Fluctuations of Conserved Charges as Probes of QCD Phase Structure

Masakiyo Kitazawa (Osaka U.)

MK, Asakawa, PRC85,021901C(2012); PRC86, 024904(2012) MK, Asakawa, Ono, PLB728,386(2014)

JHI2014, J-PARC, 17/Mar./2014

Beam-Energy Scan

Fluctuations

 Fluctuations reflect properties of matter.
 Enhancement near the critical point Stephanov,Rajagopal,Shuryak('98); Hatta,Stephanov('02); Stephanov('09);...
 Ratios between cumulants of conserved charges Asakawa,Heinz,Muller('00); Jeon, Koch('00); Ejiri,Karsch,Redlich('06)
 Signs of higher order cumulants Asakawa,Ejiri,MK('09); Friman,et al.('11); Stephanov('11)

Conserved Charges : Theoretical Advantage

- as a Noether current
- calculable on any theory

ex: on the lattice

Conserved Charges : Theoretical Advantage

Definite definition for operators

- as a Noether current
- calculable on any theory

ex: on the lattice

Simple thermodynamic relations

$$\left< \delta N_c^n \right> = \frac{1}{VT^{n-1}} \frac{\partial^n \Omega}{\partial \mu_c^n}$$

 Intuitive interpretation for the behaviors of cumulants

ex:
$$\langle \delta N_B^3 \rangle = \frac{1}{VT^2} \frac{\partial \langle \delta N_B^2 \rangle}{\partial \mu_B}$$

Asakawa, Ejiri, MK, 2009

Recent Progress in Lattice Community

Fluctuations

Free Boltzmann → Poisson
$$\langle \delta N^n \rangle_c = \langle N \rangle$$

$$\langle \delta N_q^n \rangle_c = \langle N_q \rangle$$
$$\Longrightarrow \langle \delta N_B^n \rangle_c = \frac{1}{3^{n-1}} \langle N_B \rangle$$

$$3N_B = N_q$$

$$\langle \delta N_B^n \rangle_c = \langle N_B \rangle$$

Fluctuations

Free Boltzmann → Poisson $\langle \delta N^n \rangle_c = \langle N \rangle$

$$\langle \delta N_q^n \rangle_c = \langle N_q \rangle$$
$$\Longrightarrow \langle \delta N_B^n \rangle_c = \frac{1}{3^{n-1}} \langle N_B \rangle$$

$$3N_B = N_q$$

Proton # Cumulants @ STAR-BES

Charge Fluctuation @ LHC

 $\langle \delta N_Q^2 \rangle$ is not equilibrated at freeze-out at LHC energy!

$\Delta\eta$ Dependence @ ALICE

achieved only through diffusion.

the slower diffusion

$\Delta\eta$ Dependence @ ALICE

Δη dependences of fluctuation observables encode history of the hot medium!

 $<\delta N_{\rm B}^2$ > and $<\delta N_{\rm p}^2$ > @ LHC ?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$

should have different $\Delta\eta$ dependence.

Baryon # cumulants are experimentally observable! MK, Asakawa, 2011;2012

 $<\delta N_{\rm B}^2$ > and $<\delta N_{\rm p}^2$ > @ LHC ?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$

should have different $\Delta\eta$ dependence.

Baryon # cumulants are experimentally observable! MK, Asakawa, 2011;2012

 $<\delta N_{0}^{4} > @ LHC ?$

Baryon vs Proton Number Fluctuations

MK, Asakawa, PRC85,021901C(2012); PRC86, 024904(2012)

$$\square \frac{\langle \delta N_B^n \rangle_c}{\langle \delta N_B^m \rangle_c} \neq \frac{\langle \delta N_p^n \rangle_c}{\langle \delta N_p^m \rangle_c}$$

 $\hfill \hfill \hfill$

Nucleon Isospin as Two Sides of a Coin

Nucleons have two isospin states.

MK, Asakawa, 2012

Nucleon Isospin as Two Sides of a Coin

Nucleons have two isospin states.

Coins have two sides.

MK, Asakawa, 2012

Slot Machine Analogy

Extreme Examples

Reconstructing Total Coin Number

 $P_{\textcircled{0}}(N_{\textcircled{0}}) = \sum_{A} P_{\textcircled{0}}(N_{\textcircled{0}})B_{1/2}(N_{\textcircled{0}};N_{\textcircled{0}})$

 $B_p(k;N) = p^k (1-p)^{N-k} {}_k C_N$:binomial distr. func.

Reconstructing Baryon Number Cumulants

$$\mathcal{P}(N_p, N_n, N_{\bar{p}}, N_{\bar{n}})$$

= $F(N_N, N_{\bar{N}})B(N_p; N_N)B(N_{\bar{p}}; N_{\bar{N}})$

➢ for any phase space in the final state.

$$\Box \begin{cases} \langle (\delta N_p^{(\text{net})})^2 \rangle = \frac{1}{4} \langle (\delta N_N^{(\text{net})})^2 \rangle + \frac{1}{4} \langle N_N^{(\text{tot})} \rangle \\ \langle (\delta N_N^{(\text{net})})^2 \rangle = 4 \langle (\delta N_p^{(\text{net})})^2 \rangle - 2 \langle N_p^{(\text{tot})} \rangle \end{cases}$$

- for isospin symmetric medium
- effect of isospin density <10% for \sqrt{s} >10GeV
- Similar formulas up to any order!

Lifetime to create
$$\Delta^+$$
 or Δ^0 Hadronic stage
 $\tau \simeq 4 [\text{fm}] \longrightarrow \simeq 20 [\text{fm}]$

Nucleons in Hadronic Phase

Difference btw Baryon and Proton Numbers

(1) $N_B^{(\text{net})} = N_B - N_{\bar{B}}$ deviates from the equilibrium value. (2) Boltzmann (Poisson) distribution for $N_B, N_{\bar{B}}$.

$$= \left\{ \begin{array}{c} 2\langle (\delta N_p^{(\text{net})})^2 \rangle = \frac{1}{2}\langle (\delta N_B^{(\text{net})})^2 \rangle + \frac{1}{2}\langle (\delta N_B^{(\text{net})})^2 \rangle_{\text{free}} \\ 2\langle (\delta N_p^{(\text{net})})^3 \rangle = \frac{1}{4}\langle (\delta N_B^{(\text{net})})^3 \rangle + \frac{3}{4}\langle (\delta N_B^{(\text{net})})^3 \rangle_{\text{free}} \\ 2\langle (\delta N_p^{(\text{net})})^4 \rangle_c = \frac{1}{8}\langle (\delta N_B^{(\text{net})})^4 \rangle_c + \cdots \right]$$
genuine info.
Poissonian noise
Difference from Poisson (thermal) distribution

is suppressed in proton number fluctuations.

Difference btw Baryon and Proton Numbers

(1) $N_B^{(\text{net})} = N_B - N_{\bar{B}}$ deviates from the equilibrium value. (2) Boltzmann (Poisson) distribution for $N_B, N_{\bar{B}}$.

Time Evolution of Higher Order Cumulants

MK, Asakawa, Ono, PLB728, 386 [arXiv:1307.2978]

 $<\delta N_{0}^{4} > @ LHC ?$

Hydrodynamic Fluctuations

Landau, Lifshitz, Statistical Mechaniqs II Kapusta, Muller, Stephanov, 2012 Stephanov, Shuryak, 2001

Stochastic diffusion equation

 $\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$ Markov (white noise) continuity Gaussian noise Fluctuation of *n* is Gaussian in equilibrium cf) Gardiner, "Stochastic Methods"

How to Introduce Non-Gaussianity?

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

Choices to introduce non-Gaussianity in equil.:

- \square *n* dependence of diffusion constant *D*(*n*)
- colored noise
- □ discretization of *n*

How to Introduce Non-Gaussianity?

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

Choices to introduce non-Gaussianity in equil.:

n dependence of diffusion constant *D*(*n*)
 colored noise
 discretization of *n* our choice

REMARK:

Fluctuations measured in HIC are almost Poissonian.

Diffusion Master Equation

Diffusion Master Equation

Solve the DME **exactly**, and take $a \rightarrow 0$ limit

No approx., ex. van Kampen's system size expansion

Baryons in Hadronic Phase

Solution of DME in $a \rightarrow 0$ Limit

1st order (deterministic) $\langle n \rangle$

\Box consistent with diffusion equation with $D=\gamma a^2$

Continuum limit with fixed $D=\gamma a^2$

2nd order $\langle \delta n^2 \rangle$

consistent with stochastic diffusion eq. (for sufficiently smooth initial conditions)

Shuryak, Stephanov, 2001

Nontrivial results for non-Gaussian fluctuations

Net Charge Number

Prepare 2 species of (non-interacting) particles

Let us investigate

 $\langle \bar{Q}^2
angle_c ~~ \langle \bar{Q}^4
angle_c$ at freezeout time t

Total Charge Number

In recombination model,

 \square $N_B^{(\text{tot})}$ can fluctuate, while $N_B^{(\text{net})}$ does not.

4> @ LHC

boost invariant system

Assumptions -

- small fluctuations of CC at hadronization
- short correlation in hadronic stage

$\Delta\eta$ Dependence at STAR

STAR, QM2012

decreases as $\Delta\eta$ becomes larger at RHIC energy.

$\Delta\eta$ Dependence at STAR

STAR, QM2012

Fluctuations @ J-PARC Energy

Ingredients to be considered:

- ✓ Bjorken expansion
- ✓ pseudo rapidity vs coordinate-space rapidity
- ✓ finite volume effect (global charge conservation)

Summary

Fluctuations in HIC are nonthermal!

Plenty of physics in $\Delta \eta$ dependences of various cumulants

 $\langle N_Q^2 \rangle_c, \ \langle N_B^2 \rangle_c, \ \langle N_Q^4 \rangle_c, \ \langle N_B^4 \rangle_c,$ $\langle N_{ch}^2 \rangle_c, \cdots$

Physical meanings of fluctuation obs. in experiments. Diagnosing dynamics of HIC
history of hot medium
mechanism of hadronization
diffusion constant

Summary

Fluctuations in HIC are nonthermal!

Plenty of physics in $\Delta \eta$ dependences of various cumulants

Physical meanings of fluctuation obs. in experiments. Diagnosing dynamics of HIC
history of hot medium
mechanism of hadronization
diffusion constant

Search of QCD Phase Structure in HIC

Open Questions & Future Work

- Why the primordial fluctuations are observed only at LHC, and not RHIC ?
- Extract more information on each stage of fireballs using fluctuations

- Model refinement
 - Including the effects of nonzero correlation length / relaxation time global charge conservation

$\Delta \eta$ Dependence at Freezeout

Price of Baryon Number Reconstruction

□ Statistical error will be large.

□ Applicable only to high-energy collisions.

Sufficiently large number of pions

 $\square T_c > m_{\pi}$

Approximate isospin symmetry

$$rac{\langle N_p \rangle}{\langle N_N \rangle} = rac{1}{2}$$
 $\sqrt{s_{NN}} > 10 \text{GeV}$

Time Evolution in Hadronic Phase

Hadronization (initial condition)

Boost invariance / infinitely long system
 Local equilibration / local correlation

Time Evolution in Hadronic Phase

Hadronization (initial condition)

Freezeout

Chemical Reaction 1

$$\begin{array}{c} X \xrightarrow[]{k_1} \\ \hline{\searrow}_{k_2} A \\ a: \# \text{ of } X \\ a: \# \text{ of } A \text{ (fixed)} \end{array}$$

$$\begin{array}{c} \text{Master eq.:} \quad \frac{\partial}{\partial t} P(x,t) = k_2 a P(x-1,t) + k_1(x+1) P(x+1,t) \\ \quad -(k_1 x + k_2 a) P(x,t) \end{array}$$

$$\begin{array}{c} (k_1 x + k_2 a) P(x,t) \\ \hline \\ \text{Cumulants with fixed initial condition } P(x,0) = \delta_{x,N_0} \\ \langle x(t) \rangle = N_0 e^{-k_1 t} + N_{eq}(1 - e^{-k_1 t}) \\ \langle \delta x(t)^2 \rangle = N_0(e^{-k_1 t} - e^{-2k_1 t}) + N_{eq}(1 - e^{-k_1 t}) \\ \langle \delta x(t)^3 \rangle = N_0(e^{-k_1 t} - 3e^{-2k_1 t} + 2e^{-3k_1 t}) + N_{eq}(1 - e^{-k_1 t}) \\ \text{equilibrium} \end{array}$$

Chemical Reaction 2

0

0

0.5

$$X \stackrel{k_1}{\xrightarrow{k_2}} A$$

$$N_0 = N_{eq}$$

$$\langle x(t) \rangle = N_{eq}$$

$$\langle \delta x(t)^2 \rangle = N_{eq}(1 - e^{-2k_1 t})$$

$$\langle \delta x(t)^3 \rangle = N_{eq}(1 - 3e^{-2k_1 t} + 2e^{-3k_1 t})$$

$$\int_{V_1}^{U_2} \stackrel{0.8}{\underset{k_1}{\otimes} 0.6} \stackrel{0.6}{\underset{k_1}{\otimes} 0.6} \stackrel{0.6}{\underset{k_1}{\underset{k_1}{\otimes} 0.6} \stackrel{0.6}{\underset{k_1}{\underset$$

1

Higher-order cumulants grow slower.

 $k_1 t$

2

1.5

Time Evolution in HIC

Hydrodynamic Fluctuations

Landau, Lifshitz, Statistical Mechaniqs II Kapusta, Muller, Stephanov, 2012

Diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n$$

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

Stochastic Force

determined by fluctuation-dissipation relation

$\Delta\eta$ Dependence

Shuryak, Stephanov, 2001

□ Initial condition: $\langle \delta n(\eta_1, 0) \delta n(\eta_2, 0) \rangle = \sigma_2 \delta(\eta_1 - \eta_2)$

Translational invariance

Non-Gaussianity in Fluctuating Hydro?

Theorem

It is **impossible** to directly extend the theory of hydro fluctuations to treat higher orders.

□ No a priori extension of FD relations to higher orders

Markov process + continuous variable

→Gaussian random force

cf) Gardiner, "Stochastic Methods"

- Effect of GCC can be read off from $\Delta\eta$ dependence.
- No GCC effect in ALICE experiments!

Non-Gaussianity

fluctuations (correlations)

$\langle \delta n_1 \delta n_2 \rangle, \langle \delta n_1 \delta n_2 \delta n_3 \rangle, \langle \delta n_1 \delta n_2 \delta n_3 \delta n_4 \rangle_c, \cdots \\ \blacktriangleright \text{Non-Gaussianity}$

PLANCK : statistics insufficient to see non-Gaussianity...(2013)

Fluctuations

Observables in equilibrium are fluctuating.

Fluctuations

Event-by-Event Analysis @ HIC

Fluctuations can be measured by e-by-e analysis in HIC.

