Understanding Fluctuations using rapidity window and collision energy dependences

Masakiyo Kitazawa (Osaka U.)

MK, Asakawa, Ono, Phys. Lett. B728 (2014) 386-392 Sakaida, Asakawa, MK, arXiv:1409.6866 MK, to appear soon!

BES-II workshop, Berkeley, 28/Sep./2014

Beam-Energy Scan

Cumulants up to 4th Order in 2014

This is a great achievement in physics!

Fluctuations and Elemental Charge

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000 Ejiri, Karsch, Redlich, 2005

$$\langle \delta N_q^n \rangle_c = \langle N_q \rangle$$
$$\Longrightarrow \langle \delta N_B^n \rangle_c = \frac{1}{3^{n-1}} \langle N_B \rangle$$

$$3N_B = N_q$$

$$\langle \delta N_B^n \rangle_c = \langle N_B \rangle$$

Free Boltzmann \rightarrow Poisson $\langle \delta N^n \rangle_c = \langle N \rangle$

Shot Noise

Total charge in the interval

$$Q = e\langle N \rangle$$

$$\delta Q^{2} \rangle = e^{2} \langle \delta N^{2} \rangle = e^{2} \langle N \rangle = eQ$$

$$\underbrace{\langle \delta Q^{2} \rangle}{Q} = e$$

$$\checkmark \text{ Quantum Hall effect}$$

Saminadayar+, PRL**79**,2526(1997)

✓ Superconductor

X. Jehl+, Nature405,50 (2000)

Shot Noise

Total charge in the interval

$$= e\langle N \rangle$$

$$Q^{2} \rangle = e^{2} \langle \delta N^{2} \rangle = e^{2} \langle N \rangle = eQ$$

$$\frac{\langle \delta Q^{2} \rangle}{Q} = e$$

$$\frac{\langle Quantum Hall effect}{Saminadayar+, PRL79,2526(1997)}$$

Superconductor

X. Jehl+, Nature405,50 (2000)

Higher order cumulants:

$$\langle \delta Q^3 \rangle = e^3 \langle N \rangle = e^2 Q$$

3rd order ex. Beenakker+, PRL90,176802(2003) up to 5th order

Gustavsson+, Surf.Sci.Rep.64,191(2009)

Cumulants up to 4th Order in 2014

This is a great achievement in physics!

However, still a lot of things to do...

Many Things to Do

□ Message to Experimentalists:

Measure rapidity window dependences
 Determine baryon number cumulants

□ Message to Theorists:

Do not directly compare your thermal results with exp.
 Let's pursue descriptions of non-eq. non-Gaussianity.

□ Message to Latticians:

Do not directly compare your results with exp.Measure more cumulants more accurately

Experimental results on Non-equilibrium state Non-Gaussian fluctuations

Experimental results on Non-equilibrium state Non-Gaussian fluctuations

Rapidity Window Dependences of Higher Order Cumulants

MK, Asakawa, Ono, Phys. Lett. B728 (2014) 386-392; MK, to appear soon!

Charge Fluctuation @ LHC

 $\langle \delta N_Q^2 \rangle$ is not equilibrated at freeze-out at LHC energy!

$\Delta\eta$ Dependence @ ALICE

Fluctuations continue to change until kinetic freezeout!!

achieved only through diffusion.

the slower diffusion

Conversion of Rapidities

$\Delta\eta$ Dependence @ ALICE

 $\Delta \eta$ dependences of fluctuation observables encode history of the hot medium!

 $<\delta N_{\rm B}^2$ > and $<\delta N_{\rm p}^2$ > @ LHC ?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$

should have different $\Delta \eta$ dependence.

 $<\delta N_{\rm B}^2$ > and $<\delta N_{\rm p}^2$ > @ LHC ?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$

should have different $\Delta\eta$ dependence.

Baryon # cumulants are experimentally observable! MK, Asakawa, 2011;2012

 $<\delta N_{0}^{4} > @ LHC ?$

Hydrodynamic Fluctuations

Landau, Lifshitz, Statistical Mechaniqs II Kapusta, Muller, Stephanov, 2012

Stochastic diffusion equation

How to Introduce Non-Gaussianity?

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

Choices to introduce non-Gaussianity in equil.:

- \square *n* dependence of diffusion constant *D*(*n*)
- colored noise
- □ discretization of *n*

How to Introduce Non-Gaussianity?

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

Choices to introduce non-Gaussianity in equil.:

n dependence of diffusion constant *D*(*n*)
 colored noise
 discretization of *n* our choice

REMARK:

Fluctuations measured in HIC are almost Poissonian.

A Brownian Particle's Model

Hadronization (specific initial condition)

(1) Describe time evolution of Brownian particles exactly (2) Obtain cumulants of particle # in $\Delta\eta$

Baryons in Hadronic Phase

Diffusion Master Equation

MK, Asakawa, Ono, 2014

Diffusion Master Equation

MK, Asakawa, Ono, 2014

Solve the DME **exactly**, and take $a \rightarrow 0$ limit

No approx., ex. van Kampen's system size expansion

Net Charge Number

Prepare 2 species of (non-interacting) particles

Time evolution of Q up to Gauusianity is consistent with the stochastic diffusion equation

Time Evolution in Hadronic Phase

Hadronization (initial condition)

Boost invariance / infinitely long system
 Local equilibration / local correlation

Time Evolution in Hadronic Phase

Hadronization (initial condition)

Freezeout

Fime evolution via DME

Total Charge Number

In recombination model,

 \square $N_B^{(\text{tot})}$ can fluctuate, while $N_B^{(\text{net})}$ does not.

$\Delta\eta$ Dependence: 4th order

Charcteristic $\Delta \eta$ dependences!

Relaxation from a specific initial condition to Skellam value

- We assume perfect equilibration at T_c
- Cumulants near T_c can be studied by Lattice.

□ No pair creation/annihilation below T_{chem}

- For baryons, this would be justified below T_c
- But, may not for electric charges.

□ No finite volume effect

Effect of Global Charge Conservation (Finite Volume Effect)

Sakaida, Asakawa, MK, arXiv:1409.6866

Global Charge Conservation

Conserved charges in the total system do no fluctuate!

Global Charge Conservation

Conserved charges in the total system do no fluctuate!

Jeon, Koch, PRL2000; Bleicher, Jeon, Koch (2000)

Diffusion in Finite Volume

Solve the diffusion master equation in finite volume

Diffusion in Finite Volume

Solve the diffusion master equation in finite volume

Physical Interpretation

 $d(\tau)$: Averaged Diffusion Distance $D(\tau)$: Diffusion Coefficient η_{tot} : Total Length of Matter

Effects of the GCC appear only near the boundaries.

Comparison with ALICE Result

 $d(\tau)$

 $\eta_{\rm tot}$

T

- No GCC effect in ALICE experiments!
- Same conclusion for higher order cumulants

Very Low Energy Collisions

Large contribution of global charge conservationViolation of Bjorken scaling

Careful treatment is required to interpret fluctuations at low beam energies! Many information should be encoded in $\Delta\eta$ dep.

Summary

Measurement of non-Gaussianity at STAR
 Non-equilibrium behavior at ALICE

Theoretical description to treat both "non"s is needed!

Plenty of information in $\Delta\eta$ dependences of various cumulants $\langle N_Q^2 \rangle_c, \ \langle N_Q^3 \rangle_c, \ \langle N_Q^4 \rangle_c, \ \langle N_B^2 \rangle_c, \ \langle N_B^3 \rangle_c, \ \langle N_B^4 \rangle_c$

and those of non-conserved charges, mixed cumulants...

Many Things to Do

□ Message to Experimentalists:

Measure rapidity window dependences
 Determine baryon number cumulants

□ Message to Theorists:

Do not directly compare your thermal results with exp.
 Let's pursue descriptions of non-eq. non-Gaussianity.

□ Message to Latticians:

Do not directly compare your results with exp.Measure more cumulants more accurately

$\Delta\eta$ Dependence

Shuryak, Stephanov, 2001

□ Initial condition: $\langle \delta n(\eta_1, 0) \delta n(\eta_2, 0) \rangle = \sigma_2 \delta(\eta_1 - \eta_2)$

Translational invariance

Open Questions & Future Work

- Why the primordial fluctuations are observed only at LHC, and not RHIC ?
- Extract more information on each stage of fireballs using fluctuations

- Model refinement
 - Including the effects of nonzero correlation length / relaxation time global charge conservation