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1. Introduction
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AdS/CFT

% Can study gravity/string theory in AdS
using CFT on boundary

A
\/

CFT on
string boundary

1 T theory in

AdS (bulk)
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AdS/CFT and BH

& Black hole «— thermal ensemble in CFT

= Can study BH from CFT:
entropy, correlation function, ...

s Even valid for “small BH”

thermal
AdS / ensemble
£ incFT

black
hole




Ensemble vs. microstates
— CFT side

N
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Thermal ensemble = weighted collection of microstates

—> Nothing stops one from considering
Individual microstates in CFT

& Individual CFT microstates

= For large N, most states are very similar
to each other —— “typical state”

= Result of “typical” measurements for “typical state”
very well approximated by that for thermal ensemble



Ensemble vs. microstates

— bulk side
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AdS/CET = 1-to-1 correspondence between
bulk and CFT microstates

-3 There must be bulk microstate
geometries (possibly quantum)

& Expectation for bulk microstates:

= Result of “typical” measurements for “typical
state” is very well approximated by that for
thermal ensemble, i.e. classical BH

r) N
microstate . effective

geometry 9 geometry
coarse-grain
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Atypical measurements

# Typical measurements see thermal state.

€ Atypical measurements can reveal detail of
microstates

= E.g. long-time correlation function

A

decay at early stage

= thermal correlator quasi-periodic behavior

= particle absorbed in BH at late times

= particle coming back
after exploring inside BH

= Hawking radiation




emark: Poincareé recurrence
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& For microstate correlator, Poincaré recurrence is
automatic.

€ Summing over SL(2,Z2) family of BHs can’t account
for Poincaré recurrence

m BHs are coarse-grained effective description
Cf. gas of molecules - dissipative continuum




What we use:
D1-D5 sys — ideal arena

N

JOSimpIest link between BH & CFT
# P=0: Ramond ground states (T=0)

= Must have some properties of BH

= Stringy corrections makes it a small BH

# Large class of microstate geometries are

known
1 We'll see...

e Emergence of effective geometry (M=0 BTZ)

e Its breakdown for atypical measurements
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2. D1-D5 system
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Setup: D1-D5 System

s SO(4): x SO(4), symmetry

& Configuration: R4 gl 74
- 1
= N, D1-branes on S D1 o ~
s N D5-branes on St x T4
D5 O O

& Boundary CFT:

s N=(4,4) supersymmetric sigma model

s Target space: (T4)N/S,, N= N;N

& We use orbifold point (free) approximation




D1-D5 CFT

N

#Symmetry: 3 5 &, B

N r"'-'-._‘\‘-—"'-r'-

SO(4)g x SO(4); = [SU(2)g x SU(2)R] x [SU(2); x SU(2)/]

#R ground states

= 8+8 single-trace twist ops.:
O’ff, O’Eﬁ, 'r,ﬁ&, TEg = oh,7F

1<n<N, s3aB=%+

s General: o = [[ (/)N (rf) N
T,

= Specified by distribution {Np,, Ny} S.t.

> n(Npy+ Np,) =N, Npy=0,1,2,..., N, =0,1.

T, L




Map to FP system

N

#D1-D5 sys is U-dual to FP sys:
= F1 winds N; times around St
= N, units of momentum along S*

F1
P

' T LL N‘,:;L
[Tt ) Yot ) ru | Ny, Ne)
n, i

#0ne-to-one correspondence:

o ol T wﬁn

—T

D1-D5 FP D1-D5 FP

#BPS states: any left-moving excitations
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D1-D5 microstate geometries

Rground | .. Classical
state of —> i?ist:tg —>{ profile of
D1-D5 sys y F1
o = [] (o) N (rpty N, [T (e )Nt )N Ny, N) F'(v), v=1t—1y
o i =14
Ep U-dual | D1-D5 @ F'(v)
SysS E :
geometry geometry

1 — . L I'f .
2 2 2 / i (d1 3. ag_a
dssiing = —=—==[—(dt — A)* + (dy + B)*] 4+ / f1fs dx'dz’ + || —d=z"dz",
sing =TT v V75
20 _ N1 . Qs (L dv f Qs (L [F(v)|?dv
o = . =S - i = . —_—
fs L Jo |x—F(v)2 YL o x—F(v)2

i Qs (L Fi(v)dv

=25 [" Do dB=—4dA.
'I L Jo |x—F(v)? ( 4




3. Typical states




Statistics & typical states

N

# R gnd states: specified by distribution {Ny,, Ny}

®Large N =3, ,n(Nnu+ Ny,)
> Macroscopic number (~ ¢2V27VN)y of states
- Almost all microstates have
almost identical distribution (typical state)

# Result of “typical” measurements for almost
all microstates are very well approximated by
that for typical state

# Can also consider ensemble with J#0




Typical distribution: J=0

N

~ @Consider all twists with equal weight

S5 a3 SQx as
Ons On s T » Tp . -
“ ' B is not physical temp

@Microcanonical (N) = canonical (B)

o'e n\8 i
7(8) = Trie—BN] — (1+4")° _ {U’z(@l’r) g— e B
() ' ] ”l;ll (1 — qﬂ.)B 21;(?‘)3_ 4
L 2nt T -
@ Typical distribution: BE/FD dist.
Ny = N, o=t
N — Ei-'g:""-' T 1-_ nu Ei-ﬁ” T 1




Typical distribution: J-0

N

‘@Constituent twists with J=0-
8 —{— ,‘;‘ < S e S

o33 J = B =g, T =

n 2 n 2 T : 2

@Entropy: s =logdy ;= 2v2r /N - |J]
- o1 has BE condensed (J=>0)

OO T ATl
(o777 x IT (TIC) Mo (f)
| n=1 U
BE condensate © - "
typical states of
ensemble with

(N,J)—}(N—J,D)

whole J is carried by o;




4. The Effective
Geometry




What we’ve learned so far:

N

#R ground states of D1-D5 system is
specified by {Nnu. N}, }

@®For large N, there are macroscopic
number (—e>) of them

#Almost all states have almost identical
distribution (typical state).
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What we’ll see:

€ We will compute CFT correlator (a[ATA\@

& For generic probes, almost all states give
universal responses
-> effective geometry: M=0 BTZ

@& For non-generic probes (e.g. late time
correlator), different microstates behave
differently

* How about bulk side? Why not “coarse-grain” bulk metric?

= Technically hard
s LLM/Lunin-Mathur is at sugra level OO




2-point func of D1-D5 CFT

g Probe the bulk

geometry
corresponding to
A Rground state o

= (o1 AT Ac)

\/

[\

A

S
\
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2-point func of D1-D5 CFT

#Background: general RR gnd state

=~ N ~ gl e f
e [IAANYT 585 Qf *anft ns —L
o = H (rr” Oy ,0p . T, ) rr
n,

@Probe: non-twist op.
\/_ Z Ay eg. Ay =0X%(2)dX)(2),
@Correlator decomposes into contributions
from constituent twist ops.:

(ot At Ay = = Z nNpa 3 (0Pt Al Aol
N n, [ A=1




Typical state correlator: example
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T 1 n I e
(oT AT Ac) = v Z nNpj Z <[”mT~AT1"41‘Tf;> :

“on A=1

#®Operator: A, = 0X(2)9X (%),

#Plug in typical distribution:
1 1

T —_— ; i I.' I:-_,f — -
;\”_I”_ —_— {.,.'gﬂ i 1 s a\'H.j'I. f'_’,-':-j.” _+_ 1

#®Reqgularized 2-pt func:

G(t. ) = —165in> ';'sm? ; (OXDX (wy) BXDX (ws))
1 & 1 ) i 2sintsin¥sin¥
on 5in2%+5]n21 - s S

i : i EY2 t
, Sinh Bn (nsin 2) 2 ntan -




Typical state correlator: example

& : :
#Short-time behavior:
- I
Gl1,4=0) G(1.0=0)
1 0.05
0.8 0.04
B=0.01
0.6] 0.03
0.4} ,
p=0.01 B=0.001 0.02
0.2 0.01
t i et T N— el
0 21 4m 6w 87 10m 0 2n 4m 6T 81 107

s Decays rapidly at initial times (¢ < 7wlag4s)
s As N—oo (B—0), approaches a certain limit shape
(actually M=0 BTZ correlator!)




Typical state correlator: example
&L ong-time behavior:

& .

G(1,0=0) G(1,0=0)

1

0.05 B=0.01
0.8 0.04
0.6 0.03
B=0.01
0.4 B=0.1 0.02
0.2¢1 0.01
t N
0 20t 40t 60xr 80m  100m 0 20m  40m  60m  80r  100m

s Becomes random-looking, quasi-periodic
= The larger N Is, the longer it takes until the quasi-
periodic regime

= Precise functional form depends on detail of
microscopic distribution { Ny, Ny, ,}




Effective geometry of

microstates with J=0

N

General non-twist bosonic correlator for (h, h)

1 —n—l C
(A(wq1)A(wo)) = ~ Z nNn Z - = ———7
om k=0 |2n sin (“’ 2%”*')} 2n sin (“"‘Qi“ A)}
8 { t
Ny = L w=p—-—-, w=0¢+ -
" sinh Bn T T /

s Substantial contribution comes from terms with
n~1/8~+VN
s For ¢ < n , can approximate the sum:

in—1 1 y'9 1

2. = A PP

- o gy 12 o - : ~1.Y2h (75 —1.Y2h
k=0 |2n sin (.’.F_._.._.—_.__%_frf!_),‘gj omsin (”_%;)?h b oo (w — 27k )2 (W — 27k)2h



!

N
\J

For t < te = O(V N ), correlator is indep. of details of
microstates:

(A(w1)A(wz)) ~ Z -

k=—0o0

Correlator for M=0 BTZ black hole

#Crucial points:

= For N>1, correlator for any state is very well
approximated by that for the “typical state”

= Typical state is determined solely by statistics
= Correlator decomposed into constituents
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comments:

# M=0 BTZ has no horizon
-> we ignhored interaction

& Still, M=0 BTZ has BH properties

= Well-defined classical geometry

= Correlation function decays to zero at late times




#Notes on correlator

N
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= M=0 BTZ correlator decays like 1/t?

= Microstate correlators have quasi-periodic
fluctuations with mean ~ 1/v/N
Cf. for finite system: mean ~ e~
- need effect of interaction?

cS

C Periodicity: At ~ LCM(1,...,V/N) ~ €° N _ S

as expected of finite system

#&Fermion correlator also sees M=0 BTZ
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Argument using LM metric

ds = —(dt — A)? dy + B)? ' dr'dz' 4 dz%dz",
string ‘uflf'i[ ( )* =+ (dy + B)<] + \ f1ls 1\ fs
_Q@s L dv Qs (L |[F(u)[%dv po— @5 b Fi(vdv
/s L Jo |x—=F(v)|? 1 I /U x — F(v)|? 4 I /U Ix — F(v)|2
Plug in profile F(v) corresponding to typical distribution
s 8 ‘
~ VN~ 1/8, N, = ——— ~ O(1
e / = ginhgn )
= |F|~VNp~1< £~ N4 ¢ = N1/% (AdS3 radius)
If one assumes that F(v) is randomly fluctuating, for r<l,
2 2 2 =
2_ T .o T .o £5 o o0 Q1 , 2
ds< = —Erif + {_—zfi’.y -+ r_z({h =+ 1 JQ3) -+ \ Os ff..a,!._,:r

This is M=0 BTZ black hole!

@‘o

Large N




Consistency check:
where are we probing?

N

probe particle
@

Ad>—\

3

“fuzzball” {

time until probe
reaches stretched horizon

stretched

/ horizon




Effective geometry of
microstates with J#0

N
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Typical state:

with (N, J) — (N — J,0)

: 1

For bosonic correlator for probe with (k. k)
/|

typical states of ensemble
[“BE condensate"] X

/|

(A(w)A(w2)) = " AA) ags; T+ (1 - T) (AA) =0 BTZ

for t t{::O(\/j\:’_‘JD

Bulk geometry is “weight sum” of
AdS; and M=0 BTZ black hole??




Effective geo. for J=0:

N

Argument using LM metric

typical states of ensemble
with (N,J) — (N — J,0)

! 1

[“BE condensate”] X [

Profile: (ring) + (fluctuation)

F =F©) 4 §F, F(O) : ring
oF :small-amplitude, high-frequency fluctuation

Large N,

large J = O(N) black ring with
vanishing horizon
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Conclusion

% For large N, almost all microstates in D1-D5
ensemble is well approximated by typical state

% Form of typical state is governed solely by

statistics

& At sufficiently early times, bulk geometry is
effectively described by M=0 BTZ BH

@ At later times (t 2 t, ~ N¥/2), description by
effective geometry breaks down




Message:

N

A black hole geometry should be
understood as an effective coarse-grained
description that accurately describes the

results of “typical” measurements, but
breaks down In general.
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