Dynamics of Non-Gaussianity in Heavy Ion Collisions

Masakiyo Kitazawa (Osaka U.)

MK, Asakawa, PRC85,021901C(2012); PRC86, 024904(2012) MK, Asakawa, Ono, arXiv:1307.2978

NFQCD, YITP, Kyoto, 27/Nov./2013

Beam-Energy Scan

Fluctuations

- ☐ Fluctuations reflect properties of matter.
 - Enhancement near the critical point

Stephanov, Rajagopal, Shuryak ('98); Hatta, Stephanov ('02); Stephanov ('09);...

■ Ratios between cumulants of conserved charges

Asakawa, Heinz, Muller ('00); Jeon, Koch ('00); Ejiri, Karsch, Redlich ('06)

■ Signs of higher order cumulants

Asakawa, Ejiri, MK('09); Friman, et al.('11); Stephanov('11)

Conserved Charges: Theoretical Advantage

- Definite definition for operators
 - as a Noether current
 - calculable on any theory

ex: on the lattice

Conserved Charges: Theoretical Advantage

- Definite definition for operators 2
 - as a Noether current
 - calculable on any theory

ex: on the lattice

■ Simple thermodynamic relations

$$\langle \delta N_c^n \rangle = \frac{1}{VT^{n-1}} \frac{\partial^n \Omega}{\partial \mu_c^n}$$

 Intuitive interpretation for the behaviors of cumulants

ex:
$$\langle \delta N_B^3 \rangle = \frac{1}{VT^2} \frac{\partial \langle \delta N_B^2 \rangle}{\partial \mu_B}$$

Conserved Charge Fluctuations

Cumulants of $N_{\rm B}$ and $N_{\rm O}$ are **suppressed** at high T.

Asakawa, Heinz, Muller, 2000; Jeon, Koch, 2000; Ejiri, Karsch, Redlich, 2006; Asakawa, Ejiri, MK, 2009; Friman, et al., 2011; Stephanov, 2011

Proton # Cumulants @ STAR-BES

Something interesting??

CAUTION!

proton number \neq baryon number MK. Asakawa, 2011;2012

Charge Fluctuation @ LHC

 $\langle \delta N_Q^2 \rangle$ is not equilibrated at freeze-out at LHC energy!

$\Delta\eta$ Dependence @ ALICE

Variation of a conserved charge is achieved only through diffusion.

The larger $\Delta \eta$, the slower diffusion

Δη Dependence @ ALICE

Δη dependences of fluctuation observables encode history of the hot medium!

Cumulants: HIC@RHIC vs Lattice

fluctuations "exp + lattice"

particle abundance (chem. freezeout *T*)

$<\delta N_{\rm B}^2>$ and $<\delta N_{\rm p}^2>$ @ LHC?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$ should have different $\Delta \eta$ dependence.

Baryon # cumulants are experimentally observable! MK, Asakawa, 2011;2012

$<\delta N_{\rm B}^2>$ and $<\delta N_{\rm p}^2>$ @ LHC?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$ should have different $\Delta \eta$ dependence.

Baryon # cumulants are experimentally observable! MK, Asakawa, 2011;2012

$<\delta N_Q^4>$ @ LHC?

How does $\langle \delta N_Q^4 \rangle_c$ behave as a function of $\Delta \eta$?

suppression

or

enhancement

Baryon vs Proton Number Fluctuations

MK, Asakawa, PRC85,021901C(2012); PRC86, 024904(2012)

$$\frac{\langle \delta N_B^n \rangle_c}{\langle \delta N_B^m \rangle_c} \neq \frac{\langle \delta N_p^n \rangle_c}{\langle \delta N_p^m \rangle_c}$$

 \Box $\langle \delta N_B^n \rangle_c$ are experimentally observable

Nucleon Isospin as Two Sides of a Coin

Nucleons have two isospin states.

Nucleon Isospin as Two Sides of a Coin

Nucleons have two isospin states.

Coins have two sides.

Slot Machine Analogy

Extreme Examples

Reconstructing Total Coin Number

$$P_{0}(N_{0}) = \sum_{n} P_{0}(N_{n})B_{1/2}(N_{0};N_{0})$$

 $B_p(k;N) = p^k(1-p)^{N-k} {}_k C_N$:binomial distr. func.

Nucleon Isospin in Hadronic Medium

 \triangleright Isospin of baryons can vary <u>after chemical freezeout</u> via charge exchange reactions mediated by $\Delta(1232)$:

 Δ (1232)

cross sections of p

decay rates of Δ

 $\Delta(1232)$

cross sections of p

$$p+\pi
ightarrow \Delta^{+,0} \
ightarrow p:n \ =5:4$$

decay rates of Δ

Δ (1232)

cross sections of p

$$p+\pi
ightarrow \Delta^{+,0} \
ightarrow p:n \ -5 \cdot A$$

decay rates of Δ

Lifetime to create Δ^+ or Δ^0

$$\tau^{-1} = \int \frac{d^3 k_{\pi}}{(2\pi)^3} \sigma(E_{\rm cm}) v_{\pi} n(E_{\pi})$$

(freezeout time) $\simeq 20 [\text{fm}]$

Difference btw Baryon and Proton Numbers

- (1) $N_B^{({
 m net})}=N_B-N_{ar B}$ deviates from the equilibrium value. (2) Boltzmann (Poisson) distribution for $N_B,N_{ar B}$.

genuine info. Poissonian noise

Difference from Poisson (thermal) distribution is suppressed in proton number fluctuations.

Difference btw Baryon and Proton Numbers

- (1) $N_B^{
 m (net)} = N_B N_{ar{B}}$ deviates from the equilibrium value.
- (2) Boltzmann (Poisson) distribution for $N_B, N_{\bar{B}}$.

30 40

Colliding Energy √s_{NN} (GeV)

100

200

from Poisson (thermal) distribution ssed in proton number fluctuations.

Time Evolution of Higher Order Cumulants

MK, Asakawa, Ono, arXiv:1307.2978

$<\delta N_Q^4>$ @ LHC?

How does $\langle \delta N_Q^4 \rangle_c$ behave as a function of $\Delta \eta$?

suppression

or

enhancement

Hydrodynamic Fluctuations

Landau, Lifshitz, Statistical Mechaniqs II Kapusta, Muller, Stephanov, 2012 Stephanov, Shuryak, 2001

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^{2} n + \partial_{\eta} \xi(\eta, \tau)$$

Fluctuation of *n* is Gaussian in equilibrium

Markov (white noise)

continuity

Gaussian noise

cf) Gardiner, "Stochastic Methods"

How to Introduce Non-Gaussianity?

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^{2} n + \partial_{\eta} \xi(\eta, \tau)$$

- ☐ Choices to introduce non-Gaussianity in equil.:
 - \square *n* dependence of diffusion constant D(n)
 - colored noise
 - □ discretization of *n*

How to Introduce Non-Gaussianity?

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

- ☐ Choices to introduce non-Gaussianity in equil.:
 - \square *n* dependence of diffusion constant D(n)
 - colored noise
 - ☐ discretization of *n* our choice

REMARK: Fluctuations measured in HIC are almost Poissonian.

Diffusion Master Equation

Divide spatial coordinate into discrete cells

Diffusion Master Equation

Divide spatial coordinate into discrete cells

Master Equation for P(n)

$$\frac{\partial}{\partial t}P(\mathbf{n}) = \gamma \sum_{x} [(n_x + 1) \{P(\mathbf{n} + \mathbf{e}_x - \mathbf{e}_{x+1}) + P(\mathbf{n} + \mathbf{e}_x - \mathbf{e}_{x-1})\}$$
$$-2n_x P(\mathbf{n})]$$

Solve the DME **exactly**, and take $a \rightarrow 0$ limit

No approx., ex. van Kampen's system size expansion

Net Charge Number

Prepare 2 species of (non-interacting) particles

Let us investigate

$$\langle \bar{Q}^2 \rangle_c \quad \langle \bar{Q}^4 \rangle_c$$
 at freezeout time t

Solution of DME in $a \rightarrow 0$ Limit

1st order (deterministic) $\langle n \rangle$

 \square consistent with diffusion equation with $D=\gamma a^2$

Continuum limit with fixed $D=\gamma a^2$

2nd order $\langle \delta n^2 \rangle$

consistent with stochastic diffusion eq.(for sufficiently smooth initial conditions)

Shuryak, Stephanov, 2001

Nontrivial results for non-Gaussian fluctuations

Time Evolution in Hadronic Phase

Hadronization (initial condition)

- Boost invariance / infinitely long system
 - Local equilibration / local correlation

$$\langle \bar{Q}^2 \rangle_c \langle \bar{Q}^4 \rangle_c \langle \bar{Q}^2 Q_{(\text{tot})} \rangle_c \langle Q_{(\text{tot})}^2 \rangle_c$$

suppression owing to local charge conservation

strongly dependent on hadronization mechanism

Time Evolution in Hadronic Phase

Hadronization (initial condition)

- Boost invariance / infinitely long system
 - Local equilibration / local correlation

suppression owing to local charge conservation

strongly dependent on hadronization mechanism

Freezeout

Total Charge Number

In recombination model,

 $\ \square \ N_B^{\rm (tot)} \ {\rm can} \ {\rm fluctuate, \ while} \ N_B^{\rm (net)} \ {\rm does \ not.}$

Δη Dependence at Freezeout

Initial fluctuations:

$$\langle \bar{Q}^2 \rangle_c = \langle \bar{Q}^4 \rangle_c = \langle \bar{Q}^2 Q_{(\text{tot})} \rangle_c = 0.5 \langle Q_{(\text{tot})} \rangle$$

$<\delta N_{\rm Q}^4>$ @ LHC

- Assumptions -
- boost invariant system
- · small fluctuations of CC at hadronization
- short correlation in hadronic stage

 $\frac{\langle \delta N_p^1 \rangle_c}{\langle \delta N_p^2 \rangle}$ decreases as $\Delta \eta$ becomes larger at RHIC energy.

OUR SUGGESTIONS:

- Plot $<\delta N^2>$ and $<\delta N^4>$ separately
- Plot baryon number cumulants

Global Charge Conservation

Sakaida, poster session (3rd week)

Solve SDE or DME in a finite volume

- Effect of GCC can be read off from $\Delta \eta$ dependence.
- No GCC effect in ALICE experiments!

Summary

Fluctuations in HIC are nonthermal!

Plenty of physics in $\Delta \eta$ dependences of various cumulants

$$\langle N_Q^2 \rangle_c, \ \langle N_B^2 \rangle_c, \ \langle N_Q^4 \rangle_c, \ \langle N_B^4 \rangle_c,$$

 $\langle N_{ch}^2 \rangle_c, \cdots$

Physical meanings of fluctuation obs. in experiments.

- history of hot medium
- mechanism of hadronization
- ☐ diffusion constant

Summary

Fluctuations in HIC are nonthermal!

Plenty of physics in $\Delta \eta$ dependences of various cumulants

$$\langle N_Q^2 \rangle_c, \ \langle N_B^2 \rangle_c, \ \langle N_Q^4 \rangle_c, \ \langle N_B^4 \rangle_c, \ \langle N_B^4 \rangle_c, \ \langle N_{ch}^2 \rangle_c, \cdots$$

Physical meanings of fluctuation obs. in experiments.

- history of hot medium
- mechanism of hadronization
- diffusion constant

Search of QCD Phase Structure in HIC

Open Questions & Future Work

- Why the primordial fluctuations are observed only at LHC, and not RHIC?
- Extract more information on each stage of fireballs using fluctuations

- Model refinement
 - Including the effects of nonzero correlation length / relaxation time global charge conservation
 - Non Poissonian system ← interaction of particles

Chemical Reaction 1

$$X \stackrel{k_1}{\overline{\mathrel{\stackrel{}{ ext{k_2}}}}} A$$

x: # of X

a: # of A (fixed)

Master eq.:
$$\frac{\partial}{\partial t}P(x,t) = k_2aP(x-1,t) + k_1(x+1)P(x+1,t)$$
$$-(k_1x + k_2a)P(x,t)$$

Cumulants with fixed initial condition $P(x,0) = \delta_{x,N_0}$

$$\begin{split} \langle x(t) \rangle &= N_0 e^{-k_1 t} + N_{eq} (1 - e^{-k_1 t}) \\ \langle \delta x(t)^2 \rangle &= N_0 (e^{-k_1 t} - e^{-2k_1 t}) + N_{eq} (1 - e^{-k_1 t}) \\ \langle \delta x(t)^3 \rangle &= N_0 (e^{-k_1 t} - 3e^{-2k_1 t} + 2e^{-3k_1 t}) + N_{eq} (1 - e^{-k_1 t}) \\ & \text{initial} \end{split}$$

Chemical Reaction 2

Higher-order cumulants grow slower.

Time Evolution in HIC

Hydrodynamic Fluctuations

Landau, Lifshitz, Statistical Mechaniqs II Kapusta, Muller, Stephanov, 2012

Diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n$$

Stochastic diffusion equation

$$\partial_{\tau} n = D\partial_{\eta}^{2} n + \partial_{\eta} \xi(\eta, \tau)$$

Stochastic Force

determined by fluctuation-dissipation relation

$\Delta \eta$ Dependence

- □ Initial condition: $\langle \delta n(\eta_1, 0) \delta n(\eta_2, 0) \rangle = \sigma_2 \delta(\eta_1 \eta_2)$
- □ Translational invariance

$$Q(\tau) = \int_0^{\Delta\eta} d\eta n(\eta,\tau) \qquad \qquad \boxed{ \langle \delta Q(\tau)^2 \rangle = \underline{\sigma_2 F_2(X)} + \underline{\chi_2(1-F_2(X))} }$$
 equilibrium

Non-Gaussianity in Fluctuating Hydro?

It is **impossible** to directly extend the theory of hydro fluctuations to treat higher orders.

■ No a priori extension of FD relations to higher orders

Theorem

Markov process + continuous variable

→ Gaussian random force

cf) Gardiner, "Stochastic Methods"

Event-by-Event Analysis @ HIC

Fluctuations can be measured by e-by-e analysis in HIC.

Non-Gaussianity

PLANCK: statistics insufficient to see non-Gaussianity...(2013)