重イオン衝突における ゆらぎの話

北沢 正清 (阪大)

筑波大学, 2013/Jul./9

Beam-Energy Scan

Observables in equilibrium are fluctuating.

Observables in equilibrium are fluctuating.

Event-by-Event Analysis @ HIC

Fluctuations can be measured by e-by-e analysis in experiments.

Event-by-Event Analysis @ HIC

Fluctuations can be measured by e-by-e analysis in experiments.

観測にかかるゆらぎは、いつ形成されたのか?

ゆらぎのダイナミクス(動的振る舞い)の議論が必要

観測にかかるゆらぎは、いつ形成されたのか?

ゆらぎのダイナミクス(動的振る舞い)の議論が必要

保存電荷の場合

境界を通過する電荷 のみが変化に寄与

非保存電荷の場合

体積内の任意の場所で 電荷が変化できる $\tau \rightarrow \text{const.}$

for $V \to \infty$

観測にかかるゆらぎは、いつ形成されたのか?

*∆η*内の保存電荷量は、初期段階の ものが終状態まで生き残ることが期 待できる。

Asakawa, Heinz, Muller, '00 Jeon, Koch, '00 Shuryak, Stephanov, '02

Note: STAR - $\begin{bmatrix} -0.5 < \eta < 0.5 \\ 0.4 < p < 0.8[GeV] \end{bmatrix}$

Conserved Charges : Theoretical Advantage

Conserved Charges : Theoretical Advantage

Simple thermodynamic relations

$$\left< \delta N_c^n \right> = \frac{1}{V T^{n-1}} \frac{\partial^n \Omega}{\partial \mu_c^n}$$

 Intuitive interpretation for the behaviors of cumulants

ex:
$$\langle \delta N_B^3 \rangle = \frac{1}{VT^2} \frac{\partial \langle \delta N_B^2 \rangle}{\partial \mu_B}$$

 Fluctuations reflect properties of matter.
 Enhancement near the critical point Stephanov,Rajagopal,Shuryak('98); Hatta,Stephanov('02); Stephanov('09);...
 Ratios between cumulants of conserved charges Asakawa,Heintz,Muller('00); Jeon, Koch('00); Ejiri,Karsch,Redlich('06)
 Signs of higher order cumulants Asakawa,Ejiri,MK('09); Friman,et al.('11); Stephanov('11)

Free Boltzmann → Poisson
$$\langle \delta N^n \rangle_c = \langle N \rangle$$

$$\langle \delta N_q^n \rangle_c = \langle N_q \rangle$$
$$\Longrightarrow \langle \delta N_B^n \rangle_c = \frac{1}{3^{n-1}} \langle N_B \rangle$$

$$3N_B = N_q$$

$$\langle \delta N_B^n \rangle_c = \langle N_B \rangle$$

Free Boltzmann → Poisson $\langle \delta N^n \rangle_c = \langle N \rangle$

$$\langle \delta N_q^n \rangle_c = \langle N_q \rangle$$
$$\Longrightarrow \langle \delta N_B^n \rangle_c = \frac{1}{3^{n-1}} \langle N_B \rangle$$

$$3N_B = N_q$$

Proton # Fluctuations @ STAR-BES

$$S\sigma = \frac{\langle (\delta N_p^{(\text{net})})^3 \rangle}{\langle (\delta N_p^{(\text{net})})^2 \rangle}, \quad \kappa \sigma^2 = \frac{\langle (\delta N_p^{(\text{net})})^4 \rangle_c}{\langle (\delta N_p^{(\text{net})})^2 \rangle}$$

Proton # Fluctuations @ STAR-BES

Proton # Fluctuations @ STAR-BES

Proton # Cumulants @ STAR-BES

No characteristic signals on phase transition to QGP nor QCD CP

Proton # Cumulants @ STAR-BES

Charge Fluctuations @ STAR-BES

Charge Fluctuation @ LHC

$\Delta\eta$ Dependence @ ALICE

Dissipation of a Conserved Charge

Dissipation of a Conserved Charge

$\Delta\eta$ Dependence @ ALICE

ゆらぎのΔη 依存性には、高温物質の 時間発展の情報が刻まれている!

 $<\delta N_{\rm B}^2>$ and $<\delta N_{\rm p}^2>$ @ LHC ?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$

should have different $\Delta \eta$ dependence.

 $<\delta N_{0}^{4} > @ LHC ?$

Baryon vs Proton Number Fluctuations

MK, Asakawa, PRC85,021901C(2012); PRC86, 024904(2012)

$$\square \frac{\langle \delta N_B^n \rangle_c}{\langle \delta N_B^m \rangle_c} \neq \frac{\langle \delta N_p^n \rangle_c}{\langle \delta N_p^m \rangle_c}$$

 $\hfill\square\ \langle \delta N_B^n \rangle_c$ are experimentally observable

Nucleon Isospin as Two Sides of a Coin

Nucleons have two isospin states.

MK, Asakawa, 2012

Nucleon Isospin as Two Sides of a Coin

Nucleons have two isospin states.

Coins have two sides.

MK, Asakawa, 2012

Slot Machine Analogy

Extreme Examples

Reconstructing Total Coin Number

 $P_{\textcircled{0}}(N_{\textcircled{0}}) = \sum_{A} P_{\textcircled{0}}(N_{\textcircled{0}})B_{1/2}(N_{\textcircled{0}};N_{\textcircled{0}})$

 $B_p(k;N) = p^k (1-p)^{N-k} {}_k C_N$:binomial distr. func.

Nucleon Isospin in Hadronic Medium

> Isospin of baryons can vary <u>after chemical freezeout</u> via charge exchange reactions mediated by $\Delta(1232)$:

Nucleons in Hadronic Phase

Probability Distribution $\mathcal{P}(N_p, N_n, N_{\bar{p}}, N_{\bar{n}})$

for any phase space in the final state.

Difference btw Baryon and Proton Numbers

(1) $N_B^{(\text{net})} = N_B - N_{\bar{B}}$ deviates from the equilibrium value. (2) Boltzmann (Poisson) distribution for $N_B, N_{\bar{B}}$.

$$\begin{bmatrix} 2\langle (\delta N_p^{(\text{net})})^2 \rangle = \frac{1}{2}\langle (\delta N_{\text{B}}^{(\text{net})})^2 \rangle + \frac{1}{2}\langle (\delta N_{\text{B}}^{(\text{net})})^2 \rangle_{\text{free}} \\ 2\langle (\delta N_p^{(\text{net})})^3 \rangle = \frac{1}{4}\langle (\delta N_{\text{B}}^{(\text{net})})^3 \rangle + \frac{3}{4}\langle (\delta N_{\text{B}}^{(\text{net})})^3 \rangle_{\text{free}} \\ 2\langle (\delta N_p^{(\text{net})})^4 \rangle_c = \frac{1}{8}\langle (\delta N_{\text{B}}^{(\text{net})})^4 \rangle_c + \cdots \\ \text{genuine info.} \qquad \text{noise} \\ \end{bmatrix}$$

Secondary Protons

Secondary Protons

Time Evolution of Higher Order Cumulants

MK, Asakawa, Ono, arXiv:1307.xxxx

Hydrodynamic Fluctuations

Landau, Lifshitz, Statistical Mechaniqs II Kapusta, Muller, Stephanov, 2012

Diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n$$

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

$\Delta\eta$ Dependence

Shuryak, Stephanov, 2001

□ Initial condition: $\langle \delta n(\eta_1, 0) \delta n(\eta_2, 0) \rangle = \sigma_2 \delta(\eta_1 - \eta_2)$

Translational invariance

Thee "NON"s

重イオン衝突での高次ゆらぎの観測・解析は、 物理学として相当に特殊な問題である。

Non-Gaussian

通常、高次ゆらぎは観測困難。 適度に小さい系

Thee "NON"s

重イオン衝突での高次ゆらぎの観測・解析は、 物理学として相当に特殊な問題である。

■ Non-Gaussian 適度に小さい系

□ Non-critical 韻

観測されたゆらぎの値は、 自由ガスとたかだか2倍のずれ

Thee "NON"s

重イオン衝突での高次ゆらぎの観測・解析は、 物理学として相当に特殊な問題である。

■ Non-Gaussian 適度に小さい系

Non-critical
 観測されたゆらぎの値は、
 自由ガスとたかだか2倍のずれ

Non-equilibrium

平衡に至る非定常過程を記述する必要性。

Diffusion Master Equation

Diffusion Master Equation

Solve the DME **exactly**, and take $a \rightarrow 0$ limit

No approx., ex. van Kampen's system size expansion

Solution of DME

Solution of DME

1st
$$\langle \tilde{n}_k \rangle(t) = e^{-\omega_k t} \langle \tilde{n}_k \rangle_0$$
 $\omega_k \simeq \gamma a^2 k^2$
initial
Deterministic part $\leftarrow \rightarrow$ diffusion equation
at long wave length (1/a<\gamma a^2 = D

2nd
$$\langle \delta \tilde{n}_{k_1} \delta \tilde{n}_{k_2} \rangle (t) = \langle \tilde{n}_{k_1+k_2} \rangle_0 (e^{-\omega_{k_1+k_2}t} - e^{-(\omega_{k_1}+\omega_{k_2})t})$$

 $+ \langle \delta \tilde{n}_{k_1} \delta \tilde{n}_{k_2} \rangle_0 e^{-(\omega_{k_1}+\omega_{k_2})t}$

Consistent with stochastic diffusion eq. (for sufficiently smooth initial condition)

Net Charge Number

Prepare 2 species of (non-interacting) particles

Let us investigate

 $\langle \bar{Q}^2
angle_c ~~ \langle \bar{Q}^4
angle_c$ at freezeout time t

Initial Condition at Hadronization

Boost invariance / infinitely long system

Local equilibration / local correlation

Initial fluctuations

$\Delta \eta$ Dependence at Freezeout

Initial fluctuations:

$$\langle \bar{Q}^2 \rangle_c = \langle \bar{Q}^4 \rangle_c = \langle \bar{Q}^2 Q_{(\text{tot})} \rangle_c = 0$$

 $<\delta N_0^4 > @ LHC$

• boost invariant system

Assumptions -

- small fluctuations of CC at hadronization
- short correlation in hadronic stage

$\Delta\eta$ Dependence at STAR

STAR, QM2012

decreases as $\Delta\eta$ becomes larger at RHIC.

$\Delta \eta$ Dependence at Freezeout

高温物質の時間発展

まとめ

Evolution of Fluctuations

Time Evolution in HIC

