ൌ 150 െ 170	MeV

 More conformal for larger ܶ
(but non-conformal at ܶ ∼ ܶ)

 Still, deconfined (Polyakov loop ≠ 0)
 Made of quarks & gluons
 But can’t be treated perturbatively

	≲ ሺ4	fmሻଷ

CFT is not a crazy model

tr
ac

e 
an

om
al

y

	~	50 sites in one dir



Lattice QCD (2)
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 At pioneering stage about transport properties

 Real-time correlators difficult
 Shear viscosity

 Not (yet) applicable to non-equilibrium properties

ߟ
ݏ ൌ

1.2 െ 1.7
ߨ4 					ሺܶ ൌ 1.2 െ 1.7 ܶሻ



1.3 Holographic approach
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Holographic approach
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 Want to study strongly coupled phenomena in QCD

 Toy model: ࣨ ൌ 4	ܷܵ ܰ SYM

ࣨ ൌ 4 SYM String theory
in AdS5

holo. dual

AdS/CFT

Strong coupling

Vacuum

Thermal state
(equilibrated plasma)

Thermalization

Weak coupling

Empty AdS5

AdS BH

BH formation

ܴௗௌ
݈௦

ସ

ൌ ݃ଢ଼ଶ ܰ

≡ ߣ

ݖ

A
dS 

boundary

UVIR

horizon



Difference between QCD and 
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 Is SYM really “similar” to QCD???

 QCD confines at low T, but ࣨ ൌ 4	doesn’t confine

At ܶ  ܶ QCD deconfines and is similar to ࣨ ൌ 4	

 ࣨ ൌ 4 is CFT but QCD isn’t
QCD is near conformal at high T (ܶ~5 ܶ achieved initially)

 ࣨ ൌ 4 is supersymmetric but QCD isn’t        at T>0, susy broken

 QCD is asymptotically free

Experiments suggest it’s strongly coupled at high T 

…



Holo approach: equilibrium
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 Shear viscosity

ߟ
ݏ ൌ

1 െ 2.5
ߨ4 	 expr. ,

1.2 െ 1.7
ߨ4 		ሺlatticeሻ

ߟ
ݏ ൌ

1
ߨ4 1 

ߞ15 3
ଷ/ଶߣ

 ⋯

Holography:

Cf. weak coupling:
ߟ
ݏ ൌ

ܣ
ଶߣ logሺܤ/ ሻߣ

ߣ

ݏ/ߟ

ߨ1/4
universal

theory (A,B) 
dependent

 No quasiparticles
 No propagating light DoFs

Only quasi-normal modes (same as QGP)

[Policastro+Son+Starinets]…



Holo approach: near-equilibrium
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 Parton energy loss [Herzog et al.][Gubser]

 Brownian motion / transverse momentum broadening
Brownian motion

[de Boer+Hubeny+Rangamani+MS]
[Son+Teaney]…

 Can derive Langevin eq.

force

 Quark = string ending on boundary
 Extract drag coeff / diffusion const.



2. Probing thermalization
by holography
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Non-equilibrium phenomena
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 (Near-)equilibrium physics (dual: BH)

 Well-studied as we saw

 Thermalization process (dual: BH formation)

 Poorly understood

 Occurs fast: ߬ ≲ 1	fm (cf. ߬ ୮୕େୈ ≳ 2.5fm)

 pQCD not applicable

 Lattice QCD insufficient

 Non-equil. physics of strongly coupled systems:
terra incognita



Basics of holography
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 AdS spacetime

ݐ

UVIR

AdS
boundary

bulk

ݖ

࢞

AdS 
spacetime
(“bulk”)

ଶݏ݀ ൌ ܴௗௌଶ ଶݖ݀ െ ଶݐ݀  ଶ࢞݀

ଶݖ



Holographic probes – local op
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 1-point function

߶ ,ݖ ݔ ൌ ସିݖ	ሻݔሺߙ ⋯ ߚ ݔ ݖ	  ⋯	

bulk field
boundary
operator

perturbation vev

Δܵ ൌ  ݀ସݔ	ߙ ݔ ࣩሺݔሻ ࣩ ݔ ൌ ߚ ݔ

ݖ

boundary

1-point function
knows only 
about UV

UVIR



Holographic probes – non-local op
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 2-point function

Non-local ops. know also about IR 

ݖ

boundary

ࣩ ݔ ࣩ ′ݔ ∼ ݁ିࣦ
ݔ

geodesic′ݔ

ࣦ

UVIR



2.1 Models & probes of 
thermalization
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Models for holographic thermalization
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Initial cond?

 Not clear how to implement
initial cond in bulk

 Various scenarios

• Collision of shock waves [Chesler+Yaffe]…

• Falling string [Lin+Shuryak]…

• Boundary perturbation [Bhattacharyya+Minwalla]…

Thermalization BH formation



The bulk spacetime
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AdS
BH

empty AdS

turn off pert.
turn on pert.

A
dS boundary

ݐ

ݖ
UVIR



Probes of thermalization (1)
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 Instantaneous thermalization?

 Inside    =  empty AdS
Outside =  AdS BH

 1-point function
instantaneously thermalizes

1-pt func:
same as that in 
thermal state

AdS
BH

empty AdS

turn off pert.
turn on pert.

A
dS boundary

ݐ
ݖ

[Bhattacharyya+Minwalla]

UVIR



Probes of thermalization (2)
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 Local operators are not sufficient

 They know only about near-bndy region

They probe UV only

 Non-local operators do better job

 They reach deeper into bulk

They probe IR also

 They know more detail
about thermalization process

A
dS boundary

local op

non-local
op

ݐ

ݎ

UVIR



Non-local operators
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 2-point function
 ࣩ ݔ ࣩ ݔ
 Bulk: geodesic (1D)

 Wilson line
 ܹ ൌ ܲ exp  ఓܣ ݔ ఓݔ݀

 Bulk: minimal surface (2D)

 Entanglement entropy
 ܵ ൌ െTr ߩ	logߩ , 	 ߩ ൌ Trሾߩ୲୭୲ሿ
 Bulk: codim-2 hypersurface

AdS boundary

bulk

geodesic

AdS boundary

bulk

minimal 
surface

Let’s study these during BH formation process!



2.2 The model and results

40



The model: Vaidya AdS
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 Null infalling shock wave in AdS (Vaidya AdS spacetime)

ଶݏ݀ ൌ
1
ଶݖ ሾെ 1 െ ݉ ݒ ௗݖ ଶݒ݀ െ ݒ݀	ݖ2݀  Ԧଶሿݔ݀

 Thin shell limit
݉ ݒ ൌ ሻݒሺߠܯ

 We study AdSD with D=3,4,5
 field theory in d=2,3,4

ݖ ൌ 0
ݖ ൌ ∞

UV (AdS boundary)

IR

 BH forms at late time

ݒ

ݖ
Ԧݔ

 Simple setup amenable to detailed study sudden, 
spatially 
homogen. 
injection 
of energy

 Sudden & spatially homog. injection of energy

⨂



Nonlocal probes we consider
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Bulk 
spacetime

Dim of bulk 
probe Operator

AdS3 1 Geodesic = EE

AdS4
1 Geodesic

2 Wilson line = EE

AdS5

1 Geodesic
2 Wilson line
3 EE



What we computed
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 AdS3
 Can be solved analytically in thin shell limit

Cf. Numerically done in [Abajo-Arastia+Aparicio+Lopez 1006.4090]

 AdS4
 Numerical

Cf. Partly done in [Albash+Johnson 1008.3027]

 AdS5
 Numerical



Geodesics in AdS3 (1)
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 Equal-time geodesics

 Geodesic connecting two boundary points at distance ℓ,
at time ݐ after energy was deposited into system

 Refraction cond across shock wave

bulk

geodesic

ݖݔ

ݒ ൌ ݐ

ℓ

ݒ ൌ 0

AdS boundary



Geodesics in AdS3 (2)
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 Analytic expression

ࣦ െ ࣦ୲୦ୣ୰୫ ൌ 2	log
sinh ݐுݎ
ுݎ 1 െ ܿଶ

,

ℓ ൌ
1
ுݎ

2ܿ
ߩݏ  ln

2 1  ܿ ଶߩ  ߩݏ2 െ ܿ 
2 1  ܿ ଶߩ െ ߩݏ2 െ ܿ , ߩ ൌ

1
2 coth ݐுݎ 

1
2 cothଶ ݐுݎ െ

2ܿ
ܿ  1

ுݎ ≡ ,ܯ

Equal-time 
geodesics for fixed 
ℓ ൌ 21.3	and 
ݐ ൌ 0.1, 1.0, 4.0

Equal-time 
geodesics for fixed 
ݐ ൌ 2 and 
ℓ ൌ 3.0, 4.6, 68.2

ݒ ൌ ݐ

ℓ

ݒ ൌ 0

ࣦ



Result: geodesic length
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ࣦ
െ
ࣦ ୲
୦ୣ
୰୫

AdS3 AdS4 AdS5

 Given fixed ℓ, compute ࣦ as function of ݐ
 Renormalize ࣦ by subtracting thermal value ࣦ୲୦ୣ୰୫
 If we wait long enough, ࣦ → ࣦ୲୦ୣ୰୫ (thermalize)
 Larger ℓ It takes longer to thermalize ― “Top-down”

ݒ ൌ ݐ

ℓ

ݒ ൌ 0

ࣦ



“Thermalization time” from geodesics
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AdS3 AdS4 AdS5

߬ଵ/ଶ ߬ଵ/ଶ ߬ଵ/ଶ

߬ଵ/ଶ : ࣦ becomes half the thermal value

 ߬ୡ୰୧୲ୢୗଷ ൌ ℓ/2 is as expected from causality bound
 Others would indicate ߬ ൏ ℓ/2: superluminous propagation??

Should look at observable that gives largest ߬



“Causality bound”
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ݔ

ݐ

ℓ
2

ܱ

ℓ



Other non-local observables

49

 Similar behavior for all probes – “Top-down” thermalization

AdS4

AdS5

Circular
Wilson loop

Rectangular
Wilson loop

Entanglement 
Entropy

ࣛ
െ
ࣛ
୲୦
ୣ୰
୫

ࣛ
െ
ࣛ
୲୦
ୣ୰
୫

N/A

ℓ



Thermalization time
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AdS3

AdS4

AdS5

geodesic circular
Wilson loop

Rectangular 
Wilson loop

EE for
a sphere

 EE for disk/sphere saturates the causality bound ߬  ℓ/2
 Infinite rectangle doesn’t have one scales – reason for larger ߬ ?

߬ଵ/ଶ
N/A N/A N/A

N/A



Infinite rectangle
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ℓ



2.3 Summary
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Summary
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 Studied various nonlocal probes during thermalization 
after sudden injection of energy

 Different probes show different thermalization time
 Largest ߬ for codim-2 probes
 Equilibration propagates at speed of light 

 “Top-down” thermalization
 Thermalization proceeds from UV to IR
 “Built-in” in the bulk,

but not in weakly-coupled field theory

AdS
BH

empty AdS

UVIR



An “estimate” of therm’n time in HI collision
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߬ୡ୰୧୲ ൌ ℓ/2

ℓ	~	ܶ ൌ 300 െ 400	MeV

߬ୡ୰୧୲	~	0.3	fm/ܿ

Reasonably short!

Cf.  ߬ୣ୶୮୰ ൌ 0.6 െ 1	fm/ܿ
߬୮୕େୈ ≳ 2.5	fm/ܿ



Future directions
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 More realistic backgrounds
 Toward emergent boost invariance
 Falling string [Lin-Shuryak]

 Approach to Janik-Peschanski solution
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Thanks!



Extra material
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“Swallowtail” phenomenon [Albash+Johnson]
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ࣛ
െ
ࣛ
୲୦
ୣ୰
୫

 For given ݐ, there are three possible minimal area surfaces

 Rectangular Wilson loop for AdS4

ℓሺ
ࣛ
െ
ࣛ
୲୦
ୣ୰
୫
ሻ



“Swallowtail” in quasi-static shell
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ࣦ୰ୣ୬



EE as “coarse-grained” entropy
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(Left) Maximal growth rate of entanglement entropy density vs. diameter of entangled 
region for d = 2; 3; 4 (top to bottom). 
(Middle) Same plot for d = 2, larger range of ℓ.
(Right) Maximal entropy growth rate for d = 2.


