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Black hole microstates

black hole
I individual

thermodyn. ensemble microstate?

p = z e PEiL ;) (Y] 1Y;)



Microstate geometries

%%e— horizon ™ no horizon,
l < no singularity
singularity

finite spread!!

In some cases, black hole microstates
are described by smooth horizonless
solutions of classical gravity



Fuzzball conjecture

QG

effects

conventional picture fuzzball picture

Can that be generally true?

— BH microstates are some stringy
configurations spreading over a wide distance!



Microstate Geometry Program

How much of black hole entropy can be
accounted for by smooth, horizonless
solutions of classical gravity?

%
B
&= < horizon A\ > no horizon,

v\ \
\ no singularity

singularity



Superstrata

» A new class of microstate geometries
for DI-D5-P 3-charge BH.

» Most general class with known CFT dual

‘ Explicitly constructed basic ones
' Need more general ones to

“; reproduce BH entropy



|. Black hole microstates



Black holes

ovens » Solution to Einstein equations
orizon
N » Boundary of no return:

event horizon

» Spacetime breaks down at

singularity spacetime singularity

» Classical (macro) physics:
Well understood

» Quantum (micro) physics:
Various puzzles




BH entropy puzzle

» BH entropy:

- A
SH 46y

=) Stat mech: |N i = €°BH

» BH with solar mass: Sy ~ 1077

Uniqueness theorem: only one BH solution

—) Ngravity =1



BH entropy puzzle

N ravit 77
SIS~ 10197 ¢ huge discrepancy
Nmicro
A ted
Cf. Cosmo. const. problem: SEDEET — 10120
Aobserved

— Where are the microstates?

» Uniqueness theorems
—> Avoided in higher dimensions

» Need quantum gravity (string theory)!?
We don’t really know QG. What to do!?



AdS/CFT correspondence

A way out : AdS/CFT

string theory / gravity ﬁ
in AdS space | |

» Defines string / QG

» Can in principle study BHs
in full string / QG




BH microstate counting in AdS / CFT

string theory / gravity @
in AdS space

black hole thermodyn
ensemble
(
> Actually, SV
> predates AdS/CFT.
Valid for all
couplings
A ' for 2D CFT
SBU = T+ — Scrr = 108 Nnicro

4Gy

—> Stat mech interpretation of BH put on firm ground

[Strominger-Vafa ’96]



BH microstates

black hole thermodyn.
ensemble
W

. — individual
microstate |J)

microstate in
gravity picture?

By “gravity” picture, | mean

M b f the bulk side of AdS/CFT
» IMust be a state o and not classical gravity.

quantum gravity / string theory in general  can be fully stringy / QG



Summary:

We want to know
the gravity picture
of BH microstates!

Again, by “gravity” picture, |
don’t mean classical gravity;
it can be fully stringy / QG



2. Microstate geometries



Are any examples of
gravity microstates known!

They generally require
full string theory...

f

» Involves all string oscillators
» Guv» Buv' @, C are massless truncations

O (5P




—Yes!

We know examples of microstates
called microstate geometries.

/

» Solution of classical gravity
(no massive string modes)

» Has same mass & charge as the BH
» Smooth & horizonless
» Many are susy, but some are non-susy




Example |:
LLM geometries

[Lin-Lunin-Maldacena 2004]



AdS./SYM, in 2 BPS sector

o o B

/2 BPS BH: “superstar” | |
(singular,A _ O) ‘ /2 BPTl states (16 susys)

N D3-branes N free fermions in
harmonic potential

_ 1.2 2
H =3({p"+x°)

At large N,
® the state is
x represented

by droplets
on the phase
space

LLM (bubbling)
geometries

J«—

no stringy modes!
20



CFT side: free fermions

2 BPS states = N free fermions in harmonic potential

1
Hl—particle — E(pz + xz)

A

21



LLM geometries (1)

ds? = —h7%(dt + V)? + h?(dy? + dx? + dx3) + ye®dQ3 + ye ¢d03
_1/2+z
1/2 -z
[612 + a22 + yay(y_lay)]z(xlixziy) =0

2G

h™2 =2y cosh G e

black: z — +§

white: z — —%

» LLM diagram encodes how S3’s shrink

» Smooth horizonless geometries

» Non-trivial topology supported by flux

» |-to-| correspondence with coherent states in CFT

22




LLM geometries (2)

dez = —h2(dt + V)? + h?(dy? + dx? + dx3) + ye®dQ} + ye ¢ d0
o 1/2+4+ 2z
h™2 =2y coshG e 12—z

[0F + 03 + ¥y, (y™70,)]z(x1, x5, ¥) = 0

yayVi = EijajZ yalVJ = EijayZ
F(S) =F2/\d.Q3 +F'2/\d§3
F,=dB,A(dt +V)+ B, dV +dB  F,=dB, A(dt+V) + B,dV + dB

1 ~ 1

— 2,26 o 2,-2G
B, 4ye 4ye
I8 1 dz+1/2 d§ 1 dz—1/2
= —— k = — — %
4y 3 d( " ) 4y 3 d( )2 )




Smoothness (1)

ds? = —h72(dt + V)2 + h?(dy? + dx? + dx3) + ye®dQ3 + ye ¢ d 0}
o 1/2+z
h™2 =2y cosh G e ~ 12—z
[0f + 05 + y0,(y~9,)]2(x1, %2, y) = 0
Laplace eq explicitly solved:
y? z(x',0)d?*x
n J [((x—x)? + y?]?
Behavior near the y=0 plane

z(x,y) =

z = % aty=0 = z=2—y*c,(®)*+, e ¢ ~yc,(x), h*~cy(x)
y — 0 behavior of S3, §3:

— _ d0s
h2dy? + yeSdd + ye d03 ~ c,(x)(dy? + y2d03) + —

4+ (X)

» S3 shrinks smoothly
» S3remains finite (radius: 1/c, (X))

24



Smoothness (2)

Behavior near the black/white boundary

Exact expression:

h2dy? + ye®dO2 + ye ¢dQ3
dy? —
— Y +</x22-|—y2—x2>d£1§-|—</x22+y2+x2>d9§
24/x5 + y?

» S3 shrinks smoothly, S3remains finite

x2>0:

» On the black-white boundary, S3 shrinks

25



Smoothness (3)

Non-trivial S>

» S§3 shrinks as one
approaches the
boundary from
inside

___________

Flux supports
non-trivial §°

» S3 over a disk is S°

» Flux through S is
proportional to the
area of black region

26



Flux quantization

F(S):Fz/\dﬂ:g‘l'ﬁz/\dﬁ:g
F,=dB,A(dt +V)+ B, dV +dB  F,=dB, A(dt+V) + B,dV + dB

1 . 1
B:__ZZG B:__Z—ZG
t 4376’ t 43’3
L1, Z+1/2 51 z—1/2
aB==7y wd—5")  dB=—gyted—5)
Wy

1

PG
E—— p— %k

2121y, 8m2l, 22)’ ’ y?

B (Area)z:l/z
4121,

27




cf. what enters metric:

ATIN g 1%
HD3 - 1 + Tfs 2

Classical limit

How is naive singular geometry (superstar) recovered!?

» Bubble area quantized
(area) = Nh, h = 4”213 = 4m? g,l¢

» Classical limit: [, > 0, N - oo with fixed Q = Ng.lé = Nh

black & white black & white grayscale

> @

28



Quantization

Why are we talking about classical sol’'ns and h
at the same time!

LLM solutions: basis on which quantization is carried out

(solution space in gravity) = (phase space)

ﬂ lg, p] = iR

quantum Hilbert space

Each LLM solution is like |x) of a free particle

(Or, it’s like classical orbit of electron in old quantum theory)

29



Comments

Generic states have large curvature
-> Higher derivative corrections
non-negligible

> LLM sol’s are soln’s of
two-derivative gravity
and are not reliable

B hoher dertvat _ smooth, but
- But higher derivative corrections curvature large

should not change qualitative picture;
DoF must be the same

(no massive stringy modes needed) ~ Smooth, no singularity
to be resolved

30



Example 2:
LM geometries

[Lunin-Mathur 2001]
[Lunin-Maldacena-Maoz 2002]



LM geometries (1)

Sugra in AdS;xS3 <:> y i

(sﬁ;gC: E‘:gj B=HO) ) '/2 BPS states (2 :usys)

N; Dl-branes ”
N, D5-branes free bosons in 2D

0X ~ Znein(a—r)an

Parametrized by

f“ . ”\ integers
LM geometries Ny, Ny, N3, ...
<
% z kn, = NiN,
- v ‘




LM geometries (2)

2
- ds? = — — (dv + B)(du + w) + \JZ1Z,dxFy34 + \Z1/Z5dXE759 h
V4142
L |F|2dA L da
Z1(9?)=1+&f %l |-> , Zz(f)=1+&f S5 2
L Jo |2 - F(DI? Lo 1% - F)I?

arbitrary x = ﬁ(l) € Rf,34 .

curve O
X
%51 .
\_ Yy

» LM curve encodes how S shrinks

» Smooth horizonless geometries supported by flux

» |-to-1 correspondence with CFT states: (1) < {n,}
Fourier coeffs of F(1) <= {n;}

» Entropy reproduced geometrically: 5 ~ /N, N, [Rychkov '05]

[Krishnan+Raju ’ | 5]



Classical limit

How is naive singular geometry recovered!?

smooth .
classical limit singular
P —) o
gs = 0,lg =0,
R~ 91/3 1/3(Q1Qz)1/6 Ny = 0

2/3 Fix Q12 ~ gsl§N1,2

~ g5l (N1N2)1/6

Q: what enters sugra solution

N: quantized charge

34



Summary:

Some “BH” microstates are
represented by microstate geometries.

— Naive BH solutions are replaced by
bubbling geometries with finite spread.

'*%

:R ~ lea
(but recall A = 0 so far)

The more branes you
put, the larger the
spread (this is against
standard intuition!)



3. Fuzzball conjecture &
microstate geometry program



Maybe the same is true for
genuine black holes!?

— BH microstates are some stringy
configurations spreading over a wide distance?

I’'m talking about the
size, not about whether
it’s describable in
classical gravity.

Again, this goes against
R~ IpN% ~ 1yl Uition

P H* standard intuition in
gravity



Fuzzball conjecture

» Mathur ~2001:

QG

effects

conventional picture fuzzball picture

» BH microstates = QG/stringy “fuzzballs”

» No horizon, no singularity There may be singularities

allowed in string theory,

» Spread over horizon scale >H TS HE
but scattering is unitary



Sugra fuzzballs (1) & nosis™

9uvs Byy, ®, C, fermions
Are fuzzballs describable in sugra?

Unlikely in general

0 General fuzzballs must involve all string modes

O Massive string modes are not in sugra

O OGP

Hope for susy (BPS) states

LLM and LM are
supporting
evidence,

0 “Example”: MSWV (wiggling M5) although 4 = 0

[Maldacena+Strominger+Witten 1997]

O Massive strings break susy

39



Sugra fuzzballs (2)

Are supersymmetric states any good?

More tractable

0 First order PDEs

Can tell us about mechanism

0 Mechanism for horizon-sized structure

Basic string theory objects are locally susy

40



Sugra fuzzballs (3)

Absolutely no hope for non-susy states?

If something is described in sugra or not is a tricky question

53
O Cf. Macroscopic string [Gubser+Klebanov+Polyakov ’02]
O Large # of quanta more relevant for classicality?
The effect of massive modes captured by massless sector?
0 Need all orders in a’ expansion?

Some non-susy microstates known
e.g. [Jejjala-Madden-Ross-Titchener ’05]

41



Sugra fuzzballs (3)

Caveats:

Generic states have large curvature
O Higher derivative corrections nonnegligible

O But should not change qualitative picture;
DoF must be the same

Example in LLM:
Non-geometries smooth, but curvature large

O Non-geometric microstates possible [Park+MS 2015]

0 Need to extend framework (DFT, EFT) Gf
U-duality}’b

twist exotic supertube

42



Microstate geometry program:

What portion of the BH entropy
of supersymmetric BHSs is accounted for
by smooth, horizonless solutions of classical sugra?

The answer may turn out to be 0, or I.

This is my definition here. Some other
people want to construct microstates for
non-susy ones too.



Comment: bottom up approach

[Mathur’09] 0(1) deviation from flat space is needed
for Hawking radiation to carry information
0 Based on Q info (strong subadditivity)

[AMPS "12] “Firewall”

O More arguments based on Q info (monogamy, etc.)

M These arguments are “bottom-up”

Mechanism to support finite size not explained

< Microstate geometry program is “top-down”
Finite size supported by topology with fluxes

I’m-not saying that bottom-up approach is bad because

44 . ’ H H )
it can’t explain the size. It’s a feature of the approach.



45

Summary of the last lecture

MGP works for certain systemes:

» D3 & LLM geom
» 2-charge sys (D|-D5 sys) < LM geom

However, they are not real BHs (A=0).

Need to go to systems with a
finite horizon to carry out MGP



Let’s review a class of
won real BH microstate geometries,
including their pros & cons.

5D microstate geometries:
circa 200409



4. Microstate geometries
in 5D



3-charge system

» Susy BH in 5D (4 supercharges)

» Canonical FEP [Strominger-Vafa 1996]

5., INIBEOOORON

N, DI - O ~ ~ ~ ~
Ss %X Ti789 N,D5 + « + « OO O O O
N3P ....O~~~~

» Decoupling > AdS, x S° x T%/DI-D5 CFT

» Macroscopic entropy: S ~ \/N1N2N3

48



4-charge system
» Susy BH in 4D / BS in 5D (4 supercharges)

» Canonical F€P [Maldacena-Strominger-Witten 1997]

M on N1M5-- ~ ~00000O
. NM5 « ¢« ¢« OO ~~0O OO
T4s6789 NyM5 « « « OO OO ~ ~0

Ny, P o o o ~ ~ ~ ~ ~ ~ O

» Decoupling > AdS, x 5% x T°/MSW CFT

» Macroscopic entropy: S ~ \/N1N2N3N4

49



M-theory frame

Want to find gravity microstates for 3- & 4-charge systems

Start from 3-charge system
B/ TS, D1(5),D5(56789),P(5)

1L Ts, T, T,

A/ TS, D2(67),D2(89),F1(5)
@ lift along x%

M/TS coa M2(67),M2(89),M2(5A)

Nicely symmetric

@ 4-charge MSW

system is already

Take M-theory on T and go to 5D i M-theory frame

50



Ansatz

» M-theory on T 504 A=10
ds?; = ds& + X (dxZ + dx?)
+ X?(dx? + dxg) + X3(dxs + dx3)
c/q3 — AldXS N\ dx6 + Azdx7 A dx8 + A3dx9 A dxA
- - o

M2(56) M2(78) M2(9A)
! ! !
M5(1789A)  M5(1569A)  M5(15678)



5D theory

8 susys
» D =5,V =1 sugra with 2 vector multiplets

gauge fields: Al , 1 =1,23. F! =dA".
scalars: X!, X'X?Xx3 =1 Y1y2y3 is o

hyper scalar

» Action

Shos = f (+sR — QpdX! Avg dX! — Qp F! Axg F/

—<CF' NFI A AK)

Chern-Simo'ns interaction
CI]K: |E]]K|, Q]]:%dlag(l/xl,l/Xz,l/Xg)

52



No solitons without topology (1)

[Gibbons-Warner ’|3] [Haas ’14]
» Komar mass/Smarr formula

0
V# = —: Killin
ot & used V*K* = —R K"

Y4

if there is no internal boundary.

If there is a horizon, it will be an internal boundary and we get Smarr’s
formula relation M,S, T (for vacuum grav, R, = 0 and no bulk contribution.



No solitons without topology (2)

EOMs / Bianchi:
dF' =0
dGIZO, GIE*S QI]F]‘I‘CI]KF]/\AK
Ruv - QljauXIavX] + QI]FI/,LpF]vp + QUGI /,LpO'G] Vpa (*)

(ignoring numerical factors)
Assume time-independent config:

,CVXI — LvFI — Lle — O
9 d(LvFI) — d(tVGI) =0 (used '[:V = le + lvd)

> iy F! = fI + (exact), 1 G; = g; + (exact).
B B
€ H1(Z*):elec flux € H*(Z*): mag flux

Now contract (*) with K¥, and plug it into Komar integral



No solitons without topology (3)

elec mag mag elec

M~ | (fiAG' +g' AF)
Y4

M can be topologically supported by crossing of
elec & mag fluxes in the cohomology H*(Z%).

No spatial topology > M = 0 —> Spacetime is flat
Yo ow X

55



B PS S Olu tl() T1S [Gutowski-Reall '04] [Bena-Warner "04]

» Require susy 4BE\ase B* (hyperkahler)
dst = —Z72(dt + k)? + Z ds;
Al = —Zl_l(dt + k) + B! dBI — @I * timelike class

| —
F~g~0 elec mag s
f~0 7 = (Z,Z,2)Y3; X! = (2;3) and cyclic
1

All depend only on B, coordinates

» BPS eqgs: linear system
@I = x, @I’
VZZI — CI]K *4 (@‘, N @K)



SOI’HS Wlth U( 1) Sym [Gutowski-Gauntlett "04]

Solving BPS egs in general is difficult.
Assume U(1) symmetry in B*

@ flz}t R3

dsi =V i(dyp + A)? + V(dy? + dy7 + dy3),
(Gibbons-Hawking space)

V is harmonic in R3:

DV:O |:> V:v0+2

p

|r—rp|

Multi-center KK monopole / Taub-NUT

57

* tri-holomorphic U(1)

dA =*q dV



Complete solution

> |r—rp|
el =d ” A(dy +A)—=V %, d ©
— e — % —

1
. K
Zp = Ly + 5 Ciyx k'K
k=uldy+A)+w
1 1
. I I K
! I I
x5 dw = VdM — MdV +§(K dL; — L;dK")



Multi-center solution

H:(V KI;LI)M)) H:h‘l‘z Qp
[r— 1)
/ f \ \ P
/ / \ A
KK KK
monopole mag  elec 1 omentum
(M5) (M2) along Y
Q
» Multi-center config of BHs & BRs in 5D 0 o
1 r3
» Positions r, satisfy “bubbling eq” : ................................ 4
(force balance) R3 1 "2

» Reducing on Y gives 4D BHs
(same as Bates-Denef 2003)



Microstate geometries (1)

= n . Smooth horizonless solutions
une charges. [Bena-Warner 2006] [Berglund-Gimon-Levi 2006]

I = — G2
7 ! \ RN
_____ N VoA
17 LT T SN Voo
- \ ~. \
p el ! [l F N S [ H |' ]
SN . Pov N ! [ [
o000 B v [ ! I Lo o
’ N 1 ' ] 1 ) 1 1 \ A
/ [ H ! [ i [
i 1 i H H i ' AN 0

_ Cyx kb k) kX

p 2 3 el N 5 |
12 vp L e ‘
3 ........................................................... r
‘ ............................ : .
R3 Ty ;

» Microstate geometries for 5D (and 4D) BHs ©

0 Same asymptotic charges as BHs
» Topology & fluxes support the soliton

» Mechanism to support horizon-sized structure!

60



Komar mass/Smarr relation

@ SZ “,Sj—%,"\;--
ot - e .
o ®- =
f~0 - < .

MNfF/\g"'f@/\@NQelec
Non-trivial flux supported by magnetic fluxes
dxF ~FAF

Electric flux sourced by crossing of magnetic fluxes



Microstate geometries (2)

» Various nice properties ©
Scaling solutions [BW et al., 2006,2007]

= ., = & —

'u'w .
- LS

Gap expected from CFT: AE ~ =

Cc

62




The real question:

Are there enough?

» 3-chage sys (+ fluctuating supertube)

Entropy enhancement mechanism [BW et al., 2008]

—> Much more entropy?
An estimate [BW et al.,2010]

> : Parametrically
5~ 0+ KQ2 smaller ®

» 4-chage sys [de Boer etal,2008-09]

63

super-

\

4
S ~ 03 K Q%
Quantization of D6-D6-D0 config — much less entropy ®



Further issues (1)

4 Llftlng [Dabholkar, Giuca, Murthy, Nampuri 09]

)

X Y Y
moduli space

x/

<

\ Single-center BH

exists everywhere

free CFT point - _ sugra point with B, = 0

A e A Jf--)\

\

Single-ctr BH exists everywhere and contributes to index (elliptic genus).
Microstates must also exist everywhere and contribute to index.

But >2 center solns do not contribute to index!

—> They disappear when generic moduli are turned on?

. . 7
—> They are irrelevant for microstates? Expect correspondence

even for states that

Cf. Moulting BH [Bena, Chowdhury, de Boer, EIl-Showk, MS 201 1] , _
generically lift?

64



Further issues (2)

» Pure Higgs branch [Bena, Berkooz, de Boer, El-Showk,Van den Bleeken ’12]

Vacua of Quiver QM ﬁ
Coulomb branch

Corresponds to multi-center solutions

Small entropy
Generally J # 0

Pure Higgs branch
Corresponding sugra solution unclear

Large entropy
J=0 Cf.“supereggs”

65



Summary:

We found microstate geometries
for genuine BHs,
but they are too few.

Possibilities:
A) Sugra is not enough
B) Need more general ansatz {Zthis talk



5. Double bubbling



68

What are we missing?

— A guiding principle for constructing
microstate geometries.

Revisit better understood example:
2-charge system (LM geometries)



Supertube transition weewommsnmuon

DO+ F1(1) ==) D2(121)

. q
polarize 4 D.Z(lll)
: dipole charge
F1(1) [i DO >
xlT xlT

» Spontaneous polarization phenomenon
(cf. Myers effect)

4

» Produces new dipole charge
» Represents genuine bound state

» Cross section = arbitrary curve

69



F1-P frame
F1(9) + P(9) F1(4)

polarize

x? / .
FI(9) ‘P wiggly
| FI

xt 7 / >S4

» To carry momentum,
FI must wiggle in transverse R®

» Projection onto transverse R® is an arbitrary curve

70



D1-D5 frame

D1(5) + D5(56789) — KKM(16789,5)

DI DS polarize KKM
o0 —> 2
arbitrary curve
X =F(1) € Riy34

» This is LM geometry
» Arbitrary curve — large entropy 5 ~ /N, N,

» Explains origin of 2-charge microstate geometries

71



3-charge case
“Double bubbling”

D1(5) KKM(16789,5) 15(0,156789)
D5(56789) E» D5(16789) > KKM(16789,6)
P(5) D1(A) 52(06789, 1)
6
DI D5
A
g arbitrary curve: arbitrary surface:
supertube “superstratum”??
- Y

» Multiple transitions can happen in principle [de Boer+M5 2010,2012]
[Bena+de Boer

» Arbitrary surface — larger entropy!? +Warner+MS 2011]

» Non-geometric in general

72



A geometric channel

D1(5)
D5(56789) E) Bfgfm) =) KKM(A6789,0)
P(5)

) wiggly =) ’ KKM

geometric
‘ superstratum

5

» Dependence on x” is crucial

» Must live in 6D

Qs Bena+
» Possibility to recover § ~ \/ N;N, N, !:I-Ve\/212:'ner+MS 2014]

73



Two routes to superstratum

LM

polarize \P""’ geom
> 1 I
i straight
< superstratum
~_1
| addP }  addp

W|ggly

7 =

AR
KKM
geometric

superstratum

polarlze

L



Summary:

Existence of superstrata
depending on functions of two variables
is a necessary condition for

SBH ~ Sgeom



6. Microstate geometries in 6D
(sugra superstratum)



Sugra side



Goal:

Explicitly construct

“superstrata’ or wiggly KKM
in 6D

They must depend on functions
of two variables: F (v, w)



Susy solutions in 6D

» 1IB sugra on Tggo
» No dependence on T* coordinates
» Require same susy as preserved by D1-D5-P

» Expected charges / dipole charges:

DI(v) DI(A) KKM(16789, v)
D5(v6789) D5(16789)
P(v)
[Gutowski+Martelli+Reall 2003]
t—x° t+x> [Cariglia+Mac Conamhna 2004]
u= V2’ V= V2 [Bena+Giusto+MS+Warner 201 []
5 [Giusto+Martucci+Petrini+Russo 201 3]
X~ compact

79



The sol’n is characterized by...

scalars 2-forms
Z, < DI(v) 9, < DI(})
7, <> D5(v6789) 0, < D5(16789)
F o Pv) 0, < NS5(16789)+FI (1)

Z4 <> NS5(v6789)+FI(v)

| -forms
B < KKM(16789, v)
w < P(1)

80



Explicit form of BPS solution

20 __ aZl — ZlZz — . —_
azy azZ, .
Hy=—({du+w)A(dv+L)A <D <Z1Zz) — Z1Zz ,8)
4
+(dv+B) A <®4 — 77, Da)> 77, (du + B)ANDB +%, (DZy + Z,B)
Zy Zy
F; =D< >+(dv+ﬁ)/\6 < )
A A
1 . aZy Zy
F;=—(du+w)A(dv+pB)A D<2—1> ——B 77, <Z1>
1 1 A



Oth layer: 4D base

u:isometry

6D spacetime: (u, v, x™) v ~ x° (compact)
x™: 4D base

» 4D base B*(v) : almost hyper-Kahler
ds?(B*) = hp,(x, v)dx™dx™, m,n=12734

B(x,v): |-form
I (x,v), A=1,2,3: almost HK 2-forms

](A)’mn](B)np — ¢ABC ](C)mp _ 5,43551

dJ® =0,(BAJY), D=d,—B A0,
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BPS equations

» First layer (Z, O)

D x4 (DZy + fZ,) = —DB A O,
DO, — B AO, = d,[x4 (DZy + Z7)]
O, — Z1y = %4 (0, — Z19) Y=

EABC](A)man(fg](C)

Q| =

» Second layer (w, F)
(14+%)Dw +FDB =Z1 %, 01 +Z,0, — Z,(1 + %,)0,

»uDuL+2mU:ZJ$LZQ+ZJ¢<E—2@1ﬁ§@4&@—2ﬂﬁmmm
+4(Z1Z; — ZZ) (K™ hypyy — K™ Ry, hPO Ry, )
—> %4 (07 = ZoYP) A (O — Z1p) — (04 — Z43p) A (04 — Zg3p) + 2 Ap — 29 A Dw)

L=+ FL—DF

— Linear if solved in the right order



— Very complicated!
Hard to find general superstrata

Strategy:

To prove concept,
construct simple superstrata
depending on functions of two variables

[Bena-Giusto-Russo-MS-Warner ’| 5]



Background (1)

Starting point: simplest D1-D5 configuration (no P yet):

circular LM geom = pure AdS; X S3

= “round” superstratum with no wiggle (yet)

Circular
LM profile

at the center (previous naive picture)
of Ang

85



Background (2)

Circular profile:
F, +iF, = a exp(2mid/L)

Explicit solution:
Flat base (B* = R*)

gzt do ) + (r2 4+ a?)sin?6 d¢? + r%cos?6 dip?

Rsa®
s =12 & q2cos26 L= 735 (sin?0d¢ — cos?0dy)

ds?(R*) = 2( ar

Other data:

7. =14+—= Z,=1+—= W = sin“8d¢ + cos“6d



Putting momentum

Now we want to add P

Putting momentum deforms
the round superstratum = §3
by putting wiggles on it




Linear fluctuation

Certain linear solutions can be found by P
solution generating technique

[Mathur+Saxena+Srivastava 2003]

RsAgm

Z,=Db coS Ugm

0, = —V2bmAy,, ( sind QWsin Dy, + QP cos Dm )

k
a ~ mv2
A, = ink-mg mg Doy = v+ (k—m)gp —my
km < T a2> SIn CcosS km R:

v dependence (P)
ds?(B*), Z1,, B, w, ©1, : unchanged at O(b)

Depends on two params (k,m)

CFT dual: descendants of chiral primary
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How to get function of two variables

Regard solution with (k, m) as Fourier modes on S3

S3: SU2); x SU(2
£(s%) = 2 B Vi (2); (2)r
km BPS

bim independent <= function of two variables!
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Non-linear completion

Use linear structure of BPS egs to nonlinearly complete

Assume 0t data B*, 8 are unchanged

Regard Z,, ©4 as non-linear sol’'n of |** layer

D *4 DZ4 — _DIB N @4 D@4 — av *4 DZ4_

o o 9 nd NL
Find w, F as non-linear sol’'n of 2"¢ layer Cmdetbﬁ

(1 +*4)d(1) + Tdﬁ — 2161 + Zz(")z - 2Z4®4
x4 Dxy (0 —2dF) =212y + 212, + 212, — 22 — 22,7,

1 Enough to do it for each pair of modes

Regularity determines solution

(1 It also determines Z; 5,0 ,
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Ex 1: (kll ml) — (kz,mz)

k1m1

Zy~Db coS D, m,,»  Z2:unchanged

2 ~
Z1 D b*Ayk, 2m,COS V. 2m,
: needed to make w regular

F = (2m,)?ELY

2k1,2m1
w = pldy +d¢) + {(dy — dé) undetermined

Re [ Dok om L

= (P ok 2 = i T R0 ) 4
. RS (kl)—l

— — — o
Regularity M) w =0atr =60 =0 = AL
C — ...

= NL completed, with coeff fixed by regularity
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Ex 2: (k{,mq):any, (k,,m,) = (1,0)

Ak ~ A .
Z, ~ by ;ml coS Dy m, + bzfcos D10, Zy: unchanged

F =0 undetermined

w=co®+w®

) 2
(1) — RBs ___ar DN ¥sin?0d¢+cos?0dy R
w \/E Akl_liml T(T2+a2) Sin Ukl_l,ml ) COS vkl_lfml
Agq- -k, dr m
2) _ _ RsBky-1my | (M1—kq 1 RPN
w® =—-= — — — tanfd@ | sin Uy, _
\/E T2+a2 [( kl T k1 kl 1’m1
24 g2 24 42
ré+a® . 5 r’+a 2 my ~
+ ( S sin 0do + ( S COS 7] k1> dlﬂ) CoS Vk1—1,m1]

ki —my

Regularity m) w =0atr=0=0 = c=—

= NL completed, with coeff fixed by regularity
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CFT side



BOUNDARY CFT

» DI-D5 CFT
d=2 N = (44) SCFT
Bosonic sym: SL(2,R); X SU(2); X SL(2,R)gr X SU(2)g

Bosonic currents: T(z),]'(2), T(2),]'(2)
Lo Jn La Jn
» Orbifold CFT

There are “component strings” with total length N = N; N,

QOOQOE_“““E --------- —y —"
2 3
<——————————————————————————————————————]\—[ —————————————————————————————————— >
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2-CHARGE STATES (1)

» Component strings come with “flavors”

S O O -
related to SU(2); X SU(2)y charge

» Round LM geom <=> NS vacuum

all © strings of length 1
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2-CHARGE STATES (2)

» Linear fluct around circular LM
> “single-trace” chiral primary

)

various component strings
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3-CHARGE STATES (1)

» P-carrying linear fluct around circular LM
¢ descendant of chiral primary

(JE)m ::
p— — QOOO ......... - |
k 1 '

Single chiral primary acted on with J*,

Labeled by (k, m)

State of a single supergraviton
with quantum numbers (k, m)
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3-CHARGE STATES (2)

» General P-carrying fluct around circular LM
¢ descendant of non-chiral primary

N, m, Strings Ng,m, SErings
A A
4 N [ \
(JI)m™  (JI)m (JE)™me (JI)me
S LN i —> e < > e O O
ky ky k, k, 1
Various modes (k, m) excited with arbitrary amp.

The most general microstate geometry with
&a known CFT dual

- N .
‘.’ Individual /7, act independently

State of supergraviton gas



Where are we!?



Summary

3 Superstratum depending of two variables
¢=» Having modes with different (k, m)
<= NL completion for pair of modes

» Succeeded in NL completion for various pairs of modes
Constructive proof of existence of superstratal

Big step toward general 3-charge microstate geometries

» Correspond to non-chiral primaries in CFT

Most general microstate geom with known CFT dual
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Toward more general superstrata

» Does this class of superstrata reproduce Sgy!

No. These correspond to coherent states of graviton gas.
Entropy is parametrically smaller. e 1
Sgeom ~ N4 K N+ ~ SBH

» Need more general superstrata ~ (Vi/Vs ~ V), ~ ] ~ V)

In CFT language, we only considered rigid generators of
SU(1,1|12), xSU(1,1|12)p e.g Lo, Ly, L_1,]y

Need higher and fractional modes e.g. |/ 1
k

They probably correspond to multiple superstrata
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Multiple superstrata

» More generally, one has multiple $3’s

» Can fluctuate each §3 — multi-superstratum

» Can use AdS3; X S3 as local model

» Large redshift in scaling geometries
entropy enhancement!?

S~N?
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¢

Comment on “issues”
» Lifting
O Not directly applicable to 6D configuration

» Pure Higgs branch

O Superstratum reminiscent of Higgs branch

¥

Maybe only states that have ] = 0
survive when moduli are turned on?
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Conclusions



Conclusions

» Microstate geometry program

O Interesting enterprise elucidating micro nature of BHs,
whether answer turns out to be yes or no

» Microstate geometries in 5D sugra

0 Have properties expected from CFT, but too few

» Superstratum
O A new class of microstate geometries
0O CFT duals precisely understood
0 More general superstrata are crucial to reproduce Sgy
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Future directions

» Superstratum
More general solution, multi-strata
Clarify issues (lifting, pure Higgs)
Count states, reproduce entropy (or not)

» Non-geometric microstates

Exotic branes, DFT
Novel ways to store information

» More

Non-extremal BHs
Information paradox
Observational consequences?
Early universe
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Thanks!



Appendix



Some formulas

min{ky,ka2}—1 s

Fea) 1 S (:311—_1:11) (;2;1_—11) A
km — 4]61]{2(?"2 + (IQ) SZ: Z 4 (kl—l) (,rfz_l) k—2s—2,m—2t—2

mi—1/ \ma—1
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