Energy-Momentum Tensor and Thermodynamics of Lattice Gauge Theory from Gradient Flow

Masakiyo Kitazawa (Osaka U.)

北澤正清(大阪大学)

for FlowQCD Collaboration Asakawa, Hatsuda, Iritani, Itou, MK, Suzuki

FlowQCD, PRD90,011501R (2014)

ATHIC2014, 7 Aug. 2014, Osaka U.

Lattice QCD

First principle calculation of QCD Monte Carlo for path integral

hadron spectra, chiral symmetry, phase transition, etc.

Gradient Flow

 $\partial_t A_\mu(t,x) = -\frac{\partial S_{\rm YM}}{\partial A_\mu}$

Luscher, 2010

A powerful tool for various analyses on the lattice

Poincare symmetry

energy T_{03} T_{02} T_{01} T_{00} T_{13} T_{12} T_1 T_{10} T_{23} T_{22} T_{21} T_{20} T_{33} T_{32} T_{31} T_{30} pressure stress Einstein Equation $G_{\mu\nu} + \Lambda g_{\mu\nu} \approx \kappa T_{\mu\nu}$ Hydrodynamic Eq. $\partial_\mu T_\mu
u \equiv 0$

$\mathcal{T}_{\mu u}$: nontrivial observable on the lattice

Definition of the operator is nontrivial because of the explicit breaking of Lorentz symmetry

ex:
$$T_{\mu\nu} = F_{\mu\rho}F_{\nu\rho} - \frac{1}{4}\delta_{\mu\nu}FF$$

 $F_{\mu
u}$

miss the wood for the trees 見小利則大事不成 孔子(論語、子路13)

If we have $T\mu\nu$

Themodynamics: Integral Method

 ε : energy density

p : pressure

 $\varepsilon - 3p$

directly observable

Themodynamics: Integral Method

arepsilon : energy density

D : pressure

$$arepsilon-3p$$

Boyd+ 1996

$$T\frac{\partial(p/T^4)}{\partial T} = \frac{\varepsilon - 3p}{T^4}$$
$$\int_{T}^{T} \frac{p}{T^4} = \int_{T_0}^{T} dT \frac{\varepsilon - 3p}{T^5}$$

measurements of e-3p for many T
 vacuum subtraction for each T
 information on beta function

Gradient Flow

YM Gradient Flow

Luscher, 2010

 $\partial_t A_\mu(t,x) =$

t: "flow time" dim:[length²]

 $\partial S_{\rm YM}$ ∂A_{μ}

 $A_{\mu}(0,x) = A_{\mu}(x)$

YM Gradient Flow

Luscher, 2010

 $\partial_t A_{\mu}(t, x) = -\frac{\partial S_{\rm YM}}{\partial A_{\mu}}$

 $A_{\mu}(0,x) = A_{\mu}(x)$

t: "flow time" dim:[length²]

□ transform gauge field like diffusion equation $\begin{aligned}
\partial_t A_\mu = D_\nu G_{\mu\nu} = \partial_\nu \partial_\nu A_\mu + \cdots \\
\hline
& \text{diffusion length} \quad d \sim \sqrt{8t}
\end{aligned}$

This is NOT the standard cooling/smearing
 All composite operators at t>0 are UV finite Luescher,Weisz,2011

coarse graining

This is NOT the standard cooling/smearing

Small Flow Time Expansion of Operators and EMT

Small t Expansion

Luescher, Weisz, 2011

 $\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i \to 0} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$ remormalized operators an operator at t>0 of original theory $\tilde{\mathcal{O}}(t,x)$ $t \rightarrow 0$ limit

original 4-dim theory

Constructing EMT

Suzuki, 2013 DelDebbio,Patella,Rago,2013

 $\tilde{\mathcal{O}}(t,x)$

gauge-invariant dimension 4 operators

$$U_{\mu\nu}(t,x) = G_{\mu\rho}(t,x)G_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x)$$
$$E(t,x) = \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x)$$

Constructing EMT 2

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T^R_{\mu\nu}(x) - \frac{1}{4} \delta_{\mu\nu} T^R_{\rho\rho}(x) \right] + \mathcal{O}(t)$$
$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T^R_{\rho\rho}(x) + \mathcal{O}(t)$$

Suzuki coeffs.
$$\begin{cases} \alpha_U(t) = g^2 \left[1 + 2b_0 s_1 g^2 + O(g^4) \right] \\ \alpha_E(t) = \frac{1}{2b_0} \left[1 + 2b_0 s_2 g^2 + O(g^4) \right] \end{cases} g_{s_1}$$

 $\overline{g} = \overline{g(1/\sqrt{8t})}$ $s_1 = 0.03296...$ $s_2 = 0.19783...$

Constructing EMT 2

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T^R_{\mu\nu}(x) - \frac{1}{4} \delta_{\mu\nu} T^R_{\rho\rho}(x) \right] + \mathcal{O}(t)$$
$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T^R_{\rho\rho}(x) + \mathcal{O}(t)$$

Suzuki coeffs.
$$\begin{cases} \alpha_U(t) = g^2 \left[1 + 2b_0 s_1 g^2 + O(g^4) \right] \\ \alpha_E(t) = \frac{1}{2b_0} \left[1 + 2b_0 s_2 g^2 + O(g^4) \right] \\ s_1 = 0.03296 \dots \\ s_2 = 0.19783 \dots \end{cases}$$

Remormalized EMT

$$T^R_{\mu\nu}(x) = \lim_{t \to 0} \left[\frac{1}{\alpha_U(t)} U_{\mu\nu}(t,x) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t,x)_{\text{subt.}} \right]$$

Numerical Analysis: Thermodynamics

Thermodynamics

direct measurement of expectation values Tro $\langle T_{00} \rangle, \langle T_{ii} \rangle$ T [MeV] 100 150 200 250 300 350 400

450 500 550

Gradient Flow Method

Gradient Flow Method

$$\tilde{T}_{\mu\nu}(t) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t)_{\text{subt.}} \qquad T^R_{\mu\nu} = \lim_{t \to 0} \tilde{T}_{\mu\nu}(t)$$

$$\tilde{T}_{\mu\nu}(t) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t)_{\text{subt.}} \qquad T^R_{\mu\nu} = \lim_{t \to 0} \tilde{T}_{\mu\nu}(t)$$

 \Box t \rightarrow 0 limit with keeping t>>a²

Numerical Simulation

SU(3) YM theoryWilson gauge action

Simulation 1

(arXiv:1312.7492)

- lattice size: $32^3 x N_t$
- Nt = 6, 8, 10
- $\beta = 5.89 6.56$
- ~300 configurations

using SX8 @ RCNP SR16000 @ KEK

Cwice finer lattice! Simulation 2 (new, preliminary)

(new, preminary)

- lattice size: $64^3 \times N_t$
- Nt = 10, 12, 14, 16
- $\beta = 6.4 7.4$
- ~2000 configurations

using BlueGeneQ @ KEK efficiency ~40%

ϵ -3p at T=1.65T_c

 $\tilde{T}_{\mu\nu}(t) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t)_{\text{subt.}}$

$$\sqrt{8t} = 2a$$
over smeared
for Nt = 10 →
for Nt = 8 →
for Nt = 6 →
0 0 0.1 0.2 0.3 0.4 0.5
 $\sqrt{8t}$ T

Nt=**6**,8,10 ~300 confs.

 $T^R_{\mu\nu} = \lim_{t \to 0} \tilde{T}_{\mu\nu}(t)$

Emergent plateau! $2a \leq \sqrt{8t} \leq 0.4T^{-1}$

the range of t where the EMT formula is successfully used!

~300 confs.

the range of t where the EMT formula is successfully used!

Entropy Density at T=1.65Tc

Emergent plateau! $2a \lesssim \sqrt{8t} \lesssim 0.4T^{-1}$

Nt=**6**,8,10 ~300 confs.

Direct measurement of e+p on a given T! NO integral / NO vacuum subtraction

Continuum Limit

32³xNt Nt = 6, 8, 10 T/Tc=0.99, 1.24, 1.65

Continuum Limit

8tT

Numerical Simulation

SU(3) YM theoryWilson gauge action

Simulation 1

(arXiv:1312.7492)

- lattice size: $32^3 x N_t$
- Nt = 6, 8, 10
- $\beta = 5.89 6.56$
- ~300 configurations

using SX8 @ RCNP SR16000 @ KEK

twice finer lattice! Simulation 2

(new, preliminary)

- lattice size: 64³xN_t
- Nt = 10, 12, 14, 16
- $\beta = 6.4 7.4$
- ~2000 configurations

using BlueGeneQ @ KEK efficiency ~40%

Entropy Density on Finer Lattices

T = 2.31Tc 64³xNt Nt = 10, 12, 14, 16 2000 confs.

The wider plateau on the finer lattices
 Plateau may have a nonzero slope

0.5

Continuum Extrapolation

- T=2.31Tc
- 2000 confs
- Nt = 10 ~ 16

Continuum extrapolation is stable

Summary

 $T^R_{\mu\nu}(x)$

Summary

EMT formula from gradient flow $T^{R}_{\mu\nu}(x) = \lim_{t \to 0} \left[\frac{1}{\alpha_{U}(t)} U_{\mu\nu}(t,x) + \frac{\delta_{\mu\nu}}{4\alpha_{E}(t)} E(t,x)_{\text{subt.}} \right]$

This formula can successfully define and calculate the EMT on the lattice. It's direct and intuitive

Gradient flow provides us novel methods of various analyses on the lattice avoiding 因小失大 problem

direct measurement of expectation values

 $\langle T_{00} \rangle, \langle T_{ii} \rangle$

now we have

confinement string
 EM distribution in hadrons
 Hadron Structure

Other observables full QCD Makino,Suzuki,2014 non-pert. improvement Patella 7E(Thu) vacuum configuration
 mixed state on 1st transition
 Vacuum Structure

Fluctuations and

viscosity,

correlations

 $\eta = \langle T_{12}; T_{12} \rangle$

and etc.

O(a) improvement Nogradi, 7E(Thu); Sint, 7E(Thu)

Monahan, 7E(Thu); Sint, 7E(Monahan, 7E(Thu)

Numerical Analysis: EMT Correlators

Fluctuations and Correlations

viscosity, specific heat, ... $\eta = \int_0^\infty dt \langle T_{12}; T_{12} \rangle$ $c_V \sim \langle \delta T_{00}^2 \rangle$

EMT Correlator

 \Box Kubo Formula: T₁₂ correlator $\leftarrow \rightarrow$ shear viscosity

$$\eta = \int_0^\infty dt \int_0^{1/T} d\tau \int d^3x \langle T_{12}(x, -i\tau) T_{12}(0, t) \rangle$$

 \succ Hydrodynamics describes long range behavior of $T_{\mu\nu}$

□ Energy fluctuation $\leftarrow \rightarrow$ specific heat $c_V = \frac{\langle \delta E^2 \rangle}{VT^2}$

EMT Correlator : Noisy...

With naïve EMT operators

$\langle T_{12}(\tau)T_{12}(0)\rangle$

Nakamura, Sakai, PRL,2005 N_t=8 improved action ~10⁶ configurations

... no signal

Nt=16

standard action 5x10⁴ configurations

Energy Correlation Function

$\langle T_{00}(\tau)T_{00}(0)\rangle/T^5$

T=2.31Tc b=7.2, Nt=16 2000 confs p=0 correlator

Energy Correlation Function

 $\langle T_{00}(\tau)T_{00}(0)\rangle/T^{5}$

T=2.31Tc b=7.2, Nt=16 2000 confs p=0 correlator

 $\neg \tau \text{ independent const.}$ $\rightarrow \text{ energy conservation}$

Energy Correlation Function

$\langle T_{00}(\tau)T_{00}(0)\rangle/T^{5}$

T=2.31Tc b=7.2, Nt=16 2000 confs p=0 correlator specific heat $c_V = \frac{\langle \delta E^2 \rangle}{V/T^2}$

→ Novel approach to measure specific heat!

Gavai, Gupta, Mukherjee, 2005 $c_V/T^3 = 15(1)$ $T/T_c = 2$ = 18(2) $T/T_c = 3$ differential method / cont lim.