Massless Black Holes & Black Rings as Effective Geometries of the D1-D5 System

September 2005

Masaki Shigemori (Caltech)

hep-th/0508110: Vijay Balasubramanian, Per Kraus, M.S.

AdS/CFT

Can study gravity/string theory in AdS using CFT on boundary

AdS/CFT and BH

- ♦ Black hole ←→ thermal ensemble in CFT
 - Can study BH from CFT: entropy, correlation function, ...
 - Even valid for "small BH" [Dabholkar 0409148], [DKM], ...

Ensemble vs. microstates — CFT side

Thermal ensemble = weighted collection of microstates

Nothing stops one from considering individual microstates in CFT

Individual CFT microstates

- For large N, most states are very similar to each other —— "typical state"
- Result of "typical" measurements for "typical state" very well approximated by that for thermal ensemble

Cf. gas of molecules is well described by thermodynamics, although it's in pure microstate

Ensemble vs. microstates — bulk side

AdS/CFT \longrightarrow 1-to-1 correspondence between bulk and CFT microstates \longrightarrow There must be bulk microstate geometries (possibly quantum)

Expectation for bulk microstates:

 Result of "typical" measurements for "typical state" is very well approximated by that for thermal ensemble, i.e. classical BH

Atypical measurements

- Typical measurements see thermal state.
- Atypical measurements can reveal detail of microstates
 - E.g. long-time correlation function

Remark: Poincaré recurrence

- For microstate correlator, Poincaré recurrence is automatic.
- Summing over SL(2,Z) family of BHs can't account for Poincaré recurrence [Maldacena, Kleban-Porrati-Rabadan]
 - BHs are coarse-grained effective description
 Cf. gas of molecules → dissipative continuum

• Its breakdown for atypical measurements

Plan

- 1. Introduction ✓
- 2. D1-D5 system
- 3. Typical states
- 4. The effective geometry
- 5. Conclusion

2. D1-D5 system

Setup: D1-D5 System

Boundary CFT:

- N=(4,4) supersymmetric sigma model
- Target space: $(T^4)^N/S_N$, $N = N_1N_5$

We use orbifold point (free) approximation

D1-D5 CFT

Symmetry: \boldsymbol{s} $\widetilde{lpha},\widetilde{eta}$ \widetilde{s} $SO(4)_E \times SO(4)_I = [SU(2)_R \times SU(2)_R] \times [SU(2)_I \times SU(2)_I]$ R ground states 8+8 single-trace twist ops.: $\sigma_n^{s\widetilde{s}}, \; \sigma_n^{\widetilde{lpha}eta}, \; au_n^{s\widetilde{lpha}}, \; au_n^{\widetilde{lpha}\widetilde{s}} \; \equiv \; \sigma_n^\mu, au_n^\mu$ $1 \le n \le N, \quad s, \tilde{s}, \tilde{\alpha}, \tilde{\beta} = \pm$ • General: $\sigma = \prod (\sigma_n^{\mu})^{N_{n\mu}} (\tau_n^{\mu})^{N'_{n\mu}}$ • Specified by distribution $\{N_{n\mu}, N'_{n\mu}\}$ s.t. $\sum n(N_{n\mu} + N'_{n\mu}) = N, \quad N_{n\mu} = 0, 1, 2, \dots, \quad N'_{n\mu} = 0, 1.$ $_{n,\mu}$

Map to FP system

- O1-D5 sys is U-dual to FP sys:
 - F1 winds N₅ times around S¹
 - N₁ units of momentum along S¹

$$\prod_{n,\mu} (\alpha_{-n}^{\mu})^{N_{n\mu}} (\psi_{-n}^{\mu})^{N'_{n\mu}} | N_1, N_5$$

 \mathbb{R}^4 S^1

F1

Ρ

 T^4

One-to-one correspondence:

 $\sigma_n^\mu \leftrightarrow \alpha_{-n}^\mu \qquad \tau_n^\mu \leftrightarrow \psi_{-n}^\mu$

D1-D5 FP D1-D5 FP

D1-D5 microstate geometries

3. Typical states

Statistics & typical states

- \otimes R gnd states: specified by distribution $\{N_{n\mu}, N'_{n\mu}\}$
- $\text{Large } N = \sum_{n,\mu} n(N_{n\mu} + N'_{n\mu})$
 - → Macroscopic number (~ $e^{2\sqrt{2}\pi\sqrt{N}}$) of states
 - → Almost all microstates have
 - almost identical distribution (typical state)
- Result of "typical" measurements for almost all microstates are very well approximated by that for typical state
- ♦ Can also consider ensemble with $J \neq 0$

Typical distribution: J=0

Consider all twists with equal weight

 $\sigma_n^{s\widetilde{s}}, \sigma_n^{\widetilde{\alpha}\beta}, \tau_n^{s\widetilde{\alpha}}, \tau_n^{\widetilde{\alpha}s}$ \Leftrightarrow Microcanonical (N) \rightarrow canonical (β)

Typical distribution: BE/FD dist.

$$N_{n\mu} = \frac{1}{e^{\beta n} - 1}, \quad N'_{n\mu} = \frac{1}{e^{\beta n} + 1}$$

Typical distribution: J≠0

♦ Constituent twists with J≠0:

Entropy: $S = \log d_{N,J} = 2\sqrt{2}\pi\sqrt{N - |J|}$

 $\rightarrow \sigma_1^{--}$ has BE condensed (J>0)

whole J is carried by σ_1^{--}

4. The Effective Geometry

What we've learned so far:

♦ R ground states of D1-D5 system is specified by $\{N_{n\mu}, N'_{n\mu}\}$

For large N, there are macroscopic number (~e^s) of them

Almost all states have almost identical distribution (typical state).

What we'll see:

- We will compute CFT correlator $\langle \sigma | \mathcal{A}^{\dagger} \mathcal{A} | \sigma \rangle$
- ♦ For generic probes, almost all states give universal responses
 → effective geometry: M=0 BTZ
- For non-generic probes (e.g. late time correlator), different microstates behave differently
- * How about bulk side? Why not "coarse-grain" bulk metric?
 - Technically hard
 - LLM/Lunin-Mathur is at sugra level

2-point func of D1-D5 CFT

2-point func of D1-D5 CFT

Background: general RR gnd state

 $\sigma = \prod_{\alpha} (\sigma_n^{\widehat{\mu}})^{N_{n\widehat{\mu}}}, \qquad (\sigma_n^{s\widetilde{s}}, \sigma_n^{\widetilde{\alpha}\widetilde{\beta}}, \tau_n^{s\widetilde{\alpha}}, \tau_n^{\widetilde{\alpha}\widetilde{s}}) \equiv \sigma_n^{\widehat{\mu}}$

Probe: non-twist op.

 $\mathcal{A} = \frac{1}{\sqrt{N}} \sum_{A=1}^{N} \mathcal{A}_{A} \quad \text{e.g.} \quad \mathcal{A}_{A} = \partial X_{A}^{a}(z) \overline{\partial} X_{A}^{b}(\overline{z}),$

Correlator decomposes into contributions from constituent twist ops.:

$$\langle \sigma^{\dagger} \mathcal{A}^{\dagger} \mathcal{A} \sigma \rangle = \frac{1}{N} \sum_{n,\hat{\mu}} n N_{n\hat{\mu}} \sum_{A=1}^{n} \langle [\sigma_{n}^{\hat{\mu}}]^{\dagger} \mathcal{A}_{A}^{\dagger} \mathcal{A}_{1} \sigma_{n}^{\hat{\mu}} \rangle$$

Typical state correlator: example

 $\langle \sigma^{\dagger} \mathcal{A}^{\dagger} \mathcal{A} \sigma \rangle = \frac{1}{N} \sum_{n,\hat{\mu}} n N_{n\hat{\mu}} \sum_{A=1}^{n} \langle [\sigma_{n}^{\hat{\mu}}]^{\dagger} \mathcal{A}_{A}^{\dagger} \mathcal{A}_{1} \sigma_{n}^{\hat{\mu}} \rangle .$

 \mathbf{O} perator: $\mathcal{A}_A = \partial X(z) \overline{\partial} X(\overline{z}),$

Plug in typical distribution: $N_{n\mu} = \frac{1}{e^{\beta n} - 1}, \quad N'_{n\mu} = \frac{1}{e^{\beta n} + 1}$

Regularized 2-pt func:

$$\begin{split} \widehat{G}(t,\phi) &\equiv -16\sin^2\frac{w}{2}\sin^2\frac{\overline{w}}{2}\langle\partial X\overline{\partial}X(w_1)\,\partial X\overline{\partial}X(w_2)\rangle \\ &= \frac{1}{N}\sum_{n=1}^{\infty}\frac{8n}{\sinh\beta n}\frac{1}{(n\sin\frac{t}{n})^2}\left[\sin^2\frac{w}{2} + \sin^2\frac{\overline{w}}{2} - \frac{2\sin\frac{t}{\ell}\sin\frac{w}{2}\sin\frac{\overline{w}}{2}}{n\tan\frac{t}{n\ell}}\right], \\ &w &= \phi - \frac{t}{\ell}, \ \overline{w} = \phi + \frac{t}{\ell} \end{split}$$

Typical state correlator: example

Short-time behavior:

Decays rapidly at initial times (t ≤ πℓ_{AdS})
 As N→∞ (β→0), approaches a certain limit shape (actually M=0 BTZ correlator!)

Typical state correlator: example

Long-time behavior:

- Becomes random-looking, quasi-periodic
- The larger N is, the longer it takes until the quasiperiodic regime
- Precise functional form depends on detail of microscopic distribution $\{N_{n\mu}, N'_{n\mu}\}$

Effective geometry of microstates with J=0

General non-twist bosonic correlator for (h, \tilde{h})

$$\langle \mathcal{A}(w_1)\mathcal{A}(w_2) \rangle = \frac{1}{N} \sum_{n} n N_n \sum_{k=0}^{n-1} \frac{C}{\left[2n \sin\left(\frac{w-2\pi k}{2n}\right)\right]^{2h} \left[2n \sin\left(\frac{\overline{w}-2\pi k}{2n}\right)\right]^{2\tilde{h}}}$$
$$N_n = \frac{8}{\sinh\beta n}, \quad w = \phi - \frac{t}{\ell}, \quad \overline{w} = \phi + \frac{t}{\ell}$$

Substantial contribution comes from terms with

 $n\sim 1/eta\sim \sqrt{N}$

• For $t \ll n$, can approximate the sum:

$$\sum_{k=0}^{n-1} \frac{1}{\left[2n\sin\left(\frac{w-2\pi k}{2n}\right)\right]^{2h} \left[2n\sin\left(\frac{\overline{w}-2\pi k}{2n}\right)\right]^{2\widetilde{h}}} \approx \sum_{k=-\infty}^{\infty} \frac{1}{(w-2\pi k)^{2h} (\overline{w}-2\pi k)^{2\widetilde{h}}}$$

For $t \ll t_c = \mathcal{O}(\sqrt{N})$, correlator is indep. of details of microstates:

$$\langle \mathcal{A}(w_1)\mathcal{A}(w_2)\rangle \approx \sum_{k=-\infty}^{\infty} \frac{C}{(w-2\pi k)^{2h}(\overline{w}-2\pi k)^{2\widetilde{h}}}$$

Correlator for M=0 BTZ black hole

Crucial points:

- For N≫1, correlator for any state is very well approximated by that for the "typical state"
- Typical state is determined solely by statistics
- Correlator decomposed into constituents

Comments:

♦ M=0 BTZ has no horizon
→ we ignored interaction

♦ Still, M=0 BTZ has BH properties

Well-defined classical geometry

Correlation function decays to zero at late times

- M=0 BTZ correlator decays like $1/t^2$
- Microstate correlators have quasi-periodic fluctuations with mean ~ 1/√N
 Cf. for finite system: mean ~ e^{-cS}
 →need effect of interaction?

• Periodicity: $\Delta t \sim LCM(1, ..., \sqrt{N}) \sim e^{c\sqrt{N}} = e^{c'S}$ as expected of finite system

♦ Fermion correlator also sees M=0 BTZ

Argument using LM metric

$$ds_{\text{string}}^2 = \frac{1}{\sqrt{f_1 f_5}} \left[-(dt - A)^2 + (dy + B)^2 \right] + \sqrt{f_1 f_5} \, dx^i dx^i + \sqrt{\frac{f_1}{f_5}} dz^a dz^a,$$

$$f_{5} = \frac{Q_{5}}{L} \int_{0}^{L} \frac{dv}{|\mathbf{x} - \mathbf{F}(\mathbf{v})|^{2}}, \qquad f_{1} = \frac{Q_{5}}{L} \int_{0}^{L} \frac{|\dot{\mathbf{F}}(v)|^{2}dv}{|\mathbf{x} - \mathbf{F}(v)|^{2}}, \qquad A_{i} = -\frac{Q_{5}}{L} \int_{0}^{L} \frac{\dot{F}_{i}(v)dv}{|\mathbf{x} - \mathbf{F}(\mathbf{v})|^{2}},$$

Plug in profile F(v) corresponding to typical distribution

$$n \sim \sqrt{N} \sim 1/\beta,$$
 $N_n = \frac{8}{\sinh \beta n} \sim \mathcal{O}(1)$

 \Rightarrow |**F**| ~ $\sqrt{N_n}$ ~ 1 $\ll \ell \sim N^{1/4}$, $\ell = N^{1/4}$ (AdS₃ radius)

If one assumes that F(v) is randomly fluctuating, for $r \ll l$,

$$ds^{2} = -\frac{r^{2}}{\ell^{2}}dt^{2} + \frac{r^{2}}{\ell^{2}}dy^{2} + \frac{\ell^{2}}{r^{2}}(dr^{2} + r^{2}d\Omega_{3}^{2}) + \sqrt{\frac{Q_{1}}{Q_{5}}}ds_{T^{4}}^{2}$$

This is M=0 BTZ black hole!

Consistency check: where are we probing?

Effective geometry of microstates with J≠0

Typical state:

 $\begin{bmatrix} "BE condensate" \end{bmatrix} \times \begin{bmatrix} typical states of ensemble \\ with (N, J) \rightarrow (N - J, 0) \end{bmatrix}$

For bosonic correlator for probe with (h, \tilde{h})

 $\langle \mathcal{A}(w_1)\mathcal{A}(w_2)\rangle = \frac{|J|}{N} \langle \mathcal{A}\mathcal{A}\rangle_{\mathsf{AdS}_3} + \left(1 - \frac{|J|}{N}\right) \langle \mathcal{A}\mathcal{A}\rangle_{M=0 \mathsf{BTZ}}$

for
$$t \ll t_c = \mathcal{O}(\sqrt{N - |J|})$$

Bulk geometry is "weight sum" of AdS₃ and M=0 BTZ black hole??

Effective geo. for J≠0: **Argument using LM metric**

 $\begin{bmatrix} "BE condensate" \end{bmatrix} \times \begin{bmatrix} typical states of ensemble \\ with (N, J) \rightarrow (N - J, 0) \end{bmatrix}$

Profile: (ring) + (fluctuation)

 $\mathbf{F} = \mathbf{F}^{(0)} + \delta \mathbf{F}, \qquad \mathbf{F}^{(0)} : ring$

 $\delta \mathbf{F}$:small-amplitude, high-frequency fluctuation

Conclusion

For large N, almost all microstates in D1-D5 ensemble is well approximated by typical state

Form of typical state is governed solely by statistics

At sufficiently early times, bulk geometry is effectively described by M=0 BTZ BH

At later times (t \gtrsim t_c ~ N^{1/2}), description by effective geometry breaks down

Message:

A black hole geometry should be understood as an effective coarse-grained description that accurately describes the results of "typical" measurements, but breaks down in general.