## Toward Construction of Supergravity Superstrata States

Masaki Shigemori (YITP Kyoto)

Shizuoka, December 5 第6回静岡素粒子集中セミナー

#### stra·tum [stréitəm | stráː-] 『ラテン語「広がったもの」の意から』 一阁回(鶴-ta [-tə], ~s) 1 【地質】地層; 層. 2 層, 階級.

\*

Based on collaboration with: Iosif Bena (Saclay) Jan de Boer (Amsterdam) Stefano Giusto (Padova) Rodolfo Russo (Queen Mary) Nicholas Warner (USC)

|4|2.xxx, |406.4506, |307.3||5, |209.6056, ||0.278|, |107.2650, |004.252|

# Road to Superstratum

## Black hole puzzles

• Entropy (microstate) problem  $S_{BH} = \frac{A}{4G_N}$ Schwarzschild:  $S_{BH} = 10^{77} (M/M_{\odot})^2$ Cf. No-hair theorem:  $e^S = 1$ 

Information paradox

Firewall

#### Microstate counting

Strominger-Vafa 1996:



Ocol, but what's gravity picture of the microstates?

## Fuzzball proposal



- Microstates = QG/string "fuzz"
- Not describable within sugra in general (some hope for supersymmetric states)

## 2-charge system (1)

Fuzzball proposal was made based on this system

 $\begin{array}{c|c} \text{Canonical rep:} & & & & & \\ & & I & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \text{IIB on } S_5^1 \times T_{6789}^4 & & \\ & N_1 \text{ DI } & \cdot & \cdot & \cdot & 0 & 2 & - & - \\ & N_2 \text{ D5 } & \cdot & \cdot & \cdot & 0 & 0 & 0 & 0 & 0 \end{array}$ 

Supersymmetric (8 supercharges, 1/4 BPS)

Large microscopic entropy:

$$S_{\rm micro} = 2\sqrt{2}\pi\sqrt{N_1N_2}$$

Horizon vanishes classically

## 2-charge system (2)

Sugra microstates known:

#### "Microstate geometries" [Lunin-Mathur 2001]

It is a supertube:



• Reproduces entropy;  $S \sim \sqrt{N_1 N_2}$ 

#### Dictionary b/w CFT & sugra microstates known

RR gnd state  $\iff$  curve  $\vec{f}(\lambda)$ 

#### 2-charge system: summary

# Fuzzball works for 2-charge sys, which however is not a black hole.

Need to go to system with finite horizon to prove / disprove fuzzball conjecture

## 3-charge system

- Susy BH in 5D (4 supercharges)
- Canonical rep [Strominger-Vafa 1996]

|                           |                                | Ι | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---------------------------|--------------------------------|---|---|---|---|---|---|---|---|---|
|                           | $N_1 DI$                       | • | • | • | • | 0 | ~ | ~ | ~ | ~ |
| $S_5^1 \times T_{6789}^4$ | N <sub>2</sub> D5              | ٠ | ٠ | • | • | 0 | 0 | 0 | 0 | 0 |
|                           | <i>N</i> <sub>3</sub> <b>P</b> | • | • | • | • | 0 | ~ | ~ | ~ | ~ |

- ▶ Decoupling  $\rightarrow AdS_3 \times S^3 \times T^4$  / DI-D5 CFT
- Macroscopic entropy:  $S \sim \sqrt{N_1 N_2 N_3}$

## 4-charge system

- Susy BH in 4D (4 supercharges)
- Canonical rep [Maldacena-Strominger-Witten 1997]

|                                                 |                          | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α |
|-------------------------------------------------|--------------------------|---|---|---|---|---|---|---|---|---|---|
| <b>M on</b><br>T <sup>6</sup> <sub>456789</sub> | <i>N</i> <sub>1</sub> M5 | • | • | • | ~ | ~ | 0 | 0 | 0 | 0 | 0 |
|                                                 | N <sub>2</sub> M5        | • | • | • | 0 | 0 | ~ | ~ | 0 | 0 | 0 |
|                                                 | N <sub>3</sub> M5        | • | • | • | 0 | 0 | 0 | 0 | ~ | ~ | 0 |
|                                                 | <i>N</i> <sub>4</sub> P  | • | • | • | ~ | ~ | ~ | ~ | ~ | ~ | 0 |

- Decoupling  $\rightarrow AdS_3 \times S^2 \times T^6$  / MSW CFT
- Macroscopic entropy:  $S \sim \sqrt{N_1 N_2 N_3 N_4}$

## 5D/4D ansatz (1)

# Want to find gravity microstates for 3- & 4-charge systems

(although there is no guarantee that they are describable within sugra...)

Start from 3-charge system IIB /  $T_{56789}^{5}$  D1(5), D5(56789), P(5)  $T_{5}, T_{6}, T_{7}$ IIA /  $T_{56789}^{5}$  D2(67), D2(89), F1(5)  $Iift along x^{A}$ M /  $T_{56789A}^{6}$  M2(67), M2(89), M2(5A) Nicely symmetric

## 5D/4D ansatz (2)

 $M / T_{56789A}^{6}$  M2(67), M2(89), M2(5A)

Bena-Warner, Gauntlett-Gutowski 2004:

Classified all solutions in 5D preserving same susy

- $\Box$  4D hyperkahler base  $\mathcal{B}_4$
- $\square$  Funcs & forms defined on  $\mathcal{B}_4$

Technically difficult. Assume U(1) symmetry in  $B_4$ 

- $\square$  3D flat base  $\mathbb{R}^3$
- $\Box$  Harmonic funcs on  $\mathbb{R}^3$

$$H = (V, K^I, L_I, M), \qquad H$$

$$H = h + \sum_{p} \frac{Q_{p}}{|\boldsymbol{r} - \boldsymbol{r}_{p}|}$$

## 5D/4D ansatz (3)

Multi-center config of BHs & BRs in 5D

$$H = h + \sum_{p} \frac{Q_{p}}{|\boldsymbol{r} - \boldsymbol{r}_{p}|}$$

- Positions  $r_p$  satisfy "bubbling eq"
- Large family of solutions
- Reducing on U(1), it becomes 4D BHs (same as Bates-Denef 2003)

$$H = (V, K^{I}, L_{I}, M)$$

$$\downarrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$D6 D4 D2 D0$$



 $\mathbb{R}^3$ 

#### Microstates in 5D/4D ansatz (1)

#### ► Tune charges ⇒ Regular & horizonless solutions!

[Bena-Warner 2006] [Berglund-Gimon-Levi 2006]

D6 = KKM with fluxes



Mechanism to support horizonsized structure! Cf. Firewall

Microstate geometries of 3- and 4-charge black holes ③

#### Microstates in 5D/4D ansatz (2)

- ► Various nice properties ☺
  - Scaling solutions [BW et al., 2006, 2007]



• Gap expected from CFT:  $\Delta E \sim 1/N_1N_2$ 

#### Microstates in 5D/4D ansatz (3)

#### The real question: are there enough?

- ▶ 4-chage sys [de Boer et al., 2008-09]
  - Quantization of D6- $\overline{\text{D6}}$ -D0 config  $\rightarrow$  much less entropy  $\otimes$
- 3-chage sys (+ fluctuating supertube)
  - Entropy enhancement mechanism [BW et al., 2008]
    - $\rightarrow$  Much more entropy?
  - An estimate [BW et al., 2010]

 $S \sim N^{\frac{5}{4}} \ll N^{\frac{3}{2}}$  Parametrically smaller  $\circledast$ 

supertube

#### Summary

4D/5D ansatz solutions are black hole microstates, but they are too few.

**Possibilities:** 

- A) Sugra is not enough
- B) Need more general ansatz

## Superstratum

#### Exotic branes & double bubbling

#### [de Boer+MS 2010]:

I. Ordinary branes can polarize into *non-geometric* (exotic) branes

e.g., MSW: M5(6789A) + M5(4589A)  $\rightarrow$  5<sup>3</sup>( $\lambda$ 4567,89A)

 $\rightarrow$  Microstates must involve *non-geometric* configs

#### 2. Double bubbling



#### Implication for D1-D5-P [Bena+de Boer+ MS+Warner | 107.2650]



## Implication for D1-D5-P

- Expect geometric superstrata sol'ns in 6D sugra
   parametrized by a function of two variables
  - Generic solutions must be non-geometric superstrata
  - But we have more intuition for geometric ones

Study susy solutions in 6D sugra!

# Susy solutions in 6D sugra

[Bena+Giusto+MS+Warner 1110.2781]

## 6D theory

- 6D  $\mathcal{N} = 2$  sugra with a vector multiplet
- Bosonic fields
  - Metric  $g_{\mu\nu}$
  - Dilaton  $\phi$
  - ▶ 2-form  $B_2$ , field strength  $G_3 = dB_2$
- IIB on  $T_{6789}^4$ :
  - D1(5)  $\rightarrow$  I-brane coupled to  $B_2$ D5(56789)  $\rightarrow$  I-brane coupled to  $\tilde{B}_2$

## Susy sol'n (1): Base

6D spacetime:  $(u, v, x^m)$   $\begin{array}{l} u: \text{ isometry, } v \sim x^5 \\ x^m: 4D \text{ base} \end{array}$ 

► 4D base  $\mathcal{B}^{4}(v)$ : almost hyper-Kähler  $ds_{4}^{2} = h_{mn}(x, v)dx^{m}dx^{n}, \quad m, n = 1,2,3,4$   $\beta(x, v)$ : I-form ( $\leftrightarrow$  KKM)  $J^{(A)}(x, v), A = 1,2,3$ : almost HK 2-forms  $J^{(A)m}_{n}J^{(B)n}_{p} = \epsilon^{ABC}J^{(C)m}_{p} - \delta^{AB}\delta_{p}^{m}$ 

$$d_4 J^{(A)} = \partial_{\nu} (\beta \wedge J^{(A)}), \qquad D \equiv d_4 - \beta \wedge \partial_{\nu}$$

## Susy sol'n (2): Fields

#### Fields on $\mathcal{B}^4$

- $Z_1: \text{ scalar} \leftrightarrow \mathsf{DI}(v)$  $\Theta_1: 2\text{-form} \leftrightarrow \mathsf{DI}(\lambda)$
- $\omega$ : I-form  $\leftrightarrow$  J

 $Z_2: \text{ scalar} \leftrightarrow \mathsf{D5}(v6789)$   $\Theta_2: 2\text{-form} \leftrightarrow \mathsf{D5}(\lambda 6789)$  $\mathcal{F}: \text{ scalar} \leftrightarrow \mathsf{P}(v)$ 

6D fields

$$ds_{6}^{2} = \frac{2}{\sqrt{Z_{1}Z_{2}}} (dv + \beta) \left( du + \omega + \frac{1}{2} \mathcal{F}(dv + \beta) \right) - \sqrt{Z_{1}Z_{2}} \, ds_{4}^{2}$$
  
$$G_{3} = d\left[ -\frac{1}{2} Z_{1}^{-1} (du + \omega) \wedge (dv + \beta) \right] + \frac{1}{2} *_{4} \left( DZ_{2} + \dot{\beta}Z_{2} \right) + (dv + \beta) \wedge \Theta_{1}$$
  
$$e^{\sqrt{2}\phi} = \sqrt{Z_{1}/Z_{2}}$$

#### Susy sol'n (3): Linear structure

#### First layer $(Z, \Theta)$

$$D *_{4} \left( DZ_{I} + \dot{\beta}Z_{I} \right) + 2D\beta \wedge \Theta_{J} = 0 \qquad \{I, J\} = \{1, 2\}$$
$$D\Theta_{J} - \dot{\beta} \wedge \Theta_{J} - \partial_{v} \left[ \frac{1}{2} *_{4} \left( DZ_{I} + \dot{\beta}Z_{I} \right) \right] = 0 \qquad \dot{z} \equiv \partial_{v}$$

#### Second layer $(\mathcal{F}, \omega)$

#### 6D susy sol'ns: Summary

- ▶ 6D eqs have nice linear structure
  - $\rightarrow$  can be solved in principle
- Difficult in practice
  - Need some physical intuition / organizing principle to proceed

# A CFT view on superstrata

[Bena+MS+Warner 1404.4506]

#### Questions

#### What sector of CFT states are expected to be visible in sugra?

#### What is the structure of solutions?

## D1-D5 CFT (1)



▶ d = 2, (large)  $\mathcal{N} = (4,4)$  SCFT

• Sigma model with target space  $(T^4)^N/S_N$ ,  $N \equiv N_1N_2$ 

## D1-D5 CFT (2)

#### Matter content: 4 bosons, 4 fermions

|                                                          | $SU(2)_L \times SU(2)_R$ | $SU(2)_1 \times SU(2)_2$ |                   |
|----------------------------------------------------------|--------------------------|--------------------------|-------------------|
| $X^{\dot{A}A}_{(r)}(z,ar{z})$                            | (1, 1)                   | (2,2)                    |                   |
| $\psi_{\left(r ight)}^{lpha\dot{A}}\left(z ight)$        | (2, 1)                   | (1,2)                    | $r = 1, \dots, r$ |
| $	ilde{\psi}_{(r)}^{\dot{lpha}\dot{A}}\left(ar{z} ight)$ | (1,2)                    | (1,2)                    | 1 /               |

• RR gnd states  $\sim$  chiral primaries = twisting of N copies



#### Visible sector

#### **Conjecture:**

R-symmetry  $SO(4)_{1234} = SU(2)_L \times SU(2)_R$ is visible from 6D sugra. Carriers:  $\psi, \tilde{\psi}$ 

In particular, sector generated by SU(2) currents:  $J^{\alpha\beta}_{(r)}(z) = \frac{1}{2} \epsilon_{\dot{A}\dot{B}} \psi^{\alpha\dot{A}}_{(r)}(z) \psi^{\beta\dot{B}}_{(r)}(z), \qquad \tilde{J}^{\dot{\alpha}\dot{\beta}}_{(r)}(\bar{z}) = \cdots$ 

namely, Sugawara CFT

 $[SU(2)_L \times SU(2)_R]^N / S_N, \quad c = N$ 

must be visible (the rest has c = 5N)

## Expected entropy from strata

By considering multiple superstrata, expect in the bulk to see entropy for c = N:

$$S_{\text{strata}} = 2\pi \sqrt{\frac{NN_3}{6}}$$

Instead of the full entropy for a c = 6N system:

 $S_{\rm full} = 2\pi \sqrt{NN_3}$ 

#### Correct scaling must be reproducible!

(To get numerical factor right, need to look into compact  $T^4$ .)

#### Evidence: 2-chg states (RR gnd states)



**Dictionary:**  $n_k^{\alpha \dot{\alpha}} \leftrightarrow |a_k^{\alpha \dot{\alpha}}|^2$  [Lunin-Mathur] [Kanitscheider-Skenderis-Taylor]

 $SU(2)_L \times SU(2)_R$  current sector is precisely visible

#### 3-charge states

Add  $P(v) \rightarrow$  fluctuation along v

• Expect:  $f^{\alpha \dot{\alpha}}(w) \rightarrow f^{\alpha \dot{\alpha}}(w, v)$ 

- Depend on two variables



CFT: (any, gnd)

#### v-dep fluct. for 3-charge states (1)

#### Consider:

Circular superstratum = Maximally spinning RR gnd state = pure  $AdS_3 \times S^3$ 





Claim: Fluctuations around this state are parametrized by functions of two variables.

#### v-dep fluct. for 3-charge states (2)

- Fluctuation around  $AdS_3 \times S^3$  is in some  $SU(2)_L \times SU(2)_R$  rep.
- Other RR ground state:  $(\ell, \ell; \tilde{\ell}, \tilde{\ell}), |\ell \tilde{\ell}| \leq 2$

 $\rightarrow$  One quantum number

 $\rightarrow$  One variable (LM profile function f(w))

• Act by J (but not  $\tilde{J}$ ) modes  $\rightarrow (\ell, m; \tilde{\ell}, \tilde{\ell})$ 

 $\rightarrow$  *Two* quantum numbers

 $\rightarrow$  Two variables (superstratum, f(w, v))

## Comments

- At linear level, can realize bulk action of J on linear fluctuation around  $AdS_3 \times S^3$
- Can use linear structure of 6D eqs to nonlinearly complete it (work in progress).







#### Multiple superstrata

- More generally, one has multiple  $S^3$ 's
- Can fluctuate each  $S^3$  multi-superstratum



- Can use  $AdS_3 \times S^3$  as local model
- Large redshift in scaling geometries  $\rightarrow$  entropy enhancement  $\rightarrow S \sim \sqrt{N_1 N_2 N_3}$ ?

#### Summary

- SU(2) current algebra sector:
   expected to be visible in sugra
- Sugra states: superstrata depending on 2 vars.
- Have to solve 6D system
   by nonlinearly completing linear fluctuations (work in progress)
- Multiple superstrata, scaling solution
   → entropy enhancement?

## Conclusions

## Conclusions

- Superstrata: conjectural microstate (non)geometries
- They live in 6D sugra (or generalization thereof)
- SU(2) current algebra of DI-D5 CFT describes their fluctuations
- A LOT more stuff to do, more fun to enjoy!
  - Construct
  - ► Count Stay tuned! ⓒ
  - Hit them to death

Thanks!