

北沢正清 (阪大)

Karsch, MK, PL**B658**, 49 (2007); PRD80, 056001 (2009); Kaczmarek, Karsch, MK, Soeldner, PRD86, 036006 (2012); Kim, Asakawa, MK, in preparation.

筑波大学セミナー、2014年10月30日

有限温度(ゼロ密度)QCD

QCDの低温および高温極限は単純な描像が適用でき、 かつそれらは全く異なるのに連続的につながっている。

中間領域では何が起こっているのだろうか? 低温のハドロンの運命は?高温のクォークの運命は?

Are There Quark Quasi-Particles in sQGP?

In **real** experiments:

In **numerical** experiments:

Are There Quark Quasi-Particles in sQGP?

In **real** experiments:

quark # scaling of v_2

In **numerical** experiments:

Fries, et al., '03

Are There Quark Quasi-Particles in sQGP?

In real experiments:

quark # scaling of v_2

Fries, *et al.*, '03

In **numerical** experiments:

ratio
$$c_4/c_2 \begin{cases} c_2 = -\partial^2 \Omega / \partial \mu_B^2 \\ c_4 = -\partial^4 \Omega / \partial \mu_B^4 \end{cases}$$

with particles (mass *m* & charge *q*) $m << T \implies c_4 / c_2 \sim q^2$

ボルツマンの苦悩

Mach

photos from Wikipedia

レプトン対生成率

レプトン・光子は強い 相互作用をしない

レプトン対・光子は、高温物質からの直接的信号

クォークの準粒子描像を反映

Dilepton Production Rate @ RHIC

Dilepton Production Rate @ RHIC

qualitatively inconsistent result @ STAR

Quarks at Extremely High T

Klimov '82, Weldon '83 Braaten, Pisarski '89

•Hard Thermal Loop approx. (
$$p$$
, ω , $m_q \ll T$)
•1-loop ($g \ll 1$)

$$S(\omega, \mathbf{p}) = \frac{1}{\omega \gamma_0 - \mathbf{p} \cdot \mathbf{\gamma} - \Sigma(\omega, \mathbf{p})}$$

•Gauge independent spectrum

•2 collective excitations having a "thermal mass" $\sim gT$

• width $\sim g^2 T$

 $\Sigma(\omega, \mathbf{p}) = \delta$

•The plasmino mode has a minimum at finite *p*.

Decomposition of Quark Propagator

$$S(\omega, \mathbf{p}) = S_{+}(\omega, \mathbf{p})\Lambda_{+}(\mathbf{\vec{p}})\gamma^{0}$$
$$+S_{-}(\omega, \mathbf{p})\Lambda_{-}(\mathbf{\vec{p}})\gamma^{0}$$

HTL (high T limit)

$$S_{\text{HTL}}(\omega, \mathbf{p}) = \underbrace{\frac{L_{+}(\mathbf{p})\gamma^{0}}{\omega - p - \Sigma_{+}}}_{2} + \frac{L_{-}(\mathbf{p})\gamma^{0}}{\omega + p - \Sigma_{-}}$$

$$2$$

 L_{m}/ω

0

-1

-2

0

$$p/m_T$$

-1

-2

0

$$\Lambda_{\pm}(\mathbf{p}) = \frac{E_{\mathbf{p}} \pm \gamma_0 (\mathbf{p} \cdot \vec{\gamma} + m)}{2E_{\mathbf{p}}}$$

$$E_{\mathbf{p}} = \sqrt{\mathbf{p}^2 + m^2}$$
Free quark with mass m
$$S_{\text{free}}(\omega, \mathbf{p}) = \frac{\Lambda_{\pm}(\mathbf{p})\gamma^0}{\omega - E_{\mathbf{p}}} + \frac{\Lambda_{-}(\mathbf{p})\gamma^0}{\omega + E_{\mathbf{p}}}$$

 $\frac{1}{2}p/m$

Fermion Spectrum in QED & Yukawa Model

Baym, Blaizot, Svetisky, '92

• Yukawa model:
$$L = i\overline{\psi}(i\partial - m_0 - g\sigma)\psi + \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma$$

• 1-loop approx.:

Spectral Function for
$$g = 1$$
, $T = 1$

• $m_0/T \ll 1$ thermal mass $m_T = gT/4$ • $m_0/T \gg 1$ single peak at m_0

Plasmino peak disappears as m_0/T becomes larger.

cf.) massless fermion + massive boson MK, Kunihiro, Nemoto,'06

Extracting Spectral Functions

MEM analysis of $\rho(\omega)$

most probable image estimated by lattice data + prior knowledge Asakawa, Hatsuda, Nakahara, 1999

qualitative structure of $\rho(\omega)$. errors only for average for finite range

Lattice Study of Quarks above	T _c	Karsch Kaczm	, MK, '07, arek, MK+	'09; ·,'12
•quenched approximation •clover improved Wilson	$\begin{array}{ c c }\hline T/T_c\\3\end{array}$	β 7.45	$\frac{N_x^3 x N_t}{128^3 x 16}$	
•Landau gauge fixing			64 ³ x16 48 ³ x16	
		7.19	$48^{3}x12$	
	1.5	6.87	$128^{3}x16$	
			$64^{3}x16$	
			$48^{3}x16$	
60000308 6000000		6.64	$48^{3}x12$	
	1.25	6.72	64 ³ x16	
			$48^{3}x16$	
Ecco Econd - Day				

Lattice Study of Quarks ab	ove	T _c	Karsch Kaczm	ı, MK, '07, '09; arek, MK+,'12
 quenched approximation clover improved Wilson 		$ \begin{array}{ c c c } \hline T/T_c \\ 3 \\ \hline \end{array} $	β 7.45	
•Landau gauge fixing		1.5	7.19 6.87	48 ³ x16 48 ³ x12 128 ³ x16
• 2-pole ansatz for $\rho_+(\omega)$.			6 64	64 ³ x16 48 ³ x16 48 ³ x12
$\rho_{+}(\omega) = \mathbf{Z}_{1}\delta(\omega - \mathbf{E}_{1}) + \mathbf{Z}_{2}\delta(\omega + \mathbf{E}_{2})$		1.25	6.72	$ \begin{array}{c} 64^{3}x16 \\ 48^{3}x16 \end{array} $
4-parameter fit E_1, E_2, Z_1, Z_2			<i>m/</i> .	 T=0.01
$Z_{2} \qquad Z_{1} \qquad Z_{1} \qquad Z_{1} \qquad Z_{1} \qquad E_{1} \qquad \omega$	$\begin{array}{c}10\\5\\0\\\end{array}$		0.1 0.3 0.45 0.8 0.6	
	-0.5	C) (J.S 1

Dirac Structure of Quark Spectrum

Limiting behaviors for m₀ → 0, m₀ → ∞ are as expected.
Quark propagator approaches the chiral symmetric one near m₀=0.
E₂>E₁ : qualitatively different from the 1-loop result.

•Existence of the plasmino minimum is indicated.

• E_2 , however, is not the position of plasmino pole.

レプトン対生成率の解析

光子・レプトン対(仮想光子)生成率

媒質からの光子・レプトン対生成率 $\frac{d^{+}G}{dq_{0}d^{3}q} = \frac{\partial}{12\rho^{4}} \frac{1}{e^{bq_{0}} - 1} \frac{1}{q^{2}}$ Im McLerran, Toimela (1985); Weldon(1990); Gale, Kapusta (1991)

Virtual Photon Self Energy

準粒子の分散関係

格子QCDで計算した分散関係の データ点を3次スプライン補完で フィット

 ω₊(p):準粒子のノーマル状態の 分散関係
 ω₋(p):準粒子のプラズミーノ状態 (媒質中でのみ存在する状態)の分散関係

バーテックス補正

□ Γ_u4成分に対して拘束条件が1つしか無い

バーテックス補正2

$$k^{0}G_{0} + \frac{k^{1}G_{1} + k^{2}G_{2} + k^{3}G_{3}}{k^{0}G_{0}} = S^{-1}(p+k) - S^{-1}(p)$$

 $k=0$ のとき空間の対称性からのになる (滑らかさを仮
定)
 $k^{i} \rightarrow 0 \ (i = 1, 2, 3)$ の極限で
 $k_{0}\Gamma_{0}(p+k, p)|_{k=0} = S^{-1}(p_{0} + k_{0}, p) - S^{-1}(p_{0}, p)$

バーテックス補正2

$$k^{0}G_{0} + k^{1}G_{1} + k^{2}G_{2} + k^{3}G_{3} = S^{-1}(p+k) - S^{-1}(p)$$

 $k=0$ のとき空間の対称性からのになる(滑らかさを仮
定)
 $k^{i} \rightarrow 0 \ (i = 1, 2, 3)$ の極限で
 $k_{0}\Gamma_{0}(p+k, p)|_{k=0} = S^{-1}(p_{0} + k_{0}, p) - S^{-1}(p_{0}, p)$

Γ_0 のk依存性がないと仮定 \blacksquare Γ_i が決まる

Additional pole due to vertex correction behavior of propagator "Two pole ansatz" S has a zero point -2 emergence of a pole in Γ_{μ} Additional pole means production from diagrams like, www Ŵ

- □格子QCDによるクォーク伝搬関数の解析は、臨界温度より高 温であれば非摂動領域においてもクォーク場が準粒子励起を 持ち、かつ熱質量を持つことを示唆している。
- □格子QCDの相関関数から求めたクォーク伝搬関数と、WT関係式を満たす頂点関数を使って、レプトン対生成率の解析を行った。
- □ 臨界温度付近の非閉じ込め物質のレプトン対生成率は、低エ ネルギー領域で、自由クォークのレートより10倍程度大きくな ることが示唆された。

Dilepton Production Rate

- •Most direct probes of the QGP.
- •They are produced in all stages of time evolution.

Choice of Source

• Wall source, instead of point source

• point:
$$S(\mathbf{p} = \mathbf{0}, \tau) = \sum_{\mathbf{x}} \langle \psi(\mathbf{x}, \tau) \overline{\psi}(\mathbf{0}, 0) \rangle$$

• wall : $S(\mathbf{p} = \mathbf{0}, \tau) = \frac{1}{V} \sum_{\mathbf{x}, \mathbf{y}} \langle \psi(\mathbf{x}, \tau) \overline{\psi}(\mathbf{y}, 0) \rangle$

same (or, less) numerical costquite effective to reduce error!!

18

Quality of data on **128³x16** lattice is about **3** times better than on **64³x16**.

 $K = \not{D} - m_0$ $K\phi_{\text{result}} = \phi_{\text{source}}$ $\phi_{\text{result}} = K^{-1}\phi_{\text{source}}$

<u>What's the source?</u>

t

Lattice Spacing and Volume Dependences

for $T=3T_c$

•No lattice spacing dependence within statistical error.

•strong volume dependence even for $N_{\sigma}/N_{\tau}=4$.