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An old & new question

What happens in nuclear matter
at high temperature?
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Heavy ion collision

» QGP created at RHIC, LHC
» “Little Bang”

» Strongly coupled

» Difficult to study

Perturbative QCD: not applicable
Lattice simulations: not always powerful enough



Holographic approach

QCD “~)’

» Equilibrated QGP

» HI collision

AdS/CFT

mumpll AdS string

» AdS black hole

» Energy injection!?

[ » Thermalization

» BH formation ]

» A toy model for QCD

» General insights into strongly coupled physics



Questions we ask & (try to) answer

» What is the measure for thermalization in the bulk?

Local operators are not sufficient _ A boundary

local op

(T,y), etc.
Non-local operators do better job

<0 (X)O (X,) ), etc. \/\Lnlocal op

» What is the thermalization time?

When observables become identical to the thermal ones
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1.1 QCD and heavy ion collision



QCD at high T
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Heavy Ion Collision

Idea:
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ici non-equilibrium equilibrated
collision .ﬁcate q QGP freeze-out

Taken from

1. lons about to collide* 2. lon collision 3. Quarks, gluons freed 4. Plasma created BNL website



Scales in HI collision (1)

fm = Fermi = femtometer = 1071° m
~ 3 X 1072* sec = 3 yoctoseconds

m | mili | 1073

micro | 107°
n | nano | 107°
p | pico | 10712
f |femto|1071°
a | atto | 10718
z | zepto | 10721
y | yocto | 10724

~10 fm

P @

~1 fm

hydrogen atom: ~10° fm



Scales in HI collision (2)

LHC: Pb /spuc ~ 5.5 TeV
\/Stot ~ 1000 TeV

i« 0.1fm

v = 0.99995¢
y = 100 )

Energy density on collision ~ 5 Gev/fm3

(RHIC, 5x crossover energy density) 8000 hadrons produced
(RHIC)




Stages in HI collision

chemical
. thermalization freezeout kinematic
collision . o
. time (hadronization)  freezeout
equilibration hydrodynamic :
evolution | ; t

non-equilibrium equilibrated hadron%c gas
state | QGP i
To = 0.6 — 1 fm/c T =150 — 180 MeV |
(Cf. (TO)pQCD = 2.5 fm/C) T = 9IO MeV

energy density
~10 GeV/fm3 (RHIC, t=0.4 fm)
~60 GeV/fm3? (LHC, t=0.25 fm)
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Bjorken flow

» Boost invariance (in central rapidity region)

phenomenologically
confirmed

hadronic gas

equilibrated QGP

> pre-equilibrium stage

t

T—) 2 (beam direction)



Elliptic flow

more d*prdy

hadrons

1 .
« 1+ 2vycos(2¢) + -+

“elliptic flow” v5:
parametrizes asymmetry
in hadron multiplicity

l ® v, is important for

beam direction determining hydro

less properties of QGP



Phenomenology of HI collision (1)

» ldeal hydro after 7, = 0.6 — 1 fm explains v, (< 0.2)
Very fast thermalization

Larger 7, spoils agreement

Perturbative QCD fails: (74)pqcp = 2.5 fm/c



Phenomenology of HI collision (2)

» QGP has very small shear viscosity - entropy density ratio:

n __ 1-25

S 41T

The smallest observed in nature (water ~380, helium ~9)
(ultracold atoms at the unitarity point has similar 7/5s)

Perturbative QCD fails:
n 1

— N

s a?log ag

Short mean-free-path > no well-defined quasiparticle
Strongly coupled; perturbative approach invalid

LHC: comparably strongly coupled; /s comparably small



Phenomenology of HI collision (3)

» All hadron species emerge from a single common fluid

» Baryon chemical potential is small: g K T
T You are here!

» Jet quenching; ’\
jet =

quark plowing Medium modifies jets
through

Jets modifies medium
QGP



Phenomenology of HI collision (4)

» Quarkonia: mesons made of gg

proton = uud




A field theory model of HI collision

» Color glass condensate

multiplicity
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ﬂge rapidity
. rapidity

Most particles originate from
the “wake” of the nuclei

2. lon caollision

1_lons about to collide™
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1.2 Lattice approach



Lattice QCD (1)

S (4 fm)3
~ 50 sites in one dir

» Good at thermodynamics @

Deconfinement is crossover
T. =150 — 170 MeV

ol |
i
A -
*
. .
° \

> Hadrons
R

"z
sl

More conformal for larger T
(but non-conformal at T ~ T,)

Temperature T [MeV]

I:> CFT is not a crazy model

Still, deconfined (Polyakov loop # 0)
Made of quarks & gluons

But can’t be treated perturbatively

trace anomaly
—

A N=12
i 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1

200 400 600 800 1000
T[MmeV]
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Lattice QCD (2)

» At pioneering stage about transport properties

» Real-time correlators difficult
» Shear viscosity

7’]_1.2—1.7 12— 17T
s 4w (r=1 7Te)

» Not (yet) applicable to non-equilibrium properties
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1.3 Holographic approach



Holographic approach

» Want to study strongly coupled phenomena in QCD

» Toy model: ' = 4 SU(N,) SYM

| 4
| holo. dual - (Rms) = g2uN,
< > in AdSS ls

AdS/CFT = A
Strong coupling > Weak coupling |
Vacuum Empty AdS, -
Thermal state ~ «—> AdS BH u .
(equilibrated plasma) 7" “» S
Thermalization —> BH formation ) “z k $
I(R U'i/



Difference between QCD and NV =4

» Is N = 4 SYM really “similar” to QCD???
QCD confines at low T, but N' = 4 doesn’t confine

=» AtT > T, QCD deconfines and is similar to V' = 4

N =4 is CFT but QCD isn’t
=p QCD is near conformal at high T (T ~5T, achieved initially)

N = 4 is supersymmetric but QCD isn’t =) atT>0, susy broken

QCD is asymptotically free

= Experiments suggest it’s strongly coupled at high T
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Holo approach: equilibrium

» Shear viscosity

hadronic gas

n — 1-25 ( ) 12-17 latti equilibrated QGP
S B 4‘77: eXpr' ' 4‘77: (a lce) pre-equilibrium stage
Holography: "
Q — i 1+ 155(3) + .. [Policastro+Son+Starinets]... L’x
s A4m A3/2

n/s

Cf. weak coupling:
n A

s 22log(B/NA)

theory (A,B)
dependent

universal

» No quasiparticles 1jdm|

No propagating light DoFs A
Only quasi-normal modes (same as QGP)

27



Holo approach: near-equilibrium

» Parton energy loss [Herzog et al J[Gubser]

force
-

/ Quark = string ending on boundary

- Extract drag coeff / diffusion const.

» Brownian motion / transverse momentum broadening

[de Boer+Hubeny+Rangamani+MS]

Brownian motion [Son+Teaney]...
<>

H’E

Can derive Langevin eq.

28
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2. Probing thermalization
by holography



Non-equilibrium phenomena

» (Near-)equilibrium physics (dual: BH)
» Well-studied as we saw

» Thermalization process (dual: BH formation)
» Poorly understood
» Occurs fast: 75 < 1 fm (cf. (79)pqcp = 2.5fm)

» pQCD not applicable

» Lattice QCD insufficient

» Non-equil. physics of strongly coupled systems:
terra incognita



Basics of holography

» AdS spacetime

AdS
boundary
, o, dz® —dt? +dx? AdS t
ds® = RAdS > spacetime
z (“bulk”) T/x
4)//00 //Q
Z
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Holographic probes — local op

» |-point function

boundary .
operator bulk field
0O = ¢
d(z,x) =a(x)z¥ 2+ -+ B(x) z% + -
- ——
perturbation vev

AS = [ d*x a(x)0(x) (0(x)) = B(x)

32

boundary
/
o
2
«— v
VA
< >
IR uv

| -point function

knows only
about UV



Holographic probes — non-local op

» 2-point function

33

boundary

e

geodesic 9:
e

N

< >

/Q
4
1

IR uv

(O(x)O(x)) ~ e™™

Non-local ops. know also about IR
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2.1 Models & probes of
thermalization



Models for holographic thermalization

e

Initial cond?

Not clear how to implement
initial cond in bulk
Various scenarios

Collision of shock waves [Chesler+Yaffe]...

Falling string [Lin+Shuryak]...

[ Boundary perturbation [Bhattacharyya+Minwalla].. ]

35



The bulk spacetime

0
AJdepunoq Spy

Ho, t:turn off pert.
@ turn on pert.

]
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Probes of thermalization (1)

» Instantaneous thermalization? [Bhattacharyya+Minwalla]

Q7
5\8’ 1-pt func:

Inside

Outside

empty AdS
AdS BH

1-point function
instantaneously thermalizes

37

>— same as that in
thermal state

turn off pert.

K

turn on pert.

AJepunoq Spy

o




Probes of thermalization (2)

» Local operators are not sufficient

They know only about near-bndy region
=> They probe UV only 7 Qioclop
. ,’/ non-local
» Non-local operators do better job < |v
They reach deeper into bulk é
=) They probe IR also L 2
r <
They know more detail ¢ »
about thermalization process IR uv
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Non-local operators

» 2-point function
/ minimal /
(0 (X) O (X)> geodesic surface |
Bulk: geodesic (1D) = QMMII@
» Wilson line e /( - /f
W=~ {exp UC AM (x )dx M]} AdS boundary AdS boundary

Bulk: minimal surface (2D)

» Entanglement entropy
Sa = —Tralpalog pal, pa = Trp[prot]

Bulk: codim-2 hypersurface

=) Let’s study these during BH formation process!

39



40

2.2 The model and results



The model: Vaidya AdS

» Null infalling shock wave in AdS (Vaidya AdS spacetime)

1
ds? = = [—(1 —m()z%)dv? — 2dz dv + d%?]

z=0 <—> UV (AdS boundary)

7 = 00 HIR

Simple setup amenable to detailed study

Sudden & spatially homog. injection of energy

BH forms at late time

Thin shell limit
m(v) = M6 (v)
We study AdS with D=3,4,5
- field theory in d=2,3,4

41

singularity

pure AdS
(v <0)

(0=72) Kmpurﬁq SPV

AdS
Schwarzschild

| (v>0)

sudden,
spatially
homogen.
injection
of energy



Nonlocal probes we consider

Bulk Dim of bulk

spacetime probe Operator
AdS3 1 Geodesic = EE
1 Geodesic
AdS4
2 Wilson line = EE
1 Geodesic
AdS5 2 Wilson line
3 EE
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What we computed

» AdS3

Can be solved analytically in thin shell limit
Cf. Numerically done in [Abajo-Arastia+Aparicio+Lopez 1006.4090]

» AdS4

Numerical
Cf. Partly done in [Albash+Johnson 1008.3027]

» AdS5

Numerical
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Geodesics in AdS; (1)

» Equal-time geodesics
¢

singularity

& AdS
I Schwarzschild
| (v>0)

s
geodesic

pure AdS
(v <0)

""" _-AdS boundary

z) Arepunoq §py

(0

Geodesic connecting two boundary points at distance ¥,
at time t, after energy was deposited into system

Refraction cond across shock wave
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Geodesics in AdS; (2)

» Analytic expression

sinh(ryt,)
L— Ltherm =2 log [ﬁ ’

1 [2c 21+ c)p?+2sp—c
{=—|—+1In ,
Ty |Sp 2(1+c)p?—2sp—c
U 14
\/ % o&é\
N
N;  Equak
V¢ Equal-time
g geodesics for fixed
= ¥ =213and
< to=0.1,1.0,4.0

45

L <=

1 1
p = ECOth(THtO) + E\/coth2 (ruto) —

‘(A:

2
-
..... i v =to
L v=0
2c
c+1
. Equal-time
§ geodesics for fixed
3ty =2and
S

£ =3.0,4.6,68.2



Result: geodesic length

AdS, AdS, AdS,
O. '," ,‘r O. ‘o ," v 0 I— R
N ’, ’0 ::' ,,, /’ I, ; /
%// .’:\, / /' S0 0 ’ S F 4
E —0.1+ Sy A -0.1- 0 / K4 —0.1} S ,l'
Q "% ll// :’ W 0 II :I o" l’ 4
ﬁ 7\ [%// e ’I "' o I, ‘l
/ /
Y02 S —02 /7 ~02 S/
L’ / 7 ’ R ’
Q s S -/
7 R R4
—0.31-7 —-0.3=7 —0.3{-""
0 1 2 0 1. 2 0 1 2
to t() tO '3
B
Given fixed £, compute L as function of t, P ——
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Renormalize L by subtracting thermal value Liyerm
If we wait long enough, £L = Liperm (thermalize)
Larger £ => It takes longer to thermalize — “Top-down”




“Thermalization time” from geodesics

AdS, AdS, AdS,
2 y 2. 2,
I, i
g ,‘/ (’/'
// /Qlax A’ Trpax o Tmax
T s e T s »”
w1 T e e Tein/ 2P T
y » d o’. ,’.:/
ey T1/2 S T1)2 2 112
y /,h
4 £,
/,
0 0. ' 0
0 2 4 0. 2 -+ 0 2 4
{ { {
Tcrit ¢ L becomes equal to the thermal value
Tmax: L(tg) has steepest slope T1/2 :L becomes half the thermal value

tA453 — £/2 is as expected from causality bound
Others would indicate T < £/2: superluminous propagation??
= Should look at observable that gives largest T
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“Causality bound”

N[ o

48
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Other non-local observables

Circular Rectangular |Entanglement
Wilson loop Wilson loop Entropy
-
5 003 /) £
Ads K " /I'l’ —04L. "'/’l/' N/A
4 tlg —0.06 ol ‘/"' —06_-:; ~
0 . 2 B R TR R
fo fo
0. _/T.";IT,—;'
E ‘l /
5 i
= i
AdS, |T 0./
5 ! i
—0.06, s o TR % L2
fo I fo

Similar behavior for all probes —“Top-down” thermalization
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Thermalization time

geodesic circular Rectangular EE for
Wilson loop Wilson loop a sphere
x’/:[,max
torie v o
AdS,
AdS,
AdS,

EE for disk/sphere saturates the causality bound 7 = £/2
Infinite rectangle doesn’t have one scales — reason for larger 7 ?
50



Infinite rectangle




2.3 Summary
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Summary

» Studied various nonlocal probes during thermalization
after sudden injection of energy

» Different probes show different thermalization time

Largest 7 for codim-2 probes RSV,
Equilibration propagates at speed of light M

&
&S
» “Top-down” thermalization 7 oo
Thermalization proceeds from UV to IR K '
“Built-in” in the bulk, empty AdS
but not in weakly-coupled field theory '
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An “estimate” of therm’n time in HI collision

Terit = /2

£ ~T =300—400 MeV

Terit ~ 0.3 fm/c

Reasonably short!

Cf. Texpr = 0.6 —1fm/c
TpQCD = 2.5 fm/c
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Future directions

» More realistic backgrounds

» Toward emergent boost invariance
Falling string [Lin-Shuryak]

Approach to Janik-Peschanski solution

Idealized HI collision

Picture the glasma as collection of flux tubes
connecting heavy color charges moving apart
at high speed (Lin & Shuryak, 2006-08).

| As color charges separate, flux tubes sink into the bulk. ‘

&L

Collection of parallel flux tubes .
can be approximated as thin mass
shell moving deeper into the bulk.

When the shell sinks below its Schwarzschild radius, thermalization is reached.
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Thanks!
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Extra material



“Swallowtail” phenomenon [abash+Johnson]

» Rectangular Wilson loop for AdS4

For given t,, there are three possible minimal area surfaces
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“Swallowtail” in quasi-static shell
Lren
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2

E as “coarse-grained” entropy

_50_30 e inanas I 03 2.
2025| | 2025 51
O 10 S L5}
020} 15 02 2
Z0.15} 20.15} o
] L
a a) o
~0.10} ~ 0.1 S
o oY 0.5
2005\ I £0.05 =
50.00 15

1.0 1.52.02.53.0 3.5 4.0 0 5 10 15 20 25 30 0

0 5 10 15 20 25 30
{or D ( (

(Left) Maximal growth rate of entanglement entropy density vs. diameter of entangled

region for d = 2; 3; 4 (top to bottom).

(Middle) Same plot for d = 2, larger range of ¥.

(Right) Maximal entropy growth rate for d = 2.
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