# 重イオン衝突実験に おける熱ゆらぎ ~非平衡性と非ガウス性を中心に~

Masakiyo Kitazawa (Osaka U.)

#### Beam-Energy Scan





## Bulk (Thermal) Fluctuations

Observables in equilibrium are fluctuating!



$$\left\{\begin{array}{c} \langle \delta N^2 \rangle = V \chi_2 = \sigma^2 & \text{Gaussian} \\ S = \frac{\langle \delta N^3 \rangle}{\sigma^3} & \text{non-Gaussianity} \\ \kappa = \frac{\langle \delta N^4 \rangle - 3 \langle \delta N^2 \rangle^2}{\chi_2 \sigma^2} & \end{array}\right.$$

### **Event-by-Event Analysis**



#### Pioneering studies on $\sigma$ :

Search of QCD critical point Stephanov, Rajagopal, Shuryak, PRL(1998)
 Quark deconfinement Asakawa, Heinz, Muller PRL; Jeon, Koch PRL(2000)

### My Messages

Fluctuations are invaluable observables in HIC

But, we must understand them in more detail

□ It's possible, interesting, and important

# Why Fluctuations?

### **Brownian Motion**





A. Einstein 1905

from Wikipedia

Fluctuations opened atomic physics

#### Shot Noise at Normal-Superconductor Junction X. Jehl+, Nature405,50 (2000)



Similar experiments for fractional QHE ex. Saminadayar+, PRL79,2526(1997)

### **Conserved Charges : Theoretical Advantage**



- as a Noether current
- calculable on any theory

ex: on the lattice



### **Conserved Charges : Theoretical Advantage**

Definite definition for operators

- as a Noether current
- calculable on any theory

ex: on the lattice



#### Simple thermodynamic relations

$$\left< \delta N_c^n \right> = \frac{1}{V T^{n-1}} \frac{\partial^n \Omega}{\partial \mu_c^n}$$

 Intuitive interpretation for the behaviors of cumulants

ex: 
$$\langle \delta N_B^3 \rangle = \frac{1}{VT^2} \frac{\partial \langle \delta N_B^2 \rangle}{\partial \mu_B}$$



Asakawa, Ejiri, MK, 2009

## **Conserved-Charge Fluctuations**

#### Fluctuations of CC : rigorously defined in a theory

- operators as the Noether current
- as derivatives of the partition function

#### They are lattice observables

### Fluctuations of CC II LAT-HIC crossover

#### QCD phase diagram 3, Wed. 11:00-13:30

### **Recent Progress in Lattice Community**



### Fluctuations

Free Boltzmann → Poisson 
$$\langle \delta N^n \rangle_c = \langle N \rangle$$



$$\langle \delta N_q^n \rangle_c = \langle N_q \rangle$$
$$\Longrightarrow \langle \delta N_B^n \rangle_c = \frac{1}{3^{n-1}} \langle N_B \rangle$$

$$3N_B = N_q$$



$$\langle \delta N_B^n \rangle_c = \langle N_B \rangle$$

### Fluctuations

Free Boltzmann → Poisson 
$$\langle \delta N^n \rangle_c = \langle N \rangle$$



$$\langle \delta N_q^n \rangle_c = \langle N_q \rangle$$
$$\Longrightarrow \langle \delta N_B^n \rangle_c = \frac{1}{3^{n-1}} \langle N_B$$



$$3N_B = N_q$$



## **Electric Charge Fluctuation**

Asakawa, Heinz, Muller; Jeon, Koch, 2000

$$|q_q| = 1/3, 2/3$$



$$|q_B| = 1$$

$$D = 4 \frac{\langle \delta N_Q^2 \rangle}{\langle N_Q^+ + N_Q^- \rangle}$$

- *D* ~ 3-4 Hadronic
- *D* ~ 1-1.5 QGP

## **Electric Charge Fluctuation**

PHENIX (2002); STAR (2003) ALICE, PRL **110**, 152301 (2013)



- No suppression at RHIC energy
- Fluctuations @ LHC cannot be described by hadronic d.o.f.

## Rapidity Window Dependence



Same information in •  $\langle \delta N_{Q}^{(\text{net})}(\eta_1) \delta N_{Q}^{(\text{net})}(\eta_2) \rangle$ 

•  $\simeq$  balance function

to be studied by fluctuating hydro.

- Smaller  $\Delta \eta$ more hadronic
- Larger  $\Delta\eta$  more QGP like



### Time Evolution in HIC



## Various Contributions

- Effect of jets Enhance
- Negative binomial (?) Enhance
- Coordinate vs pseudo rapidities Enhance to Poisson
- Efficiency correction Enhance to Poisson
- Global charge conservation Suppress

## Global Charge Conservation

#### For equilibrated medium

Jeon,Koch,2000 Bleicher,Jeon,Koch,2001

$$\langle \delta N^2 \rangle_{\text{exp.}} = \langle \delta N^2 \rangle_{\text{GC}} \times \left( 1 - \frac{\Delta y}{y_{\text{tot}}} \right)$$

$$\begin{array}{c} \underline{ \Delta \eta} \\ \underline{ \leftarrow } \\ \underline{ \leftarrow } \\ \eta_{tot} \end{array}$$

## Global Charge Conservation

#### For equilibrated medium

Jeon,Koch,2000 Bleicher,Jeon,Koch,2001

$$\langle \delta N^2 \rangle_{\text{exp.}} = \langle \delta N^2 \rangle_{\text{GC}} \times \left( 1 - \frac{\Delta y}{y_{\text{tot}}} \right)$$

$$\begin{array}{c} \underline{ \Delta \eta} \\ \underline{ \leftarrow \eta} \\ \underline{ \leftarrow \eta} \\ \underline{ \leftarrow \eta} \\ \underline{ \qquad } \end{array}$$

#### Solving the time evolution...



GCC effect on the hadronic diffusion **is negligible** in the ALICE result!

Sakaida, Poster I-35

## **Electric-Charge Fluctuations**

- Electric charge fluctuations is suppressed at LHC!
- The suppression is most probably attributed to primordial physics
- Qualitative difference b/w RHIC and LHC ... but why?

# Non Gaussianity

## Non-Gaussianity

#### CMB

Cosmic Microwave Background



• No statistically-significant signals Planck, 2013

#### **Mesoscopic Systems**



- Full counting statistics
- Cumulants up to 5<sup>th</sup> order

Gustavsson+, Surf.Sci.Rep.64,191(2009)

### Non-Gaussianity in HIC

Ratio of conserved charges Ejiri, Karsch, Redlich (2005) Critical enhancement Stephanov(2009) Sign change Asakawa, Ejiri, MK (2009); Friman+(2011); Stephanov(2011) Strange confinement BNL-Bielefeld(2013) Distribution funcs themselves Morita+(2013); Nakamura (Wed.)

## Ratio of Cumulants

Ejiri, Karsch, Redlich, 2005



$$\delta N_q^n \rangle_c = \langle N_q \rangle$$
$$\Longrightarrow \langle \delta N_B^n \rangle_c = \frac{1}{3^{n-1}} \langle N_B \rangle$$





#### Many lattice studies (LAT-HIC crossover):

Budapest-Wuppertal, 2013; BW,1403.4578; BNL-Bi.,1404.4043; Gupta+,1405.2206; Ratti, Wed.; Schmidt, Wed.; Nakamura, Wed.; Sharma, J-13

### Cumulants : HIC@RHIC vs Lattice



## Proton Number Cumulants at RHIC-BES





Exp. results are close to and less than Poissonian values. Something interesting around  $\sqrt{s_{\rm NN}} \simeq 20 {\rm GeV}$ 

## Effects of Various Contributions

- Effect of jets Enhance

Negative binomial (?) Enhance

- Coordinate vs pseudo rapidities Coordinate vs pseudo rapidities
- Efficiency correction Enhance to Poisson
- Global charge conservation Suppress

## Caution!!





#### Let's clarify their relation! MK, Asakawa (2012;2012)

## Nucleon isospin and a coin





Nucleon has two isospin states.

A coin has two sides.

MK, Asakawa, 2012

## Slot Machine Analogy









### Reconstructing Total Coin Number



## Charge Exchange Reaction



## Nucleons in Hadronic Medium



# Difference b/w $N_{\rm B}$ and $N_{\rm p}$

Assumptions:  $\frac{\text{net-cumulants deviate from thermal value}}{\text{But}, N_{\bar{B}}, N_{\bar{B}}} \text{ are Poissoian}$ 

$$\begin{cases} 2\langle (\delta N_p^{(\text{net})})^2 \rangle = \frac{1}{2}\langle (\delta N_B^{(\text{net})})^2 \rangle + \frac{1}{2}\langle (\delta N_B^{(\text{net})})^2 \rangle_{\text{free}} \\ 2\langle (\delta N_p^{(\text{net})})^3 \rangle = \frac{1}{4}\langle (\delta N_B^{(\text{net})})^3 \rangle + \frac{3}{4}\langle (\delta N_B^{(\text{net})})^3 \rangle_{\text{free}} \\ 2\langle (\delta N_p^{(\text{net})})^4 \rangle_c = \frac{1}{8}\langle (\delta N_B^{(\text{net})})^4 \rangle_c + \cdots \\ \text{genuine info.} \end{cases}$$

Proton number cumulants are dominated by Poissonian noise

cf.) Nahrgang+, arXiv:1402.1238

## **Efficiency Correction**

MK, Asakawa, 2012 Bdzak, Koch, 2012 STAR, 2013

## If efficiency for each particle is uncorrelated



binomial correction to distribution function

 $P_{\text{exp.}}(N)$ 

$$=\sum_{N'}B_{\epsilon}(N;N')P(N')$$



STAR, arXiv:1402.1558

for Particle missID: Ono, Asakawa, MK, PRC, 2013

#### More Information on/from Fluctuations

# $\Delta\eta$ dependence

MK, Asakawa, Ono, PLB728, 386 (2014)

## $\Delta\eta$ Dep. of Non-Gaussianity



How does the 4-th order cumulant behave as a function of  $\Delta \eta$ ?

## Fluctuating Hydrodynamics?

Distributions in experiments are close to Poissonian
 Cumulants are expected to increase in the hadronic medium



These behaviors **cannot** be described by the theory of hydrodynamic fluctuations

### Hydrodynamic Fluctuations

Landau, Lifshitz, Statistical Mechaniqs II Kapusta, Muller, Stephanov, 2012 Stephanov, Shuryak, 2001

#### Stochastic diffusion equation

 $\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$ Markov (white noise) continuity Gaussian noise Fluctuation of *n* is Gaussian in equilibrium cf) Gardiner, "Stochastic Methods"

#### How to Introduce Non-Gaussianity?

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

Choices to introduce non-Gaussianity in equil.:

- $\square$  *n* dependence of diffusion constant *D*(*n*)
- colored noise
- □ discretization of *n*

#### How to Introduce Non-Gaussianity?

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

Choices to introduce non-Gaussianity in equil.:

*n* dependence of diffusion constant *D*(*n*)
 colored noise
 discretization of *n* our choice

**REMARK:** 

Fluctuations measured in HIC are almost Poissonian.

## Nucleons in Hadronic Medium



## **Diffusion Master Equation**

MK, Asakawa, Ono, PLB728, 386(2014)

Divide spatial coordinate into discrete cells

 $\begin{aligned} & \text{Master Equation} \\ & \frac{\partial}{\partial t} P(\mathbf{n}) = \gamma \sum_{x} \left[ (n_x + 1) \left\{ P(\mathbf{n} + \mathbf{e}_x - \mathbf{e}_{x+1}) + P(\mathbf{n} + \mathbf{e}_x - \mathbf{e}_{x-1}) \right\} \\ & -2n_x P(\mathbf{n}) \right] \end{aligned}$ 

Solve the DME exactly, and take  $a \rightarrow 0$  limit

#### hadronization chemical freezeout



#### **Initial condition**

- boost invariance
- locality of fluctuations
- small cumulants

kinetic freezeout

#### **Comments:**

- agreement with stochastic diffusion eq. up to Gaussian fluctuaion
- Poisson (Skellam) distribution in equilibrium: consistent with HRG

### Solution of DME in $a \rightarrow 0$ Limit

1st order (deterministic)  $\langle n \rangle$ 

**C** consistent with diffusion equation with  $D=\gamma a^2$ 

Continuum limit with fixed  $D=\gamma a^2$ 

2nd order  $\langle \delta n^2 \rangle$ 

consistent with stochastic diffusion eq. (for sufficiently smooth initial conditions)

Shuryak, Stephanov, 2001

Nontrivial results for non-Gaussian fluctuations

### Net Charge Number

Prepare 2 species of (non-interacting) particles



Let us investigate

 $\langle \bar{Q}^2 
angle_c ~~ \langle \bar{Q}^4 
angle_c$  at freezeout time t

### **Time Evolution in Hadronic Phase**

#### Hadronization (initial condition)



Boost invariance / infinitely long system
 Local equilibration / local correlation



### **Time Evolution in Hadronic Phase**

#### Hadronization (initial condition)





#### Freezeout





### **Total Charge Number**

In recombination model,



 $\square$   $N_B^{(\text{tot})}$  can fluctuate, while  $N_B^{(\text{net})}$  does not.

#### $\Delta \eta$ Dependence at Freezeout



## 4<sup>th</sup> order Cumulant at ALICE

MK, Asakawa, Ono (2014) Sakaida+, poster I-35



4<sup>th</sup> order cumulant is sensitive to initial fluctuation / transport property / confinement It can be non-monotonic and negative!

## $\Delta\eta$ Dep. of Non-Gaussianity



How does the 4-th order cumulant behave as a function of  $\Delta \eta$ ?

## Suggestions to Experimentalists

#### many conserved charges

electric charge, baryon number, (and strangeness?) with different diffusion constans

#### various cumulants

second, third, fourth, mixed, (and much higher?)

#### $\square$ $\Delta\eta$ window dependences

primordial thermodynamics, transport property, confinement no normalization

#### Beam Energy Scan LHC, RHIC-BES, FAIR, NICA, J-PARC, ...

### My Messages

Fluctuations are invaluable observables in HIC

But, we must understand them in more detail

□ It's possible, interesting, and important

We are just arriving at the starting point to explore QCD phase structure with fluctuations!

### Summary

#### Fluctuations in HIC are nonthermal!

Plenty of physics in  $\Delta \eta$  dependences of various cumulants

 $\langle N_Q^2 \rangle_c, \ \langle N_B^2 \rangle_c, \ \langle N_Q^4 \rangle_c, \ \langle N_B^4 \rangle_c,$  $\langle N_{ch}^2 \rangle_c, \cdots$ 

Physical meanings of fluctuation obs. in experiments. Diagnosing dynamics of HIC
history of hot medium
mechanism of hadronization
diffusion constant

## backup

### $\Delta\eta$ Dependence at STAR

#### **STAR, QM2012**



decreases as  $\Delta\eta$  becomes larger at RHIC energy.

### Probability Distribution $\mathcal{P}(N_p, N_n, N_{\bar{p}}, N_{\bar{n}})$



for any phase space in the final state.

#### 3<sup>rd</sup> & 4<sup>th</sup> Order Fluctuations

$$\begin{split} \boxed{N_{\mathrm{B}} \rightarrow N_{p}} \\ &\langle (\delta N_{p}^{(\mathrm{net})})^{3} \rangle = \frac{1}{8} \langle (\delta N_{\mathrm{B}}^{(\mathrm{net})})^{3} \rangle + \frac{3}{8} \langle \delta N_{\mathrm{B}}^{(\mathrm{net})} \delta N_{\mathrm{B}}^{(\mathrm{tot})} \rangle, \\ &\langle (\delta N_{p}^{(\mathrm{net})})^{4} \rangle_{c} = \frac{1}{16} \langle (\delta N_{\mathrm{B}}^{(\mathrm{net})})^{4} \rangle_{c} + \frac{3}{8} \langle (\delta N_{\mathrm{B}}^{(\mathrm{net})})^{2} \delta N_{\mathrm{B}}^{(\mathrm{tot})} \rangle \\ &\quad + \frac{3}{16} \langle (\delta N_{\mathrm{B}}^{(\mathrm{tot})})^{2} \rangle - \frac{1}{8} \langle N_{\mathrm{B}}^{(\mathrm{tot})} \rangle, \\ \hline N_{p} \rightarrow N_{\mathrm{B}} \\ &\langle (\delta N_{\mathrm{B}}^{(\mathrm{net})})^{3} \rangle = 8 \langle (\delta N_{p}^{(\mathrm{net})})^{3} \rangle - 12 \langle \delta N_{p}^{(\mathrm{net})} \delta N_{p}^{(\mathrm{tot})} \rangle \\ &\quad + 6 \langle N_{p}^{(\mathrm{net})} \rangle, \\ &\langle (\delta N_{\mathrm{B}}^{(\mathrm{net})})^{4} \rangle_{c} = 16 \langle (\delta N_{p}^{(\mathrm{net})})^{4} \rangle_{c} - 48 \langle (\delta N_{p}^{(\mathrm{net})})^{2} \delta N_{p}^{(\mathrm{tot})} \rangle \\ &\quad + 48 \langle (\delta N_{p}^{(\mathrm{net})})^{2} \rangle + 12 \langle (\delta N_{p}^{(\mathrm{tot})})^{2} \rangle - 26 \langle N_{p}^{(\mathrm{tot})} \rangle, \end{split}$$

### **Strange Baryons**



Regarding these ratios even, protons from these decays is incorporated into the binomial distribution. Then,  $N_N \rightarrow N_B$ 



### **Total Charge Number**

In recombination model,



 $\square$   $N_B^{(\text{tot})}$  can fluctuate, while  $N_B^{(\text{net})}$  does not.

## Higher Order Cumulants @ STAR

#### (Net-) Proton Number

#### (Net-) Electric Charge



Exp. results are close to Poissonian values.
 Proton number cumulants are lower than the Poissonian values.

## 2<sup>nd</sup> Order Cumulant

## consistent with stochastic diffusion equation





### Search of QCD Phase Structure

Stronger correlation length dep.

Stephanov, 2009

$$\langle \delta N^2 \rangle \sim \xi^2, \ \langle \delta N^3 \rangle \sim \xi^{4.5}, \ \langle \delta N^4 \rangle_c \sim \xi^7$$

#### Sign of cumulants

Asakawa, Ejiri, MK, 2009 Friman+, 2011 Stephanov, 2011





### Fluctuations

 Fluctuations reflect properties of matter.
 Enhancement near the critical point Stephanov,Rajagopal,Shuryak('98); Hatta,Stephanov('02); Stephanov('09);...
 Ratios between cumulants of conserved charges Asakawa,Heinz,Muller('00); Jeon, Koch('00); Ejiri,Karsch,Redlich('06)
 Signs of higher order cumulants Asakawa,Ejiri,MK('09); Friman,et al.('11); Stephanov('11)

